

3.3V Dual Micropower Low Dropout **Regulator with ENABLE and RESE** Description

The CS8363 is a precision micropower dual voltage regulator with **ENABLE** and **RESET**.

The 3.3V standby output is accurate within ±2% while supplying loads of 100mA. Quiescent current is low, typically $140\mu A$ with a 300µA load. The active RESET output monitors the 3.3V standby output and holds the **RESET** line low during power-up and regulator dropout conditions. The RESET circuit includes hysteresis and is guaranteed to operate correctly with 1V on the standby output.

The second output tracks the 3.3V standby output through an external adjust lead, and can supply loads of 250mA with a typical dropout voltage of 400mV. The logic level **ENABLE** lead is used to control this tracking regulator output.

Both outputs are protected against overvoltage, short circuit, reverse battery and overtemperature conditions. The robustness and low quiescent current of the CS8363 makes it not only well suited for automotive microprocessor applications, but for any battery powered microprocessor applications.

Features

- 2 Regulated Outputs Standby Output 3.3V ±2%; 100mA Adjustable Tracking Output; 250mA
- Low Dropout Voltage
- **RESET for VSTBY**
- ENABLE for VTRK
- Low Quiescent Current
- **Protection Features Independent Thermal** Shutdown Short Circuit **60V Peak Transient Reverse Battery**

Block Diagram

* Consult factory for positive ENABLE option.

Package Options 7 Lead D²PAK

Consult factory for 16 Lead SOIC Wide.

ON Semiconductor 2000 South County Trail, East Greenwich, RI 02818 Tel: (401)885-3600 Fax: (401)885-5786 N. American Technical Support: 800-282-9855 Web Site: www.cherry-semi.com

CS8363

Supply Voltage, V _{IN}	
Positive Transient Input Voltage, tr > 1ms	
Negative Transient Input Voltage, T < 100ms, 1% Duty Cycle	-50V
Input Voltage Range (ENABLE, RESET)	–0.3V to 10V
Junction Temperature	40°C to +150°C
Storage Temperature Range	55°C to +150°C
ESD Susceptibility (Human Body Model)	2kV
Lead Temperature Soldering	
Wave Solder (through hole styles only)	
Reflow (SMD styles only)	60 sec. max above 183°C, 230°C peak

Electrical Characteristics: $6V \le V_{IN} \le 26V$; $I_{OUT1} = I_{OUT2} = 100\mu$ A; $-40^{\circ}C \le T_A \le +125^{\circ}C$; unless otherwise specified.					
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNI
Tracking Output (V _{TRK})					
V _{STBY} – V _{TRK} , V _{TRK} Tracking Error	$\hline 6V \leq V_{IN} \leq 26V \\ 100 \mu A \leq I_{TRK} \leq 250 mA \text{ (Note 1)}$	-25		+25	mV
Adjust Pin Current, I _{Adj}	Loop in Regulation		1.5	5	μA
Line Regulation	$6V \le V_{IN} \le 26V \text{ (Note 1)}$		5	50	m٧
Load Regulation	$100 \mu A \leq I_{TRK} \leq 250 m A$ (Note 1)		5	50	m
Dropout Voltage (V _{IN} – V _{TRK})	$I_{TRK} = 100 \mu A$ $I_{TRK} = 250 m A$		100 400	150 700	mV mV
Current Limit	$V_{IN} = 12V, V_{TRK} = 3.0V$	275	500		m
Quiescent Current	$V_{IN} = 12V$, $I_{TRK} = 250mA$ No Load on V_{STBY}		25	50	m
	$\label{eq:VIN} \begin{split} V_{IN} &= 12V, \ I_{TRK} = 500 \mu A, \\ I_{STBY} &= 100 \mu A \end{split}$		145	220	μA
Reverse Current	$V_{TRK} = 3.3V, V_{IN} = 0V$		200	1500	μA
Ripple Rejection	$\label{eq:transform} \begin{array}{l} f = 120Hz, \ I_{TRK} = 250mA \\ 7V \leq V_{IN} \leq 17V \end{array}$	60	70		dE
Standby Output (V _{STBY})					
Output Voltage, V _{STBY}	$\label{eq:Vindex} \begin{array}{c} 4.5 V \leq V_{IN} \leq 26 V \\ 100 \mu A \leq I_{STBY} \leq 100 m A \end{array}$	3.234	3.300	3.366	V
Line Regulation	$6V \leq V_{IN} \leq 26V$		5	50	m
Load Regulation	$100\mu A \leq I_{STBY} \leq 100 m A$		5	50	m
Dropout Voltage (V _{IN} – V _{STBY})	$\begin{split} I_{STBY} &= 100 \mu A, V_{IN} = 4.2 V \\ I_{STBY} &= 100 m A, V_{IN} = 4.2 V \end{split}$			1.0 1.0	V V
Current Limit	$V_{IN} = 12V$, $V_{STBY} = 3.0V$	125	200		m
Short Circuit Current	$V_{IN} = 12V$, $V_{STBY} = 0V$	10	100		mA
Quiescent Current	$V_{IN} = 12V, I_{STBY} = 100mA$ $I_{TRK} = 0mA$		10	20	m
	V_{IN} = 12V, I_{STBY} = 300µA I_{TRK} = 0mA		140	200	μA
Reverse Current	$V_{STBY} = 3.3V, V_{IN} = 0V$		100	200	μA
Ripple Rejection	$\label{eq:stars} \begin{array}{l} f = 120Hz, \ I_{STBY} = 100mA \\ 7V \leq V_{IN} \leq 17V \end{array}$	60	70		dE

