

Contents

Page	Section	Title
3	1.	Introduction
4	1.1.	Features of the DSP-Section
4	1.2.	Features of the Analog Section
5	2.	Architecture of the BSP 3501C
6	2.1.	Analog Section and SCART Switching Facilities
6	2.2.	BSP 3501C Audio Baseband Processing
8	3.	I ² C Bus Interface: Device and Subaddresses
9	3.1.	Protocol Description
10	3.2.	Proposal for BSP 3501C I ² C Telegrams
10	3.2.1.	Symbols
10	3.2.2.	Write Telegrams
10	3.2.3.	Read Telegrams
10 11	3.2.4. 3.3.	Examples Start Up Sequence
11		
12	4.	Programming the BSP 3501C
12	4.1.	Control Register 'MODE_REG'
13 15	4.2. 4.2.1.	Summary of the DSP Control Registers for Audio Baseband Processing
16	4.2.1.	Volume Loudspeaker Channel and Headphone Channel Balance Loudspeaker and Headphone Channel
10	4.2.2.	Bass Loudspeaker and Headphone Channel
17	4.2.4.	Treble Loudspeaker and Headphone Channel
18	4.2.5.	Loudness Loudspeaker and Headphone Channel
18	4.2.6.	Spatial Effects Loudspeaker Channel
19	4.2.7.	Volume SCART
19	4.2.8.	Channel Source Modes
19	4.2.9.	Channel Matrix Modes
20	4.2.10.	SCART Prescale
20	4.2.11.	ACB Register, Definition of the SCART-Switches and DIG_CTR_OUT Pins
20	4.2.12.	Beeper
20	4.2.13.	Mode Tone Control
21	4.2.14.	Equalizer Loudspeaker Channel
21	4.2.15.	Automatic Volume Correction (AVC)
22	4.2.16.	Subwoofer on Headphone Output
22	4.3.	Summary of Readable Registers
22	4.3.1.	Quasi Peak Detector
23	5.	Specifications
23	5.1.	Outline Dimensions
24	5.2.	Pin Connections and Descriptions
28	5.3.	Pin Configuration
31	5.4.	Pin Circuits
32	5.5.	Electrical Characteristics
32 33	5.5.1. 5.5.2.	Absolute Maximum Ratings Recommended Operating Conditions
35 35	5.5.2. 5.5.3.	Recommended Operating Conditions Characteristics
38	6.	Application of the BSP 3501C
40	7.	Data Sheet History

Baseband Sound Processor

Release Notes: The hardware description in this document is valid for the BSP 3501C–A1 and newer codes.

1. Introduction

The **BSP 3501C** is designed as single-chip Baseband Sound Processor for applications in analog and digital TV sets, satellite receivers, and video recorders.

The BSP 3501C CMOS version is fully pin and software compatible to the MSP 34xx family. The main difference between the BSP 3501C and the MSP 34xx is that the BSP 3501C cannot demodulate any SIF-input signal.

The BSP 3501C is available in PLCC68, PSDIP64, PSDIP52, and PQFP80 packages.

BSP 3501C Integrated Functions:

- volume, balance, bass, treble, loudness for loudspeaker and headphone output
- automatic volume correction (A.V.C.)
- 5 band graphic equalizer
- subwoofer output alternatively with headphone output
- spatial effect (pseudostereo/basewidth enlargement)
- 3 pairs of D/A converters
- 1 pair of A/D converters
- SCART switches

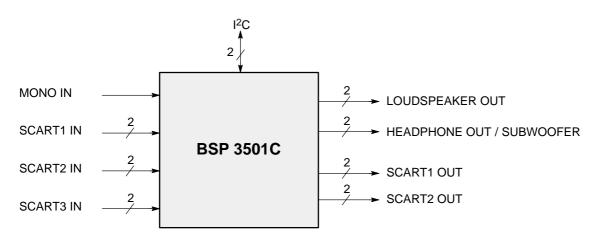


Fig. 1-1: Main I/O Signals BSP 3501C

1.1. Features of the DSP-Section

- flexible selection of audio sources to be processed
- digital baseband processing: volume, bass, treble, 5-band equalizer, loudness, pseudostereo, and basewidth enlargement
- simple controlling of volume, bass, treble, equalizer etc.

1.2. Features of the Analog Section

- three selectable analog pairs of audio baseband inputs (= three SCART inputs) input level: ≤2 V RMS, input impedance: ≥25 kΩ
- one selectable analog mono input (i.e. AM sound), input level: ≤2 V RMS, input impedance: ≥10 kΩ
- two high quality A/D converters, S/N-Ratio: ≥85 dB
- 20 Hz to 20 kHz Bandwidth for SCART-to-SCART-Copy facilities
- MAIN (loudspeaker) and AUX (headphones): two pairs of 4-fold oversampled D/A-converters output level per channel: max. 1.4 V RMS output resistance: max. 5 k Ω S/N-Ratio: \geq 85 dB at maximum volume max. noise voltage in mute mode: \leq 10 μ V (BW: 20 Hz ...16 kHz)
- one pair of four-fold oversampled D/A-converters supplying two selectable pairs of SCART-Outputs. Output level per channel: max. 2 V RMS, output resistance: max. 0.5 kΩ, S/N-Ratio: ≥85 dB (20 Hz...16 kHz)

