

Off-Line Current Mode PWM Control Circuit with Undervoltage Lockout

The CS284XA, CS384XA provides all the necessary features to implement off-line fixed frequency current-mode control with a minimum number of external components.

The CS384XA family incorporates a new precision temperature-controlled oscillator with an internally trimmed discharge current to minimize variations in frequency. A precision duty-cycle clamp eliminates the need for an external oscillator when a 50% duty-cycle is used. Duty-cycles greater than 50% are also possible. On board logic ensures that V_{REF} is stabilized before

Description

the output stage is enabled. Ion implant resistors provide tighter control of undervoltage lockout.

Other features include low start-up current, pulse-by-pulse current limiting, and a high-current totem pole output for driving capacitive loads, such as the gate of power MOSFET. The output is LOW in the off state, consistent with N-channel devices.

The CS384XA series of current-mode control ICs are available in 8 and14 lead packages for surface mount (SO) applications as well as 8 lead PDIP packages.

Absolute Maximum Ratings

Supply Voltage (I _{CC} <30mA)	Self Limiting
Supply Voltage (Low Impedance Source)	
Output Current	±1A
Output Energy (Capacitive Load)	5µJ
Analog Inputs (V _{FB} , Sense)	0.3V to 5.5V
Error Amp Output Sink Current	10mA
Lead Temperature Soldering	
Wave Solder (through hole styles only)10 sec. ma	ax, 260°C peak

Features

- Optimized for Off-line Control
- Internally Trimmed Temperature Compensated Oscillator
- Maximum Duty-cycle Clamp
- V_{REF} stabilized before Output Stage is Enabled
- Low Start-up Current
- Pulse-by-pulse Current Limiting
- Improved Undervoltage Lockout
- **Double Pulse Suppression**
- 1% Trimmed Bandgap Reference
- High Current Totem Pole Output

Package Options

8 Lead PDIP & SO Narrow

14 Lead SO Narrow

ON Semiconductor 2000 South County Trail, East Greenwich, RI 02818 Tel: (401)885–3600 Fax: (401)885–5786 N. American Technical Support: 800-282-9855 Web Site: www.cherry-semi.com

Electrical Characteristics: $-25^{\circ} \le T_A \le 85^{\circ}$ C for CS2842A/2843A, $0^{\circ} \le T_A \le 70^{\circ}$ C for CS3842A/3843A. $V_{CC} = 15V$ (Note 1); $R_T = 680\Omega$, $C_T = .022\mu$ F for triangular mode, $R_T = 10k\Omega$, $C_T = 3.3$ nF for sawtooth mode (see Figure 3), unless otherwise stated.