Note 1: V_{TRK} connected to Adj lead. V_{TRK} can be set to higher values by using an external resistor divider.

Electrical Characteristics: $6V \le V_{IN} \le 26V$; $I_{OUT1} = I_{OUT2} = 100\mu$ A; $-40^{\circ}C \le T_A \le +125^{\circ}C$; unless otherwise specified.					
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
RESET ENABLE Functions					
ENABLE Input Threshold		0.8	1.2	2.0	V
ENABLE Input Bias Current	$V_{\text{ENABLE}} = 0V \text{ to } 10V$	-10	0	10	μΑ
RESET Hysteresis		10	50	100	mV
RESET Threshold Low (V _{RL})	V_{STBY} Decreasing, $V_{IN} > 4.5V$	92.5%	95%	97.5%	V _{STBY}
RESET O/P Leakage				25	μΑ
Output Voltage					
Low (V _{RLO}); $R_{RST} = 10k\Omega$	$1V \le V_{STBY} \le V_{RL}$		0.1	0.4	V
Low (V _{RPEAK})	V _{STBY} , Power Up, Power Down		0.6	1.0	V
V _{IN} (V _{RST} Low)	$V_{STBY} = 3.3V$		4.0	4.5	V
Protection Circuitry (Both Outpu	ıts)				
Independent Thermal Shutdown	V _{STBY}	150	180		°C
	V _{TRK}	150	165		°C
Overvoltage Shutdown		30	34	38	V

Package Lead Description				
PACKAGE LEAD # LEAD SYMBOL		FUNCTION		
7 Lead D ² PAK				
1	V _{STBY}	Standby output voltage delivering 100mA.		
2	V_{IN}	Input voltage.		
3	V _{TRK}	Tracking output voltage controlled by $\overline{\text{ENABLE}}$ delivering 250mA.		
4	Gnd	Reference ground connection.		
5	Adj	Resistor divider from V_{TRK} to Adj. Sets the output voltage on V_{TRK} . If tied to V_{TRK} , V_{TRK} will track V_{STBY} .		
6	ENABLE	Provides on/off control of the tracking output, active LOW.		
7	RESET	CMOS compatible output lead that goes low whenever V_{STBY} falls out of regulation.		

Circuit Description

ENABLE Function

The $\overline{\text{ENABLE}}$ function switches the output transistor for V_{TRK} on and off. When the $\overline{\text{ENABLE}}$ lead voltage exceeds 1.4V(typ), V_{TRK} turns off. This input has several hundred millivolts of hysteresis to prevent spurious output activity during power-up or power-down.

RESET Function

The RESET is an open collector NPN transistor, controlled by a low voltage detection circuit sensing the V_{STBY} (3.3V) output voltage. This circuit guarantees the RESET output stays below 1V (0.1V typ) when V_{STBY} is as low as 1V to ensure reliable operation of microprocessor-based systems.

