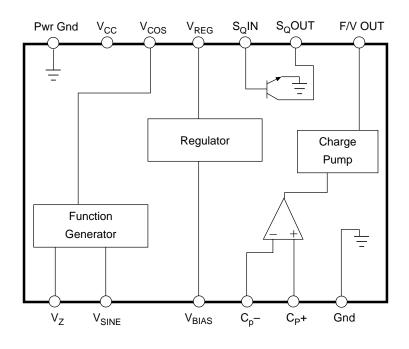


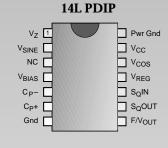
20mA Air-Core Tachometer Drive Circuit

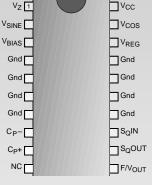

Description

The CS289 is specifically designed for use with air-core meter movements. The IC has charge pump circuitry for frequency-to-voltage conversion, a shunt regulator for stable operation, a function generator, and sine and cosine amplifiers. The buffered sine and cosine outputs will typically sink or source 20mA.

Absolute Maximum Ratings

Supply Voltage (V _{CC})	20V
Operating Temperature	
Junction Temperature	40°C to 150°C
Storage Temperature	65°C to +150°C
Lead Temperature Soldering	
Wave Solder (through hole styles only)10	sec. max, 260°C peak
Reflow (SMD styles only)60 sec. max about	ove 183°C, 230°C peak


Block Diagram


Features

- Single Supply Operation
- On-Chip Regulation
- 20mA Output Drive Capability

Package Options

20L SOIC Wide

ON Semiconductor 2000 South County Trail, East Greenwich, RI 02818 Tel: (401)885–3600 Fax: (401)885–5786 N. American Technical Support: 800-282-9855 Web Site: www.cherry-semi.com

June, 1999 - Rev. 3

	Electrical Characteristics: $(V_{CC} = 13.1V,$	$-30^{\circ}C \leq T$	A≤ 85°C)		
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Current (Note 2)	$V_{CC} = 15.0V$ $V_{CC} = 13.1V$ $V_{CC} = 11.3V$		54 60 60	65 65	mA mA
Regulated Voltage	$I_{REG} = 4.3 \text{mA}$	7.7	8.5	9.3	V
Regulation	$I_{REG} = 0$ to $5mA$		0.10	0.20	V
Signal Input Current	$T = 25^{\circ}C$	0.1	2.0	4.0	mA
Saturation Voltage	$I_{SQ}~OUT=5mA,~I_{SQ}~IN=500\mu A$		0.20	0.55	V
Leakage Current	I_{SQ} OUT = 16V, V_{SQ} IN = 0V			10	μΑ
Input Current	C_{P} + = 0, $T = 25$ ° C		1	15	nA
F to V Output	$V_{SQ}IN = 0$ (zero input), $\emptyset = 0^{\circ}$	1.8	2.1	2.4	
	$V_{COS} = 0$ (Note 1), $\emptyset = 270^{\circ}$	6.3	7.1	7.9	V
Linearity	E_{O} vs. Frequency $V_{COS} = 0$ (Note 1), $\emptyset = 270^{\circ}$, $T = 25^{\circ}C$	-1.5		1.5	%
V_{sine} at $\emptyset = 0^{\circ}$	V_{SQ} IN = 0 (zero input), \varnothing = 0°	-0.55	0.00	0.55	V
MAX V _{sine+}	$V_{COS} = 0$ (Note 1), $\varnothing = 90^{\circ}$	3.8	4.5	5.8	V
MAX V _{sine} -	$V_{COS} = 0$ (Note 1), $\emptyset = 270^{\circ}$	-3.8	-4.5	-5.8	V
Coil Drive Current	$V_{COS} = 0$ (Note 1), $\emptyset = 90^{\circ}$, $T = 25^{\circ}C$		20	25	mA
	$V_{COS} = 0$ (Note 1), $\emptyset = 270^{\circ}$		20	25	mA
$MAX \ V_{COS+}$	V_{SQ} IN = 0 (zero input), \varnothing = 0°	3.8	4.5	5.8	V
MAX V _{COS} -	$V_{sine} = 0$ (Note 1), $\emptyset = 180^{\circ}$	-3.8	-4.5	-5.8	V
Coil Drive Current	V_{SQ} IN = 0 (zero input), \varnothing = 0°		20	25	mA
	$V_{sine} = 0$ (Note 1), $\emptyset = 180^{\circ}$		20	25	mA

Note 1: V_{sine} measured V_{sine} to V_Z . V_{COS} measured V_{COS} to V_Z . All other voltages specified are measured to ground. Note 2: Max PWR dissipation \leq V_{CC} X V_{CC} - V_Z V_{sine} + V12 V_{COS} V_Z .

