

Automotive Current Mode PWM Control Circuit

Description

The CS2841B provides all the necessary features to implement offline fixed frequency current-mode control with a minimum number of external components.

The CS2841B (a variation of the CS-2843A) is designed specifically for use in automotive operation. The low start threshold voltage of 8.0V (typ), and the ability to survive 40V automotive load dump transients are important for automotive subsystem designs. The CS-2841 series has a history of

quality and reliability in automotive applications.

The CS2841B incorporates a precision temperature-controlled oscillator with an internally trimmed discharge current to minimize variations in frequency. Duty-cycles greater than 50% are also possible. On board logic ensures that V_{REF} is stabilized before the output stage is enabled. Ion implant resistors provide tighter control of undervoltage lockout.

Absolute Maximum Ratings

Supply Voltage (Low Impedance Source)	40V
Output Current	
Output Energy (Capacitive Load)	
Analog Inputs (V _{FB} , Sense)	
Error Amp Output Sink Current	
Lead Temperature Soldering	
Wave Solder (through hole styles only)	.10 sec. max, 260°C peak

Reflow (SMD styles only)60 sec. max above 183°C, 230°C peak

Features

- Optimized for Off-line Control
- Internally Trimmed Temperature Compensated Oscillator
- Maximum Duty-cycle Clamp
- V_{REF} Stabilized before Output Stage Enabled
- Low Start-up Current
- Pulse-by-pulse Current Limiting
- Improved Undervoltage Lockout
- **Double Pulse Suppression**
- 1% Trimmed Bandgap Reference
- High Current Totem Pole Output

Package Options

8 Lead PDIP

ON Semiconductor 2000 South County Trail, East Greenwich, RI 02818 Tel: (401)885–3600 Fax: (401)885–5786 N. American Technical Support: 800-282-9855 Web Site: www.cherry–semi.com

В
Ξ
8
2
S
ເ

Electrical Ch R _T =	naracteristics: d -40 \leq T _A \leq 85°C R _T =680k Ω , C _T =0.0 10k Ω , C _T =3.3nF for sawtooth mode (See Fig. 3)	22µF for tria , unless othe	angular mode, ` erwise stated.	V _{CC} =15V (Not	e 1),
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Reference Section					
Output Voltage	$T_{J}=25^{\circ}C, I_{OUT}=1mA$	4.90	5.00	5.10	V
Line Regulation	8.4≤V _{CC} ≤16V		6	20	mV
Load Regulation	1≤I _{OUT} ≤20mA		6	25	mV
Temperature Stability	(Note 2)		0.2	0.4	mV/°
Total Output Variation	Line, Load, Temp. (Note 2)	4.82		5.18	V
Output Noise Voltage	10Hz≤f≤10kHz, T _J =25°C (Note 2)		50		μV
Long Term Stability	T _A =125°C, 1000 Hrs. (Note 2)		5	25	mV
Output Short Circuit	T _A =25°C	-30	-100	-180	mA
Oscillator Section Initial Accuracy	Sawtooth Mode: (See Fig. 3) T_J =25°C Sawtooth Mode: -40°C $\leq T_A \leq$ +85° Triangular Mode (See Fig. 3) T_I =25°C	47 44 44	52 52 52	57 60 60	kHz kHz kHz
Voltage Stability	8.4V \leq Vcc \leq 16V	44	52 0.2	1.0	KHZ %
Temperature Stability	Sawtooth Mode $T_{MIN} \le T_A \le T_{MAX}$ Triangular Mode $T_{MIN} \le T_A \le T_{MAX}$ (Note 2)		5 8	1.0	% %
Amplitude	V _{OSC} (peak to peak)		1.7		V
Discharge current	$T_{J}=25^{\circ}C$ $T_{MIN}\leq T_{A}\leq T_{MAX}$	7.4 7.2	8.3	9.2 9.4	mA mA
Error Amp Section					
Input Voltage	V _{COMP} =2.5V	2.42	2.50	2.58	V
Input Bias Current	V _{FB} =0V		-0.3	-2.0	μA
A _{VOL}	$2 \le V_{OUT} \le 4V$	65	90		dB
Unity Gain Bandwidth	(Note 2)	0.7	1.0		MHz
PSRR	$8.4V \le V_{CC} \le 16V$	60	70		dB
Output Sink Current	V _{FB} =2.7V, V _{COMP} =1.1V	2	6		mA
		0.5	0.0		

V_{OUT} High V_{OUT} Low

Output Source Current

■ Current Sense Section

Gain	(Notes 3 & 4)	2.85	3.00	3.15	V/V
Maximum Input Signal	V _{COMP} =5V (Note 3)	0.9	1.0	1.1	V
PSRR	12V≤V _{CC} ≤25V (Note 3)		70		dB
Input Bias Current	V _{Sense} =0V		-2	-10	μΑ
Delay to Output	$T_J=25^{\circ}C$ (Note 2)		150	300	ns

Notes: 1. Adjust V_{cc} above the start threshold before setting at 15V. 2. These parameters, although guaranteed, are not 100% tested in production.