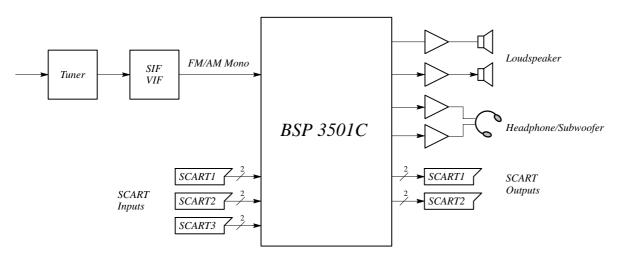


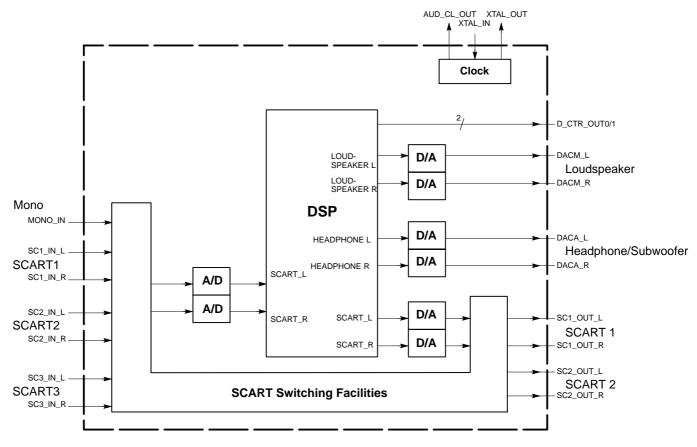
Fig. 1-2: Typical BSP 3501C application

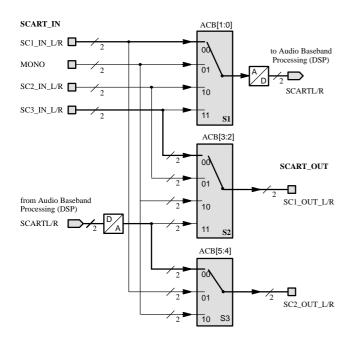
2. Architecture of the BSP 3501C

Fig. 2–1 shows a simplified block diagram of the IC. Its architecture is split into two functional blocks:

1. digital signal processing (DSP) section performing audio baseband processing

2. analog section containing two A/D-converters, 6 D/A-converters, and SCART switching facilities




Fig. 2-1: Architecture of the BSP 3501C

2.1. Analog Section and SCART Switching Facilities

The analog input and output sections offer a wide range of switching facilities, which are shown in Fig. 2–2. To design a TV-set with 3 pairs of SCART-inputs and two pairs of SCART-outputs, no external switching hardware is required.

The switches are controlled by the ACB bits defined in the audio processing interface (see section 4.2. Summary of the DSP Control Registers for Audio Baseband Processing).

If the BSP 3501C is switched off by first pulling STAND-BYQ low, and then disconnecting the 5 V, but keeping the 8 V power supply (**'Standby'-mode**), the switches S1, S2, and S3 maintain their position and function. This facilitates the copying from selected SCART-inputs to SCART-outputs in the TV-sets standby mode.

Fig. 2–2: SCART-Switching Facilities Bold lines determine the default configuration

In case of power-on start or starting from standby, the IC switches automatically to the default configuration, shown in Fig. 2–2. This takes place after the first I²C transmission into the DSP part. By transmitting the ACB register first, the default setting mode can be changed.

2.2. BSP 3501C Audio Baseband Processing

All audio baseband functions are performed by digital signal processing (DSP). The DSP functions are grouped into three processing parts: input preprocessing, channel source select, and channel postprocessing.

All input and output signals can be processed simultaneously.

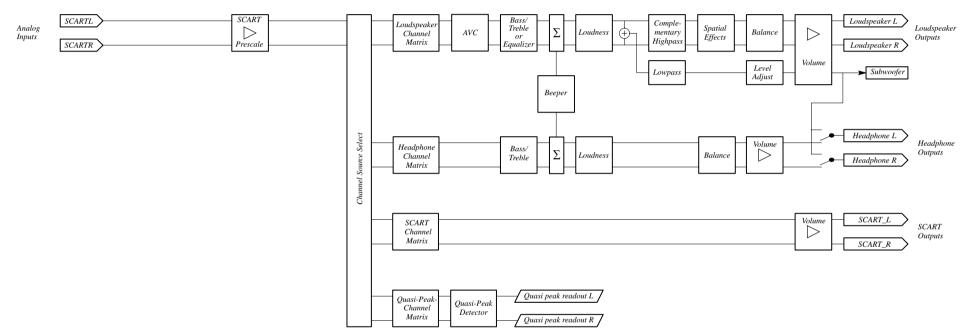


Fig. 2-3: Audio baseband processing (DSP-Firmware)

3. I²C Bus Interface: Device and Subaddresses

As a slave receiver, the BSP 3501C can be controlled via I^2C bus. Access to internal memory locations is achieved by subaddressing. The Mode Register and the audio baseband processor (DSP) have two separate subaddressing register banks.

In order to allow for more BSP 3501C ICs to be connected to the control bus, an ADR_SEL pin has been implemented. With ADR_SEL pulled to high, the BSP 3501C responds to changed device addresses, thus two identical devices can be selected.

By means of the RESET bit in the CONTROL register, all devices with the same device address are reset.

The IC is selected by asserting a special device address in the address part of an I²C transmission. A device address pair is defined as a write address (80 hex or 84 hex) and a read address (81 hex or 85 hex). Writing is done by sending the device write address first, followed by the subaddress byte, two address bytes, and two data bytes. For reading, the read address has to be transmitted first by sending the device write address (80 hex or 84 hex), followed by the subaddress byte, and two address bytes. Without sending a stop condition, reading of the addressed data is done by sending the device read address (81 hex or 85 hex) and reading two bytes of data. Refer to Fig. 3–1 I²C Bus Protocol and section 3.2. Proposal for BSP 3501C I²C Telegrams.