V_{TRK} Output Voltage

This output uses the same type of output device as V_{STBY} , but is rated for 250mA. The output is configured as a tracking regulator of the standby output. By using the standby output as a voltage reference, giving the user an external programming lead (Adj lead), output voltages from 3.3V to 20V are easily realized. The programming is done with a simple resistor divider, and following the formula:

$$V_{TRK} = V_{STBY} \times (1 + R1/R2) + I_{Adi} \times R1$$

If another 3.3V output is needed, simply connect the Adj lead to the V_{TRK} output lead.

Application Notes

External Capacitors

Output capacitors for the CS8363 are required for stability. Without them, the regulator outputs will oscillate. Actual size and type may vary depending upon the application load and temperature range. Capacitor effective series resistance (ESR) is also a factor in the IC stability. Worstcase is determined at the minimum ambient temperature and maximum load expected.

Output capacitors can be increased in size to any desired value above the minimum. One possible purpose of this would be to maintain the output voltages during brief conditions of negative input transients that might be characteristic of a particular system.

Capacitors must also be rated at all ambient temperatures expected in the system. To maintain regulator stability down to -40° C, capacitors rated at that temperature must be used.

More information on capacitor selection for Smart Regulators[™] is available in the Smart Regulator application note, "Compensation for Linear Regulators."

Calculating Power Dissipation in a Dual Output Linear Regulator

The maximum power dissipation for a dual output regulator (Figure 1) is:

$$\begin{split} PD(max) &= \{V_{IN}(max) - V_{OUT1}(min)\}I_{OUT1}(max) + \\ &\{V_{IN}(max) - V_{OUT2}(min)\}I_{OUT2}(max) + V_{IN}(max)I_Q \end{split} \label{eq:powerserv} \end{split}$$

where

V_{IN}(max) is the maximum input voltage,

 V_{OUT1} (min) is the minimum output voltage from V_{OUT1} ,

 V_{OUT2} (min) is the minimum output voltage from V_{OUT2} ,

 $I_{\rm OUT1}({\rm max})$ is the maximum output current, for the application

 $I_{OUT2}(\mbox{max})$ is the maximum output current, for the application

 I_Q is the quiescent current the regulator consumes at $I_{OUT}(max)$.

Once the value of PD(max) is known, the maximum permissible value of $R_{\Theta JA}$ can be calculated:

$$R_{\Theta JA} = \frac{150^{\circ}C - T_A}{P_D}$$
(2)

The value of $R_{\Theta JA}$ can then be compared with those in the package section of the data sheet. Those packages with $R_{\Theta JA}$'s less than the calculated value in equation 2 will keep the die temperature below 150°C.

In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heat sink will be required.

Figure 1: Dual output regulator with key performance parameters labeled.

Heat Sinks

A heat sink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air.

Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of $R_{\Theta JA}$:

$$R_{\Theta JA} = R_{\Theta JC} + R_{\Theta CS} + R_{\Theta SA}$$
(3)

where $R_{\Theta JC}$ = the junction-to-case thermal resistance, $R_{\Theta CS}$ = the case-to-heat sink thermal resistance, and

 $R_{\Theta SA}$ = the heat sink-to-ambient thermal resistance.

 $R_{\Theta JC}$ appears in the package section of the data sheet. Like $R_{\Theta JA}$, it too is a function of package type. $R_{\Theta CS}$ and $R_{\Theta SA}$ are functions of the package type, heat sink and the interface between them. These values appear in heat sink data sheets of heat sink manufacturers.

Package Specification

PACKAGE DIMENSIONS IN mm(INCHES)

PACKAGE THERMAL DATA

Thermal Data		7 Lead D ² PAK	
$R_{\Theta JC}$	typ	3.5	°C/W
$R_{\Theta JA}$	typ	10-50*	°C/W
*Depending on thermal properties of substrate. $R_{\Theta JA} = R_{\Theta JC} + R_{\Theta CA}$			

Ordering Information				
Part Number	Description			
CS8363YDPS7	7L D ² PAK short-leaded			
CS8363YDPSR7	7L D ² PAK short-leaded, (tape & reel)			

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor reserves the right to make changes without further notice to any products herein. For additional information and the latest available information, please contact your local ON Semiconductor representative.

Notes

Notes