External Voltage Ref.

Package Pin Description			
PACKAGE PI	PACKAGE PIN # PIN SYMF		FUNCTION
20L SO	14L PDIP		
1	1	$\overline{V_Z}$	External Zener reference.
2	2	$V_{\rm sine}$	Sine output signal.
3	4	V_{BIAS}	Test pin or "0" calibration pin.
4, 5, 6, 7, 14, 15, 16, 17	7	Gnd	Analog Ground connection.
8	5	C_{P-}	Negative input to charge pump.
9	6	C_{P+}	Positive input to charge pump.
10	3	NC	No Connection
11	8	F/V _{OUT}	Output voltage proportional to input signal frequency.

4.98

5.40

5.85

V

Note 1: V_{sine} measured V_{sine} to V_Z . V_{COS} measured V_{COS} to V_Z . All other voltages specified are measured to ground. Note 2: Max PWR dissipation \leq V_{CC} X I_{CC} - (V₂ I_{sine} + V12 I_{COS}).

Pwr Gnd

PIN SYMBOL

SOOUT

 S_QIN

 V_{REG}

 V_{COS}

 V_{CC}

Typical Performance Characteristics

Cosine output signal.

Power Ground connection.

Supply voltage.

Output Angle in Polar Form

PACKAGE PIN #

20L SO 12

13

18

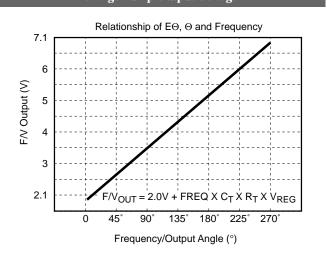
19 20 14L PDIP

9

10

11

12


13

14

V_P COS Θ COSINE OUTPUT V_P SIN Θ SINE OUTPUT

-4.5

Charge Pump Output Voltage

4.5 3.5 SINE 2.5 VSINE, VCOS (V) V_{COS} 1.5 V_{Z} -1.5 -2.5 4.5V -3.5

Function Generator Output Voltage

3.8 5.45 7.1

90° 135° 180° 225° Tachometer Angular Deflection (°)

Charge Pump

The input frequency is buffered through a transistor, then applied to the charge pump for frequency-to-voltage conversion (Figure 1). The charge pump output voltage, EØ, will range from 2.1V with no input (Ø= 0°) to 7.1V at Ø = 270°. The charge that appears on C_T is reflected to C_{OUT} through a Norton amplifier. The frequency applied at S_QIN charges and discharges C_T through R_1 and R_2 . C_{OUT} reflects the charge as a voltage across resistor R_T .

Function Generator/Sine and Cosine Amplifiers

The output waveforms of the sine and cosine amplifiers are derived by On-Chip Amplifier/Comparator circuitry. The various trip points for the circuit (i.e. 90°, 180°, 270°) are determined by an internal resistor divider connected to the voltage regulator. The voltage EØ is compared to the divider network by the function generator circuitry. Use of an external zener reference at $V_{\rm Z}$ allows both sine and cosine amplifiers to swing positive and negative with respect to this reference. The output magnitudes and directions have the relationship as shown in Typical Characteristics diagrams.

Note: Pin connections referenced are for the 14L DIP.

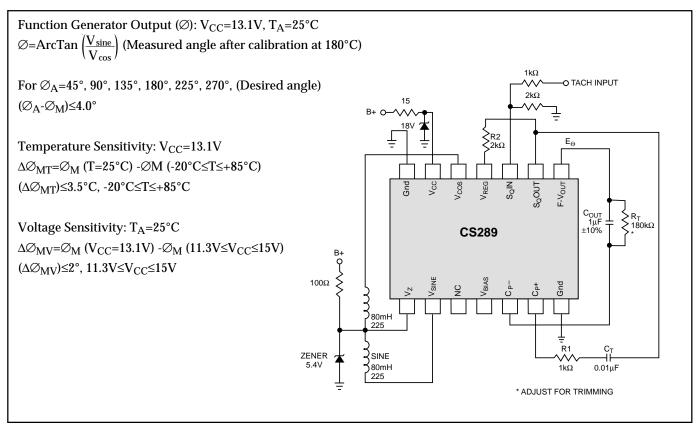


Figure 1. Functional Diagram of CS289 Circuit.