Due to the internal architecture of the BSP 3501C, the IC cannot react immediately to an I^2C request. The typical response time is about 0.3 ms. If the addressed processor is not ready for further transmissions on the I^2C bus, the clock line I2C_CL is pulled low. This puts the current transmission into a wait state. After a certain period of time, the BSP 3501C releases the clock, and the interrupted transmission is carried on.

The I²C Bus lines can be set tristate by switching the IC into "Standby"-mode.

I²C-Bus error conditions:

In case of any internal error, the BSP's wait-period is extended to 1.77 ms. Afterwards, the BSP does not acknowledge (NAK) the device address. The data line will be left HIGH by the BSP, and the clock line will be released. The master can then generate a STOP condition to abort the transfer.

By means of NAK, the master is able to recognize the error state and to reset the IC via I²C-Bus. While transmitting the reset protocol (section. 3.2.4.) to 'CONTROL', the master must ignore the not acknowledge bits (NAK) of the BSP.

A detailed timing diagram is shown in Fig. 3–1 and Fig. 3–2.

ADR_SEL	Lo	w	High Left Ope			Open
Mode	Write	Read	Write	Read	Write	Read
BSP device address	80 hex	81 hex	84 hex	85 hex	88 hex	89 hex

Table 3–1: I²C Bus Device Addresses

 Table 3–2: I²C Bus Device and Subaddresses

Name	Binary Value	Hex Value	Function
CONTROL	0000 0000	00	software reset
TEST1	0000 0001	01	only for internal use
TEST2	0000 0010	02	only for internal use
MODE_REG	0001 0000	10	write address Mode Register
WR_DSP	0001 0010	12	write address DSP
RD_DSP	0001 0011	13	read address DSP
PLL_CAP	0001 1111	1F	read / write PLL_Cap

Table 3–3: Control Register

Name 15		140
CONTROL	RESET	0

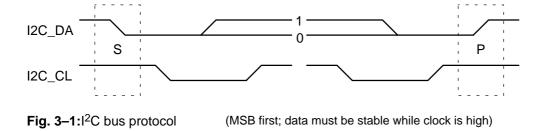
3.1. Protocol Description

Write to MODE_REG or DSP (long protocol)

S	daw	Wait	ACK	sub-addr	ACK	addr-byte high	ACK	addr-byte low	ACK	data-byte high	ACK	data-byte low	ACK	Р
---	-----	------	-----	----------	-----	-------------------	-----	---------------	-----	----------------	-----	---------------	-----	---

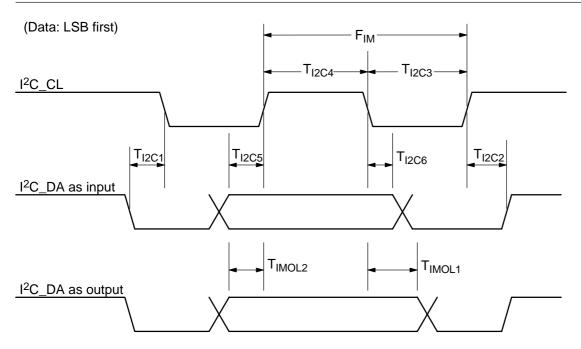
Read from DSP (long protocol)

S


Write to Control / Test / PLL_Cap Registers (short protocol)

s	daw	Wait	ACK	sub-addr	ACK	data-byte high	ACK	data-byte low	ACK	Ρ	
---	-----	------	-----	----------	-----	----------------	-----	---------------	-----	---	--

Read from Control / Test / PLL_Cap Registers (short protocol)


S daw Wait ACK sub-addr ACK S dar Wait ACK data-byte high ACK data	-byte low NAK P
--	-----------------

- **Note:** $S = I^2C$ -Bus Start Condition from master
 - $P = I^2C$ -Bus Stop Condition from master
 - daw = Device Address Write
 - dar = Device Address Read
 - ACK = Acknowledge-Bit: LOW on I2C_DA from slave (= BSPC, grey) or master (= CCU, hatched)
 - NAK = Not Acknowledge-Bit: HIGH on I2C_DA from master (= CCU, hatched) to indicate 'End of Read' or from BSPC indicating internal error state (not illustrated)
 - Wait = I²C-Clock line held low by the slave (= BSPC) while interrupt is serviced (<1.77 ms)

MICRONAS INTERMETALL

BSP 3501C


```
Fig. 3-2:I<sup>2</sup>C bus timing diagram
```

3.2. Proposal for BSP 3501C I²C Telegrams

3.2.1. Symbols

daw	device address write
dar	device address read
<	Start Condition
>	Stop Condition
aa	Address Byte
dd	Data Byte

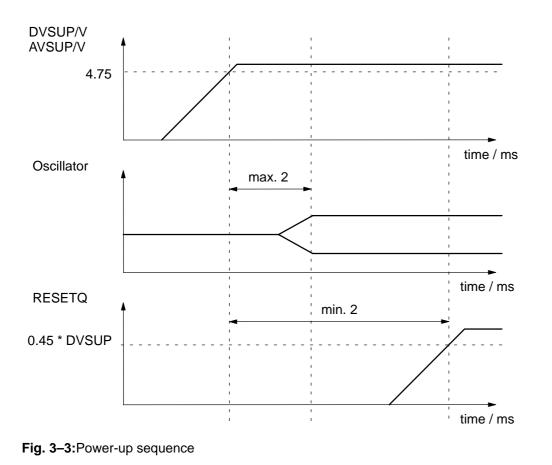
3.2.2. Write Telegrams

<daw 00 dd dd> software RESET <daw 12 aa aa dd dd> write data into DSP register

3.2.3. Read Telegrams

<daw 13 aa aa <dar dd dd> read data from DSP

3.2.4. Examples


<daw< th=""><th>00</th><th>80</th><th>00></th><th>RESET BSPC statically</th></daw<>	00	80	00>	RESET BSPC statically
<daw< td=""><td>00</td><td>00</td><td>00></td><td>clear RESET</td></daw<>	00	00	00>	clear RESET
<daw< td=""><td>12</td><td>00</td><td>08 02 20></td><td>set loudspeaker channel source</td></daw<>	12	00	08 02 20>	set loudspeaker channel source
				to SCART

3.3. Start Up Sequence

After power on or RESET, the IC is in an inactive state. The CCU has to transmit the required coefficient set for a given operation via the I^2C bus. Initialization must start with the Mode Register.