 $V_{FB}=2.3V, V_{COMP}=5V$

 $V_{FB} {=} 2.3 V, R_L {=} 15 k \Omega$ to ground

 $V_{FB}{=}2.7V,$ $R_L{=}15k\Omega$ to V_{REF}

3. Parameter measured at trip point of latch with $V_{\text{FB}} {=} 0.$ 4. Gain defined as:

6

0.7

-0.8

mA

V

V

1.1

5

-0.5

 $A = \; \frac{\Delta V_{COMP}}{\Delta V_{Sense}} \; ; \; 0 \leq V_{Sense} \leq 0.8 V. \label{eq:complexity}$

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Output Section					
Output Low Level	I _{SINK} =20mA I _{SINK} =200mA		0.1 1.5	0.4 2.2	V V
Output High Level	I _{SOURCE} =20mA I _{SOURCE} =200mA	13.0 12.0	13.5 13.5		V V
Rise Time	$T_J=25^{\circ}C, C_L=1nF$ (Note 2)		50	150	ns
Fall Time	$T_J=25^{\circ}C, C_L=1nF$ (Note 2)		50	150	ns
Output Leakage	Undervoltage Active, $V_{OUT}=0$		-0.01	-10.00	μΑ
Total Standby Current					
Start-Up Current			0.5	1.0	mA
Operating Supply Current I_{CC}	$V_{FB}=V_{Sense}=0V$, $R_T=10k\Omega$, $C_T=3.3nF$		11	17	mA
Under-Voltage Lockout Section	on				
Start Threshold		7.6	8.0	8.4	V
			7.4	7.8	V

	Package Pin Description				
PACKAGE PIN #		PIN SYMBOL	FUNCTION		
8L PDIP	14L SO Narrow				
1	1	COMP	Error amp output, used to compensate error amplifier		
2	3	V _{FB}	Error amp inverting input		
3	5	Sense	Noninverting input to Current Sense Comparator		
4	7	OSC	Oscillator timing network with Capacitor to Ground, resistor to V_{REF}		
5	8	Gnd	Ground		
	9	Pwr Gnd	Output driver Ground		
6	10	V _{OUT}	Output drive pin		
	11	V _{CC} Pwr	Output driver positive supply		
7	12	V _{CC}	Positive power supply		
8	14	V _{REF}	Output of 5V internal reference		
2,4,6,13		NC	No Connection		

Test Circuit

Circuit Description

Undervoltage Lockout

During Undervoltage Lockout (Figure 1), the output driver is biased to a high impedance state. The output should be shunted to ground with a resistor to prevent output leakage current from activating the power switch.

PWM Waveform

To generate the PWM waveform, the control voltage from the error amplifier is compared to a current sense signal which represents the peak output inductor current (Figure 2). An increase in V_{CC} causes the inductor current slope to increase, thus reducing the duty cycle. This is an inherent feed-forward characteristic of current mode control, since the control voltage does not have to change during changes of input supply voltage.

When the power supply sees a sudden large output current increase, the control voltage will increase allowing the duty cycle to momentarily increase. Since the duty cycle tends to exceed the maximum allowed to prevent trans-

Figure 1: Typical Undervoltage Characteristics

Figure 2: Timing Diagram for key CS2841B parameters

Figure 3: Oscillator Timing Network and parameters

former saturation in some power supplies, the internal oscillator waveform provides the maximum duty cycle clamp as programmed by the selection of OSC components.

Setting the Oscillator

Oscillator timing capacitor, C_T , is charged by V_{REF} through R_T and discharged by an internal current source. During the discharge time, the internal clock signal blanks out the output to the Low state, thus providing a user selected maximum duty cycle clamp. Charge and discharge times are determined by the general formulas:

$$\begin{split} t_{c} &= R_{T}C_{T} \ln \left(\frac{V_{REF} - V_{lower}}{V_{REF} - V_{upper}} \right) \\ t_{d} &= R_{T}C_{T} \ln \left(\frac{V_{REF} - I_{d}R_{T} - V_{lower}}{V_{REF} - I_{d}R_{T} - V_{upper}} \right) \end{split}$$

Substituting in typical values for the parameters in the above formulas:

$$V_{REF} = 5.0V, V_{upper} = 2.7V, V_{lower} = 1.0V, I_d = 8.3mA$$

$$t_c \approx 0.5534R_TC_T$$

$$t_{\rm d} = R_{\rm T} C_{\rm T} \ln \left(\frac{2.3 - 0.0083 R_{\rm T}}{4.0 - 0.0083 R_{\rm T}} \right)$$

The frequency and maximum duty cycle can be determined from the Typical Performance Characteristic graphs.

Grounding

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to Gnd pin in a single point ground.

The transistor and $5k\Omega$ potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to Sense.

Package Specification

PACKAGE DIMENSIONS IN mm (INCHES)

		D		
Lead Count	Me	tric	En	glish
	Max	Min	Max	Min
8 Lead PDIP	10.16	9.02	.400	.355
14 Lead SO Narrow	8.75	8.55	.344	.337

PACKAGE THERMAL DATA					
Therm	al Data	8 L PDIP	14 L SO Narrow		
$R_{\Theta JC}$	typ	52	30	°C/W	
$R_{\Theta JA}$	typ	100	125	°C/W	

Ordering Information

Part Number	Description
CS2841BEN8	8L PDIP
CS2841BED14	14L SO Narrow
CS2841BEDR14	14L SO Narrow (tape & reel)

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor reserves the right to make changes without further notice to any products herein. For additional information and the latest available information, please contact your local ON Semiconductor representative.

Notes