		CS28	42A/CS	2843A	CS384	2A/CS3	843A	
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	MIN			U
Reference Section								
Output Voltage	$T_{\rm J} = 25^{\circ} {\rm C}, \ I_{\rm OUT} = 1 {\rm mA}$	4.95	5.00	5.05	4.90	5.00	5.10	V
Line Regulation	$12 \leq V_{IN} \leq 25V$		6	20		6	20	m
Load Regulation	$1 \le I_{OUT} \le 20 mA$		6	25		6	25	m
Temperature Stability	(Note 2)		0.2	0.4		0.2	0.4	m
Total Output Variation	Line, Load, Temp. (Note 2)	4.90		5.10	4.82		5.18	V
Output Noise Voltage	$10Hz \le f \le 10kHz$, $T_J = 25^{\circ}C$ (Note 2)		50			50		µ۱
Long Term Stability	$T_A = 125^{\circ}C$, 1kHrs. (Note 2)		5	25		5	25	m
Output Short Circuit	$T_A = 25^{\circ}C$	-30	-100	-180	-30	-100	-180	m
Oscillator Section								
Initial Accuracy	Sawtooth Mode (see Fig. 3), $T_J = 25^{\circ}C$ Triangular Mode (see Fig. 3), $T_J = 25^{\circ}C$		52 52	57 57	47 44	52 52	57 60	kF kF
Voltage Stability	$12 \le V_{CC} \le 25V$		0.2	1.0		0.2	1.0	%
Temp. Stability	Sawtooth Mode $T_{MIN} \le T_A \le T_{MAX}$ (Note 2)		5			5		%
	Triangular Mode $T_{MIN} \le T_A \le T_{MAX}$ (Note 2)		8			8		%
Amplitude	OSC peak to peak		1.7			1.7		V
Discharge Current	$\begin{array}{l} T_{J} = 25^{\circ}C \\ T_{MIN} \leq T_{A} \leq T_{MAX} \end{array}$	7.5 7.2	8.3	9.3 9.5	7.5 7.2	8.3	9.3 9.5	m m
Error Amp Section								
Input Voltage	$V_{COMP} = 2.5 V$	2.45	2.50	~ ~ ~				
			~.00	2.55	2.42	2.50	2.58	V
Input Bias Current	$V_{FB}=0$		-0.3	2.55 -1.0	2.42	2.50 -0.3	2.58 -2.0	
Input Bias Current A _{VOL}	$\begin{split} V_{FB} &= 0 \\ 2 \leq V_{OUT} \leq 4 V \end{split}$	65			2.42 65			μÆ
-		65 0.7	-0.3			-0.3		µ∕ dI
A _{VOL}	$2 \leq V_{OUT} \leq 4V$		-0.3 90		65	-0.3 90		μ⁄ dI M
A _{VOL} Unity Gain Bandwidth	$2 \le V_{OUT} \le 4V$ (Note 2)	0.7	-0.3 90 1.0		65 0.7	-0.3 90 1.0		μ/ dI M dI
A _{VOL} Unity Gain Bandwidth PSRR	$2 \le V_{OUT} \le 4V$ (Note 2) $12 \le V_{CC} \le 25V$	0.7 60	-0.3 90 1.0 70		65 0.7 60	-0.3 90 1.0 70		μ d M d M d M
A _{VOL} Unity Gain Bandwidth PSRR Output Sink Current	$\begin{split} &2 \leq V_{OUT} \leq 4V \\ &(Note \ 2) \\ &12 \leq V_{CC} \leq 25V \\ &V_{FB} = 2.7V, \ V_{COMP} = 1.1V \end{split}$	0.7 60 2	-0.3 90 1.0 70 6		65 0.7 60 2	-0.3 90 1.0 70 6		μ d M d M d M
A _{VOL} Unity Gain Bandwidth PSRR Output Sink Current Output Source Current	$\begin{split} & 2 \leq V_{OUT} \leq 4V \\ & (Note \ 2) \\ & 12 \leq V_{CC} \leq 25V \\ & V_{FB} = 2.7V, \ V_{COMP} = 1.1V \\ & V_{FB} = 2.3V, \ V_{COMP} = 5V \end{split}$	0.7 60 2 -0.5	-0.3 90 1.0 70 6 -0.8		65 0.7 60 2 -0.5	-0.3 90 1.0 70 6 -0.8		μ d M d M d M m
A _{VOL} Unity Gain Bandwidth PSRR Output Sink Current Output Source Current V _{OUT} High	$\begin{split} & 2 \leq V_{OUT} \leq 4V \\ & (Note \ 2) \\ & 12 \leq V_{CC} \leq 25V \\ & V_{FB} = 2.7V, \ V_{COMP} = 1.1V \\ & V_{FB} = 2.3V, \ V_{COMP} = 5V \\ & V_{FB} = 2.3V, \ R_L = 15k\Omega \ to \ ground \end{split}$	0.7 60 2 -0.5	-0.3 90 1.0 70 6 -0.8 6	-1.0	65 0.7 60 2 -0.5	-0.3 90 1.0 70 6 -0.8 6	-2.0	μ d M d M d M m V
A _{VOL} Unity Gain Bandwidth PSRR Output Sink Current Output Source Current V _{OUT} High V _{OUT} Low	$\begin{split} & 2 \leq V_{OUT} \leq 4V \\ & (Note \ 2) \\ & 12 \leq V_{CC} \leq 25V \\ & V_{FB} = 2.7V, \ V_{COMP} = 1.1V \\ & V_{FB} = 2.3V, \ V_{COMP} = 5V \\ & V_{FB} = 2.3V, \ R_L = 15k\Omega \ to \ ground \end{split}$	0.7 60 2 -0.5	-0.3 90 1.0 70 6 -0.8 6	-1.0	65 0.7 60 2 -0.5	-0.3 90 1.0 70 6 -0.8 6	-2.0	μ dH M dH m m V V
A _{VOL} Unity Gain Bandwidth PSRR Output Sink Current Output Source Current V _{OUT} High V _{OUT} Low Current Sense Section	$\begin{array}{l} 2 \leq V_{OUT} \leq 4V \\ (Note \ 2) \\ 12 \leq V_{CC} \leq 25V \\ V_{FB} = 2.7V, \ V_{COMP} = 1.1V \\ V_{FB} = 2.3V, \ V_{COMP} = 5V \\ V_{FB} = 2.3V, \ R_L = 15k\Omega \ to \ ground \\ V_{FB} = 2.7V, \ R_L = 15k\Omega \ to \ V_{REF} \end{array}$	0.7 60 2 -0.5 5	-0.3 90 1.0 70 6 -0.8 6 0.7	-1.0	65 0.7 60 2 -0.5 5	-0.3 90 1.0 70 6 -0.8 6 0.7	-2.0	μ dH M dH m m V V