The reset pin should not be >0.45 DVSUP (see recommended operation conditions) before the 5 Volt digital power supply (DVSUP) and the analog power supply (AVSUP) are >4.75 Volt **and** the BSP-Clock is running (Delay: 2 ms max, 0.5 ms typ.).

This means, if the reset low-high edge starts with a delay of 2 ms after DVSUP>4.75 Volt and AVSUP>4.75 Volt, even under worst case conditions, the reset is ok.

Note: The reset should not reach high level before the oscillator has started. This requires a reset delay of >2 ms

MICRONAS INTERMETALL

4. Programming the BSP 3501C

4.1. Control Register 'MODE_REG'

The register 'MODE_REG' contains the control bits determining the operation mode of the BSP 3501C; Table 4–1 explains all bit positions.

The transmission on the control bus is 16 bits wide, with 12 significant bits to be inserted LSB bound and filled with zero bits into the 16 bit transmission word.

Table 4-1: Control word 'MODE_REG': All bits are "0" after power-on-reset

Register	Protocol	Write Address (hex)	Function
MODE_REG	long	0083	mode register
Bit	Function	Comment	Definition
[0]	not used		must be 0
[1]	DCTR_TRI	Digital_Control_Output tristate	0 : active 1 : tristate
[2]	not used		must be 1
[3-4]	not used		must be 0
[5]	Audio_CL_OUT	Audio_Clock_Output tristate	0 : on 1 : tristate
[6–9]	not used		must be 0
[10]	not used		must be 1
[11–15]	not used		must be 0

MICRONAS INTERMETALL

4.2. Summary of the DSP Control Registers for Audio Baseband Processing

Control registers are 16 bit wide. Transmissions via I^2C bus have to take place in 16 bit words. Single data entries are 8 bit. Some of the defined 16 bit words are divided into low and high byte, thus holding two different control entities. All control registers are readable. Note: Unused parts of the 16 bit registers must be zero.

Table 4-2: DSP Control Registers

Name	I ² C Bus Address	High/ Low	Adjustable Range, Operational Modes	Reset Mode
Volume loudspeaker channel	0000 _{hex}	н	[+12 dB –114 dB, MUTE]	MUTE
Volume / Mode loudspeaker channel		L	1/8 dB Steps, Reduce Volume / Tone Control	00 _{hex}
Balance loudspeaker channel [L/R]	0001 _{hex}	н	[0100 / 100 % and vv][–1270 / 0 dB and vv]	100%/100%
Balance Mode loudspeaker		L	[Linear mode / logarithmic mode]	linear mode
Bass loudspeaker channel	0002 _{hex}	н	[+20 dB –12 dB]	0 dB
Treble loudspeaker channel	0003 _{hex}	н	[+15 dB –12 dB]	0 dB
Loudness loudspeaker channel	0004 _{hex}	н	[0 dB +17 dB]	0 dB
Loudness Filter Characteristic		L	[NORMAL, SUPER_BASS]	NORMAL
Spatial effect strength loudspeaker ch.	0005 _{hex}	н	[-100%OFF+100%]	OFF
Spatial effect mode/customize		L	[SBE, SBE+PSE]	SBE+PSE
Volume headphone channel	0006 _{hex}	н	[+12 dB –114 dB, MUTE]	MUTE
Volume / Mode headphone channel		L	1/8 dB Steps, Reduce Volume / Tone Control	00 _{hex}
Volume SCART channel	0007 _{hex}	н	[00 _{hex} 7F _{hex}],[+12 dB –114 dB, MUTE]	00 _{hex}
Volume / Mode SCART channel		L	[Linear mode / logarithmic mode]	linear mode
Loudspeaker channel source	0008 _{hex}	н	[SCART]	undefined
Loudspeaker channel matrix		L	[SOUNDA, SOUNDB, STEREO, MONO]	SOUNDA
Headphone channel source	0009 _{hex}	н	[SCART]	undefined
Headphone channel matrix		L	[SOUNDA, SOUNDB, STEREO, MONO]	SOUNDA
SCART1 channel source	000a _{hex}	н	[SCART]	undefined
SCART1 channel matrix		L	[SOUNDA, SOUNDB, STEREO, MONO]	SOUNDA
Quasi-peak detector source	000c _{hex}	н	[SCART]	undefined
Quasi-peak detector matrix		L	[SOUNDA, SOUNDB, STEREO, MONO]	SOUNDA
Prescale SCART	000d _{hex}	н	[00 _{hex} 7F _{hex}]	00 _{hex}
ACB Register (SCART Switches and DIG_OUT Pins)	0013 _{hex}	H/L	Bits [150]	00 _{hex}
Beeper	0014 _{hex}	H/L	[00 _{hex} 7F _{hex}]/[00 _{hex} 7F _{hex}]	0/0
Mode Tone Control	0020 _{hex}	н	[BASS/TREBLE, EQUALIZER]	BASS/TREB