$$\frac{\text{RPM}}{60}$$
 x $\frac{\text{\# OF CYL}}{2}$ = Frequency

 $V_{\text{F/V}_{\text{OUT}}} = 2.1 + \text{Frequency x C}_{\text{T}} \text{ x R}_{\text{T}} \text{ (V}_{\text{REG}} - 0.7)$

The above equations were used in calculating the following values, where $V_{\text{F/V}_{\text{OUT}}}$ = 7.1V at =270° and C_T = 0.01 F.

4 cylinder: Freq = 200Hz, R_T = 320k Ω 6 cylinder: Freq = 300Hz, R_T = 220k Ω 8 cylinder: Freq = 400Hz, R_T = 150k Ω

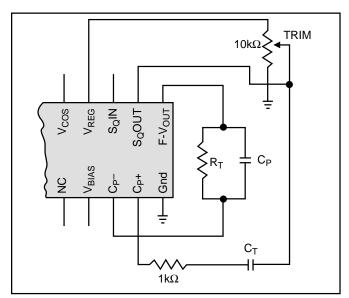


Figure 2: Alternate Trimming Method

Typical values shown above apply to a nominal value of V_{REG} of 8.5 volts. It must be realized that trimming of R_{T} will be necessary to compensate for variations in regulator voltage from one unit to another.

An alternative to this adjustment is to replace R_2 with a potentiometer, as shown in Figure 2.

Partial schematic shown in Figure 3 represents one method for use with DC applications instead of frequency.

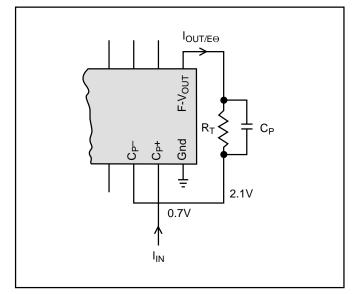
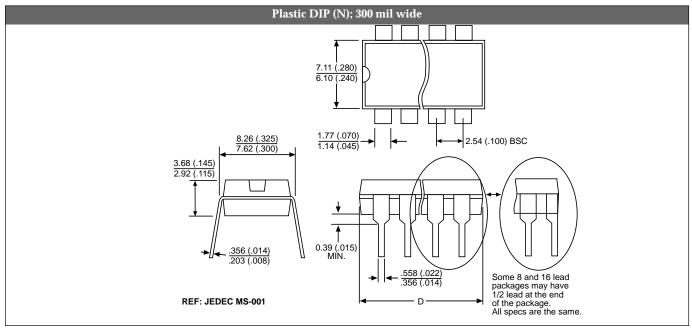
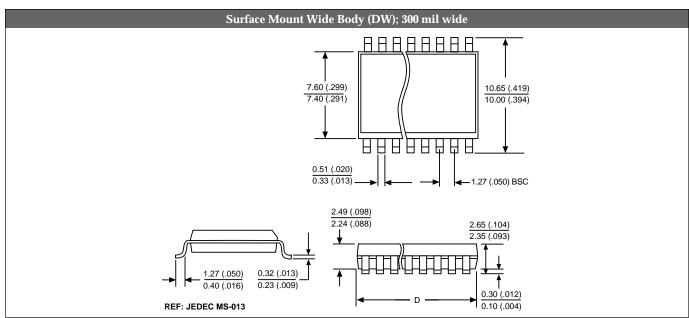


Figure 3: DC Application


Package Specification


PACKAGE DIMENSIONS IN mm (INCHES)

			D			
Lead Count	Me	Metric		English		
	Max	Min	Max	Min		
14L PDIP	19.69	18.67	.775	.735		
20L SO Wide	13.00	12.60	.512	.496		

PACKAGE THERMAL DATA

Thermal Data		14L PDIP	20L SOIC	
$R_{\Theta JC}$	typ	48	17	°C/W
$R_{\Theta JA}$	typ	85	90	°C/W

Ordering Information			
Part Number	Description		
CS289GDW20	20 Lead SO Wide		
CS289GDWR20	20 Lead SO Wide (tape & reel)		
CS289GN14	14 Lead PDIP		

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor reserves the right to make changes without further notice to any products herein. For additional information and the latest available information, please contact your local ON Semiconductor representative.

Notes

Notes