A _{VOL} Unity Gain Bandwidth PSRR Output Sink Current Output Source Current V _{OUT} High V _{OUT} Low Current Sense Section Gain	$\begin{array}{l} 2 \leq V_{OUT} \leq 4V \\ (Note 2) \\ 12 \leq V_{CC} \leq 25V \\ V_{FB} = 2.7V, V_{COMP} = 1.1V \\ V_{FB} = 2.3V, V_{COMP} = 5V \\ V_{FB} = 2.3V, R_L = 15k\Omega \ to \ ground \\ V_{FB} = 2.7V, R_L = 15k\Omega \ to \ V_{REF} \end{array}$	0.7 60 2 -0.5 5 2.85	-0.3 90 1.0 70 6 -0.8 6 0.7 3.00	-1.0 1.1 3.15	65 0.7 60 2 -0.5 5 2.85	-0.3 90 1.0 70 6 -0.8 6 0.7 3.00	-2.0 1.1 3.15	μ d I M d I m m V V V V
A _{VOL} Unity Gain Bandwidth PSRR Output Sink Current Output Source Current V _{OUT} High V _{OUT} Low Current Sense Section Gain Maximum Input Signal	$\begin{array}{l} 2 \leq V_{OUT} \leq 4V \\ (Note 2) \\ 12 \leq V_{CC} \leq 25V \\ V_{FB} = 2.7V, V_{COMP} = 1.1V \\ V_{FB} = 2.3V, V_{COMP} = 5V \\ V_{FB} = 2.3V, R_{L} = 15k\Omega \ to \ ground \\ V_{FB} = 2.7V, R_{L} = 15k\Omega \ to \ V_{REF} \end{array}$	0.7 60 2 -0.5 5 2.85	-0.3 90 1.0 70 6 -0.8 6 0.7 3.00 1.0	-1.0 1.1 3.15	65 0.7 60 2 -0.5 5 2.85	-0.3 90 1.0 70 6 -0.8 6 0.7 3.00 1.0	-2.0 1.1 3.15	µ/ dI M dI m m V V V V
A _{VOL} Unity Gain Bandwidth PSRR Output Sink Current Output Source Current V _{OUT} High V _{OUT} Low Current Sense Section Gain Maximum Input Signal PSRR	$\begin{array}{c} 2 \leq V_{OUT} \leq 4V \\ (Note 2) \\ 12 \leq V_{CC} \leq 25V \\ V_{FB} = 2.7V, V_{COMP} = 1.1V \\ V_{FB} = 2.3V, V_{COMP} = 5V \\ V_{FB} = 2.3V, R_L = 15k\Omega \ to \ ground \\ V_{FB} = 2.7V, R_L = 15k\Omega \ to \ V_{REF} \end{array}$ $(Notes 3 \& 4) \\ V_{COMP} = 5V \ (Note 3) \\ 12 \leq V_{CC} \leq 25V \ (Note 3) \end{array}$	0.7 60 2 -0.5 5 2.85	-0.3 90 1.0 6 -0.8 6 0.7 3.00 1.0 70	-1.0 1.1 3.15 1.1	65 0.7 60 2 -0.5 5 2.85	-0.3 90 1.0 6 -0.8 6 0.7 3.00 1.0 70	-2.0 1.1 3.15 1.1	μ dI M dI m v V V V V dI μ
A _{VOL} Unity Gain Bandwidth PSRR Output Sink Current Output Source Current V _{OUT} High V _{OUT} Low Current Sense Section Gain Maximum Input Signal PSRR Input Bias Current	$\begin{array}{c} 2 \leq V_{OUT} \leq 4V \\ (Note 2) \\ 12 \leq V_{CC} \leq 25V \\ V_{FB} = 2.7V, V_{COMP} = 1.1V \\ V_{FB} = 2.3V, V_{COMP} = 5V \\ V_{FB} = 2.3V, R_L = 15k\Omega \ to \ ground \\ V_{FB} = 2.7V, R_L = 15k\Omega \ to \ V_{REF} \end{array}$ $(Notes 3 \& 4) \\ V_{COMP} = 5V \ (Note 3) \\ 12 \leq V_{CC} \leq 25V \ (Note 3) \\ V_{Sense} = 0 \end{array}$	0.7 60 2 -0.5 5 2.85	-0.3 90 1.0 70 6 -0.8 6 0.7 3.00 1.0 70 70 -2	-1.0 1.1 3.15 1.1 -10	65 0.7 60 2 -0.5 5 2.85	-0.3 90 1.0 70 6 -0.8 6 0.7 3.00 1.0 70 -2	-2.0 1.1 3.15 1.1 -10	μ dI M dI m m V V V
A _{VOL} Unity Gain Bandwidth PSRR Output Sink Current Output Source Current V _{OUT} High V _{OUT} Low Current Sense Section Gain Maximum Input Signal PSRR Input Bias Current Delay to Output	$\begin{array}{c} 2 \leq V_{OUT} \leq 4V \\ (Note 2) \\ 12 \leq V_{CC} \leq 25V \\ V_{FB} = 2.7V, V_{COMP} = 1.1V \\ V_{FB} = 2.3V, V_{COMP} = 5V \\ V_{FB} = 2.3V, R_L = 15k\Omega \ to \ ground \\ V_{FB} = 2.7V, R_L = 15k\Omega \ to \ V_{REF} \end{array}$ $(Notes 3 \& 4) \\ V_{COMP} = 5V \ (Note 3) \\ 12 \leq V_{CC} \leq 25V \ (Note 3) \\ V_{Sense} = 0 \end{array}$	0.7 60 2 -0.5 5 2.85	-0.3 90 1.0 70 6 -0.8 6 0.7 3.00 1.0 70 70 -2	-1.0 1.1 3.15 1.1 -10	65 0.7 60 2 -0.5 5 2.85	-0.3 90 1.0 70 6 -0.8 6 0.7 3.00 1.0 70 -2	-2.0 1.1 3.15 1.1 -10	$\frac{\mu^{A}}{dB}$ $\frac{MT}{dB}$ $\frac{MT}{D}$ $\frac{MT}{D}$ $\frac{MT}{D}$ $\frac{MT}{D}$ $\frac{MT}{D}$ $\frac{MT}{D}$