Name	l ² C Bus Address	High/ Low	Adjustable Range, Operational Modes	Reset Mode
Equalizer loudspeaker ch. band 1	0021 _{hex}	н	[+12 dB –12 dB]	0 dB
Equalizer loudspeaker ch. band 2	0022 _{hex}	н	[+12 dB –12 dB]	0 dB
Equalizer loudspeaker ch. band 3	0023 _{hex}	н	[+12 dB –12 dB]	0 dB
Equalizer loudspeaker ch. band 4	0024 _{hex}	н	[+12 dB –12 dB]	0 dB
Equalizer loudspeaker ch. band 5	0025 _{hex}	н	[+12 dB –12 dB]	0 dB
Automatic Volume Correction	0029 _{hex}	н	[off, on, decay time]	off
Volume Subwoofer channel	002Chex	н	[0dB –30 dB, mute]	0 dB
Subwoofer Channel Corner Frequency	002Dhex	н	[50 Hz 400 Hz]	
Subwoofer: Complementary Highpass		L	[off, on]	off
Balance headphone channel [L/R]	0030 _{hex}	н	[0100 / 100% and vv][-1270 / 0 dB and vv]	100%/100%
Balance Mode headphone		L	[Linear mode / logarithmic mode]	linear mode
Bass headphone channel	0031 _{hex}	н	[+20 dB –12 dB]	0 dB
Treble headphone channel	0032 _{hex}	н	[+15 dB –12 dB]	0 dB
Loudness headphone channel	0033 _{hex}	н	[0 dB +17 dB]	0 dB
Loudness filter characteristic		L	[NORMAL, SUPER_BASS]	NORMAL

Volume loudspeaker	0000 _{hex}	11 MSBs
Volume headphone	0006 _{hex}	11 MSBs
+12 dB	0111 1111 000x	7F0 _{hex}
+11.875 dB	0111 1110 111x	7EE _{hex}
+0.125 dB	0111 0011 001>	732 _{hex}
0 dB	0111 0011 000>	x 730 _{hex}
–0.125 dB	0111 0010 111×	72E _{hex}
-113.875dB	0000 0001 001	x 012 _{hex}
–114 dB	0000 0001 000	x 010 _{hex}
Mute	0000 0000 xxxx RESET	k 00x _{hex}
Fast Mute	1111 1111 111x	FFE _{hex}

4.2.1. Volume Loudspeaker Channel and Headphone Channel

The highest given positive 11-bit number $(7F0_{hex})$ yields in a maximum possible gain of 12 dB. Decreasing the volume register by 1 LSB decreases the volume by 0.125 dB. Volume settings lower than the given minimum mute the output. With large scale input signals, positive volume settings may lead to signal clipping.

With Fast Mute, volume is reduced to mute position by digital volume only. Analog volume is not changed. This reduces any audible DC plops. Going back from Fast Mute should be done to the volume step before Fast Mute was activated.

Clipping Mode loudspeaker	0000 _{hex}	3 LSBs
Clipping Mode headphone	0006 _{hex}	3 LSBs
Reduce Volume	x000 RESET	0 _{hex}
Reduce Tone Control	x001	1 _{hex}
Compromise Mode	x010	2 _{hex}

If the clipping mode is set to "Reduce Volume", the following clipping procedure is used: To prevent severe clipping effects with bass, treble, or equalizer boosts, the internal volume is automatically limited to a level where, in combination with either bass, treble, or equalizer setting, the amplification does not exceed 12 dB.

If the clipping mode is "Reduce Tone Control", the bass or treble value is reduced if amplification exceeds 12 dB. If the equalizer is switched on, the gain of those bands is reduced, where amplification together with volume exceeds 12 dB.

If the clipping mode is "Compromise Mode", the bass or treble value and volume are reduced half and half if amplification exceeds 12 dB (see example below). If the equalizer is switched on, the gain of those bands is reduced half and half, where amplification together with volume exceeds 12 dB.

Example:	Vol.: +6 dB	Bass: +9 dB	Treble: +5 dB
Red. Volume	3	9	5
Red. Tone Con.	6	6	5
Compromise	4.5	7.5	5

4.2.2. Balance Loudspeaker and Headphone Channel

Positive balance settings reduce the left channel without affecting the right channel; negative settings reduce the right channel leaving the left channel unaffected. In linear mode, a step by 1 LSB decreases or increases the balance by about 0.8% (exact figure: 100/127). In logarithmic mode, a step by 1 LSB decreases or increases the balance by 1 dB.

Balance Mode loudspeaker	0001 _{hex}	LSB
Balance Mode headphone	0030 _{hex}	LSB
linear	xxx0 RESET	0 _{hex}
logarithmic	xxx1	1 _{hex}

Linear Mode			
Balance loudspeaker channel [L/R]	0001 _{hex}	н	
Balance headphone channel [L/R]	0030 _{hex}	н	
Left muted, Right 100%	0111 1111	7F _{hex}	
Left 0.8%, Right 100%	0111 1110	7E _{hex}	
Left 99.2%, Right 100%	0000 0001	01 _{hex}	
Left 100%, Right 100%	0000 0000 RESET	00 _{hex}	
Left 100%, Right 99.2%	1111 1111	FF _{hex}	
Left 100%, Right 0.8%	1000 0010	82 _{hex}	
Left 100%, Right muted	1000 0001	81 _{hex}	

Logarithmic Mode			
Balance loudspeaker channel [L/R]	0001 _{hex}	Н	
Balance headphone channel [L/R]	0030 _{hex}	Н	
Left –127 dB, Right 0 dB	0111 1111	7F _{hex}	
Left –126 dB, Right 0 dB	0111 1110	7E _{hex}	
Left –1 dB, Right 0 dB	0000 0001	01 _{hex}	
Left 0 dB, Right 0 dB	0000 0000 RESET	00 _{hex}	
Left 0 dB, Right –1 dB	1111 1111	FF _{hex}	
Left 0 dB, Right –127 dB	1000 0001	81 _{hex}	
Left 0 dB, Right –128 dB	1000 0000	80 _{hex}	

Bass loudspeaker	0002 _{hex}	Н
Bass headphone	0031 _{hex}	Н
+20 dB	0111 1111	7F _{hex}
+18 dB	0111 1000	78 _{hex}
+16 dB	0111 0000	70 _{hex}
+14 dB	0110 1000	68 _{hex}
+12 dB	0110 0000	60 _{hex}
+11 dB	0101 1000	58 _{hex}
+1 dB	0000 4000	00
+1 UB	0000 1000	08 _{hex}
+1/8 dB	0000 1000	08 _{hex} 01 _{hex}
+1/8 dB	0000 0001 0000 0000	01 _{hex}
+1/8 dB 0 dB	0000 0001 0000 0000 RESET	01 _{hex} 00 _{hex}
+1/8 dB 0 dB -1/8 dB	0000 0001 0000 0000 RESET 1111 1111	01 _{hex} 00 _{hex} FF _{hex}

With positive bass settings, internal overflow may occur even with overall volume less than 0 dB. This will lead to a clipped output signal. Therefore, it is not recommended to set bass to a value that, in conjunction with volume, would result in an overall positive gain.

Loudspeaker channel: Bass and Equalizer cannot work simultaneously (see Table: Mode Tone Control). If Equalizer is used, Bass and Treble coefficients must be set to zero and vice versa.

4.2.4. Treble Loudspeaker and Headphone Channel

Treble loudspeaker	0003 _{hex}	Н
Treble headphone	0032 _{hex}	н
+15 dB	0111 1000	78 _{hex}
+14 dB	0111 0000	70 _{hex}
+1 dB	0000 1000	08 _{hex}
+1/8 dB	0000 0001	01 _{hex}
0 dB	0000 0000 RESET	00 _{hex}
–1/8 dB	1111 1111	FF _{hex}
–1 dB	1111 1000	F8 _{hex}
–11 dB	1010 1000	A8 _{hex}
–12 dB	1010 0000	A0 _{hex}

With positive treble settings, internal overflow may occur even with overall volume less than 0 dB. This will lead to a clipped output signal. Therefore, it is not recommended to set treble to a value that, in conjunction with volume, would result in an overall positive gain.

Loudspeaker channel: Treble and Equalizer cannot work simultaneously (see Table: Mode Tone Control). If Equalizer is used, Bass and Treble coefficients must be set to zero and vice versa.

4.2.5. Loudness Loudspeaker and Headphone Channel

Loudness loudspeaker	0004 _{hex}	н
Loudness headphone	0033 _{hex}	н
+17 dB	0100 0100	44 _{hex}
+16 dB	0100 0000	40 _{hex}
+1 dB	0000 0100	04 _{hex}
0 dB	0000 0000 RESET	00 _{hex}

Mode Loudness loudspeaker	0004 _{hex}	L
Mode Loudness headphone	0033 _{hex}	L
Normal (constant volume at 1 kHz)	0000 0000 RESET	00 _{hex}
Super Bass (constant volume at 2 kHz)	0000 0100	04 _{hex}

Loudness increases the volume of low and high frequency signals, while keeping the amplitude of the 1 kHz reference frequency constant. The intended loudness has to be set according to the actual volume setting. Because loudness introduces gain, it is not recommended to set loudness to a value that ,in conjunction with volume, would result in an overall positive gain.

By means of 'Mode Loudness', the corner frequency for bass amplification can be set to two different values. In Super Bass mode, the corner frequency is shifted up. The point of constant volume is shifted from 1 kHz to 2 kHz.

4.2.6. Spatial Effects Loudspeaker Channel

Spatial effect strength loudspeaker channel	0005 _{hex}	Н
Enlargement 100%	0111 1111	7F _{hex}
Enlargement 50%	0011 1111	3F _{hex}
Enlargement 1.5%	0000 0001	01 _{hex}
Effect off	0000 0000 RESET	00 _{hex}
Reduction 1.5%	1111 1111	FF _{hex}
Reduction 50%	1100 0000	C0 _{hex}
Reduction 100%	1000 0000	80 _{hex}
Spatial Effect Mode	0005 _{hex}	[7:4]
Stereo Basewidth En- largement (SBE) and Pseudo Stereo Effect	0000 RESET 0000	0 _{hex} 0 _{hex}
(PSE). (Mode A)		- nex
Stereo Basewidth En- largement (SBE) only. (Mode B)	0010	2 _{hex}
Spatial Effect Cus- tomize Coefficient	0005 _{hex}	[3:0]
max high pass gain	0000 RESET	0 _{hex}
2/3 high pass gain	0010	2 _{hex}
1/3 high pass gain	0100	4 _{hex}
min high pass gain	0110	6 _{hex}
automatic	1000	8 _{hex}

There are several spatial effect modes available:

Mode A (low byte = 00_{hex}) is compatible to the formerly used spatial effect. Here, the kind of spatial effect depends on the source mode. If the incoming signal is in mono mode, Pseudo Stereo Effect is active; for stereo signals, Pseudo Stereo Effect and Stereo Basewidth Enlargement is effective. The strength of the effect is controllable by the upper byte. A negative value reduces the stereo image. A rather strong spatial effect is recommended for small TV sets where loudspeaker spacing is rather close. For large screen TV sets, a more moderate spatial effect is recommended. In mode A, even in case of stereo input signals, Pseudo Stereo Effect is active, which reduces the center image.