Electrical Characteristics: continued

		CS284	42A/CS2	2843A	CS384	2A/CS3	843A	
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
Output Section: continued								
Rise Time	$T_J = 25^{\circ}C, C_L = 1nF \text{ (Note 2)}$		50	150		50	150	ns
Fall Time	$T_J = 25^{\circ}C, C_L = 1nF$ (Note 2)		50	150		50	150	ns
Output Leakage	UVLO Active, V _{OUT} = 0		-0.01	-10.00		-0.01	-10.00	μA

Start-Up Current			0.5	1.0		0.5	1.0	mA
Operating Supply Current	$V_{FB}=V_{Sense}=0V,R_{T}=10k\Omega,C_{T}=3.3nF$	11	17		11	17	mA	
V _{CC} Zener Voltage	$I_{CC} = 25 mA$		34			34		V

			CS2842A	A	C	CS3842A		CS284	I3A/CS3	843A	
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
■ Under-Voltage L	ockout Section										
Start Threshold		15	16	17	14.5	16.0	17.5	7.8	8.4	9.0	V
Min. Operating Voltage	After Turn On	9	10	11	8.5	10.0	11.5	7.0	7.6	8.2	V

1. Adjust V_{CC} above the start threshold before setting at 15V. Notes: 2. These parameters, although guaranteed, are not 100% tested in production. 3. Parameter measured at trip point of latch with VFB=0. 4. Gain defined as:

$$A = \frac{\Delta V_{COMP}}{\Delta V_{Sense}} ; 0 \le VSense \le 0.8V$$

		Packaş	ge Pin Description
РАСК	AGE PIN #	PIN SYMBOL	FUNCTION
8L PDIP/SO	14L SO Narrow		
1	1	COMP	Error amp output, used to compensate error amplifier
2	3	V_{FB}	Error amp inverting input
3	5	Sense	Noninverting input to Current Sense Comparator
4	7	OSC	Oscillator timing network with Capacitor to Ground, resistor to V_{REF}
5	8	Gnd	Ground
	9	Pwr Gnd	Output driver Ground
6	10	V _{OUT}	Output drive pin
	11	V _{CC} Pwr	Output driver positive supply
7	12	V _{CC}	Positive power supply
8	14	V _{REF}	Output of 5V internal reference
	2,4,6,13	NC	No Connection

Test Circuit

Circuit Description

Undervoltage Lockout

During Undervoltage Lockout (Figure 1), the output driver is biased to a high impedance state. The output should be shunted to ground with a resistor to prevent output leakage current from activating the power switch.