In Mode B, only Stereo Basewidth Enlargement is effective. For mono input signals, the Pseudo Stereo Effect has to be switched on. It is worth mentioning, that all spatial effects affect amplitude and phase response. With the lower 4 bits, the frequency response can be customized. A value of 0000_{bin} yields a flat response for center signals (L = R) but a high pass function of L or R only signals. A value of 0110_{bin} has a flat response for L or R only signals but a lowpass function for center signals. By using 1000_{bin} , the frequency response is automatically adapted to the sound material by choosing an optimal high pass gain.

4.2.7. Volume SCART

Volume Mode SCART	0007 _{hex}	LSB
linear	xxx0 RESET	0 _{hex}
logarithmic	xxx1	1 _{hex}

Linear Mode		
Volume SCART	0007 _{hex}	н
OFF	0000 0000 RESET	00 _{hex}
0 dB gain (digital full scale (FS) to 2 V _{RMS} output)	0100 0000	40 _{hex}
+6 dB gain (–6 dBFS to 2 V _{RMS} output)	0111 1111	7F _{hex}

Logarithmic Mode		
Volume SCART	0007 _{hex} 1	1 MSBs
+12 dB	0111 1111 000x	7F0 _{hex}
+11.875 dB	0111 1110 111x	7EE _{hex}
+0.125 dB	0111 0011 001x	732 _{hex}
0 dB	0111 0011 000x	730 _{hex}
–0.125 dB	0111 0010 111x	72E _{hex}
–113.875 dB	0000 0001 001x	012 _{hex}
–114 dB	0000 0001 000x	010 _{hex}
Mute	0000 0000 0000 RESET	000 _{hex}

4.2.8. Channel Source Modes

Loudspeaker channel source	0008 _{hex}	н
Headphone channel source	0009 _{hex}	н
SCART channel source	000a _{hex}	н
Quasi-peak detector source	000c _{hex}	н
NONE (MSP 3410: FM)	0000 0000 RESET	00 _{hex}
NONE (MSP3410: NICAM)	0000 0001	01 _{hex}
SCART	0000 0010	02 _{hex}

Note: For Headphone output it is also possible to select a subwoofer signal derived from the Loudspeaker channel. For more details see section 4.2.16.

4.2.9. Channel Matrix Modes

Loudspeaker channel matrix	0008 _{hex}	L
Headphone channel matrix	0009 _{hex}	L
SCART channel matrix	000a _{hex}	L
Quasi-peak detector- matrix	000c _{hex}	L
SOUNDA / LEFT	0000 0000 RESET	00 _{hex}
SOUNDB / RIGHT	0001 0000	10 _{hex}
STEREO	0010 0000	20 _{hex}
MONO	0011 0000	30 _{hex}
SUM/DIFF	0100 0000	40 _{hex}
AB_XCHANGE	0101 0000	50 _{hex}
INVERT_B	0110 0000	60 _{hex}

The sum/difference mode can be used together with the quasi-peak detector to determine the sound material mode. If the difference signal on channel B (right) is near to zero, and the sum signal on channel A (left) is high, the incoming audio signal is mono. If there is a significant level on the difference signal, the incoming audio is stereo.

4.2.10. SCART Prescale

Volume Prescale SCART	000d _{hex}	н
OFF	0000 0000 RESET	00 _{hex}
0 dB gain (2 V _{RMS} in- put to digital full scale)	0001 1001	19 _{hex}
+14 dB gain (400 mV _{RMS} input to digital full scale)	0111 1111	7F _{hex}

4.2.11. ACB Register, Definition of the SCART-Switches and DIG_CTR_OUT Pins

ACB Register	0013 _{hex}	н
DSP In Selection of Source: SC_1_IN MONO_IN SC_2_IN SC_3_IN	xxxx xx00 xxxx xx01 xxxx xx10 xxxx xx11	RESET
SC_1_OUT_L/R Selection of Source: SC_3_IN SC_2_IN MONO_IN DA_SCART	xxxx 00xx xxxx 01xx xxxx 10xx xxxx 11xx	RESET
SC_2_OUT_L/R Selection of Source: DA_SCART SC_1_IN MONO_IN	xx00 xxxx xx01 xxxx xx10 xxxx	RESET
DIG_CTR_OUT1 low high	x0xx xxxx x1xx xxxx	RESET
DIG_CTR_OUT2 low high	0xxx xxxx 1xxx xxxx	RESET
RESET: The RESET state is taken at the time of the first write transmission on the control bus to the audio processing part (DSP). By writing to the ACB register first, the RESET state can be rede-		

4.2.12. Beeper

Beeper Volume	0014 _{hex}	Н
OFF	0000 0000 RESET	00 _{hex}
Maximum Volume (full digital scale FDS)	0111 1111	7F _{hex}
Beeper Frequency	0014 _{hex}	L
Beeper Frequency 16 Hz (lowest)	0014 _{hex}	L 01 _{hex}
		L 01 _{hex} 40 _{hex}

A squarewave beeper can be added to the loudspeaker channel and the headphone channel. The addition point is just before loudness and volume adjustment.

4.2.13. Mode Tone Control

Mode Tone Control	00020 _{hex}	Н
Bass and Treble	0000 0000 RESET	00 _{hex}
Equalizer	1111 1111	FF _{hex}

By means of 'Mode Tone Control', Bass/Treble or Equalizer may be activated.

fined.