PWM Waveform

To generate the PWM waveform, the control voltage from the error amplifier is compared to a current sense signal which represents the peak output inductor current (Figure 2). An increase in V_{CC} causes the inductor current slope to increase, thus reducing the duty cycle. This is an inherent feed-forward characteristic of current mode control, since the control voltage does not have to change during changes of input supply voltage.

When the power supply sees a sudden large output current increase, the control voltage will increase allowing the duty cycle to momentarily increase. Since the duty cycle tends to exceed the maximum allowed to prevent trans-

Figure 1: Typical Undervoltage Characteristics

Figure 2: Timing Diagram for key CS2841B parameters

Figure 3: Oscillator Timing Network and parameters

former saturation in some power supplies, the internal oscillator waveform provides the maximum duty cycle clamp as programmed by the selection of oscillator components.

Setting the Oscillator

Oscillator timing capacitor, C_T , is charged by V_{REF} through R_T and discharged by an internal current source. During the discharge time, the internal clock signal blanks out the output to the Low state, thus providing a user selected maximum duty cycle clamp. Charge and discharge times are determined by the formula:

$$\begin{split} t_{c} &= R_{T}C_{T} \ln \left(\frac{V_{REF} - V_{lower}}{V_{REF} - V_{upper}} \right) \\ t_{d} &= R_{T}C_{T} \ln \left(\frac{V_{REF} - I_{d}R_{T} - V_{lower}}{V_{REF} - I_{d}R_{T} - V_{upper}} \right) \end{split}$$

Substituting in typical values for the parameters in the above formulas:

$$V_{REF} = 5.0V, V_{upper} = 2.7V, V_{lower} = 1.0V, I_d = 8.3mA$$

$$t_c \approx 0.5534R_TC_T$$

$$t_{\rm d} = R_{\rm T} C_{\rm T} \ln \left(\frac{2.3 - 0.0083 R_{\rm T}}{4.0 - 0.0083 R_{\rm T}} \right)$$

The frequency and maximum duty cycle can be determined using the Typical Performance Characteristic graphs.

Grounding

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to Gnd pin in a single point ground.

The transistor and $5k\Omega$ potentiometer, shown in the test circuit, are used to sample the oscillator waveform and apply an adjustable ramp to Sense.

Package Specification

PACKAGE DIMENSIONS IN mm (INCHES)

	D							
Lead Count	Me	tric	Eng	lish				
	Max	Min	Max	Min				
8 Lead PDIP	10.16	9.02	.400	.355				
8 Lead SO Narrow	5.00	4.80	.197	.189				
14 Lead SO Narrow	8.75	8.55	.344	.337				

PACKAGE THERMAL DATA

Thern	nal Data	8 L PDIP	8 L SO Narrow	14 L SO Narrow	
$R_{\Theta JC}$	typ	52	45	30	°C/W
$R_{\Theta JA}$	typ	100	165	125	°C/W

Part Number	0°C to 70°C	-25°C to 85°C	Description
CS2842ALN8		•	8L PDIP
CS2843ALN8		•	8L PDIP
CS3842AGN8	•		8L PDIP
CS3842AGD8	•		8L SO Narrow
CS3842AGDR8	•		8L SO Narrow (tape & reel)
CS3842AGD14	•		14L SO Narrow
CS3842AGDR14	•		14L SO Narrow (tape & reel)
CS3843AGN8	•		8L PDIP
CS3843AGD8	•		8L SO Narrow
CS3843AGDR8	•		8L SO Narrow (tape & reel)
CS3843AGD14	•		14L SO Narrow
CS3843AGDR14	٠		14L SO Narrow (tape & reel)

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor reserves the right to make changes without further notice to any products herein. For additional information and the latest available information, please contact your local ON Semiconductor representative.

Notes

Notes