Band 1 (below 120 Hz)	0021 _{hex}	Н
Band 2 (Center: 500 Hz)	0022 _{hex}	Н
Band 3 (Center: 1.5 kHz)	0023 _{hex}	Н
Band 4 (Center: 5 kHz)	0024 _{hex}	Н
Band 5 (above 10kHz)	0025 _{hex}	Н
+12 dB	0110 0000	60 _{hex}
+11 dB	0101 1000	58 _{hex}
+1 dB	0000 1000	08 _{hex}
+1/8 dB	0000 0001	01 _{hex}
0 dB	0000 0000 RESET	00 _{hex}
-1/8 dB	1111 1111	FF _{hex}
–1 dB	1111 1000	F8 _{hex}
–11dB	1010 1000	A8 _{hex}
–12 dB	1010 0000	A0 _{hex}

4.2.14. Equalizer Loudspeaker Channel

With positive equalizer settings, internal overflow may occur even with overall volume less than 0 dB. This will lead to a clipped output signal. Therefore, it is not recommended to set equalizer bands to a value that, in conjunction with volume, would result in an overall positive gain.

Equalizer must not be used simultaneously with Bass and Treble (Mode Tone Control must be set to FF to use the Equalizer).

4.2.15. Automatic Volume Correction (AVC)

AVC	on/off	0029hex	[15:12]
AVC	off and Reset of int. variables	0000 RESET	0hex
AVC	on	1000	8hex
AVC	Decay Time	0029hex	[11:8]
8 sec 4 sec 2 sec 20 ms	(middle) (short)	1000 0100 0010 0001	8hex 4hex 2hex 1hex

Different sound sources (e.g. Terrestrial channels, SAT channels or SCART) fairly often don't have the same volume level. Advertisement during movies as well has mostly a different (higher) volume level, than the movie itself. The Automatic Volume Correction (AVC) solves this problem and equalizes the volume levels.

The absolute value of the incoming signal is fed into a filter with 16ms attack time and selectable decay time. The decay time must be adjusted as shown in the table above. This attack/decay filter block works similar to a peak hold function. The volume correction value with it's quasi continuous step width is calculated using the attack/decay filter output.

The Automatic Volume Correction works with an internal reference level of -18 dBFS. This means, input signals with a volume level of -18 dBFS will not be affected by the AVC. If the input signals vary in a range of -24 dB to 0 dB the AVC compensates this.

Example: A static input signal of 1 kHz on Scart has an output level as shown in the table below.

Scart Input 0dbr = 2 Vrms	Volume Correc- tion	Main Output 0dBr = 1.4 Vrms						
0 dBr	–18 dB	–18 dBr						
–6 dBr	–12 dB	–18 dBr						
-12 dBr	–6 dB	–18 dBr						
-18 dBr	–0 dB	–18 dBr						
–24 dBr	+ 6 dB	–18 dBr						
–30 dBr	+ 6 dB	–24 dBr						
	Loudspeaker Volume = 73h = 0 dBFS Scart Prescale = 20h i.e. 2.0 Vrms = 0dBFS							

To reset the internal variables, the AVC should be switched off and on during any channel or source change. For standard applications, the recommended decay time is 4sec.

Note: AVC should not be used in any Dolby Prologic modes, except PANORAMA, where no other than the loudspeaker output is active.

4.2.16. Subwoofer on Headphone Output

The subwoofer channel is created by combining the left and right loudspeaker channels ((L+R)/2) directly behind the tone control filter block. A third order lowpass filter with programmable corner frequency and volume adjustment respectively to the loudspeaker channel output is performed to the bass-signal. Additionally, at the loudspeaker channels, a complementary high pass filter can be switched on. The subwoofer channel output can be switched to the headphone D/A converter alternatively with the headphone output.

Subwoofer Channel Volume Adjust	002Chex	Н
0 dB	0000 0000 RESET	00hex
-1 dB	1111 1111	FFhex
–29 dB	1110 0011	E3hex
–30 dB	1110 0010	E2hex
Mute	1000 0000	80hex

Subwoofer Channel Corner Frequency	002Dhex	н	
50 Hz 400 Hz e.g. 50 Hz = 5 int 400 Hz = 40int	0000 0101 0010 1000	05hex 28hex	
Headphone Output	002Dhex	[7:4]	
Headphone	0000	0hex	
Subwoofer	1000	8hex	
Subwoofer: Comple- mentary Highpass	002Dhex	[3:0]	
HP off	0000	0hex	
HP on	0001	1hex	

Note: If subwoofer is chosen for headphone output, the corner frequency must be set to the desired value, before the loudspeaker volume is set. This is to avoid plop noise.

4.3. Summary of Readable Registers

All readable registers are 16 bit wide. Transmissions via I^2C bus have to take place in 16 bit words. Single data entries are 8 bit. Some of the defined 16 bit words are divided into low and high byte, thus holding two different control entities.

These registers are not writeable.

4.3.1. Quasi Peak Detector

Quasi peak readout left	0019 _{hex}	H+L
Quasi peak readout right	001a _{hex}	H+L
Quasi peak readout	[0 _{hex} 7FFF values are 10	- _{hex}] 6 bit binary

The quasi peak readout register can be used to read out the quasi peak level of any input source, in order to adjust all inputs to the same normalized listening level. The refresh rate is 32 kHz. The feature is based on a filter time constant:

attack-time: 1.3 ms decay-time: 37 ms

5. Specifications

5.1. Outline Dimensions

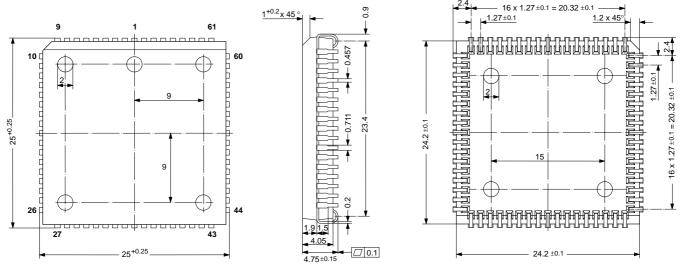


Fig. 5–1: 68-Pin Plastic Leaded Chip Carrier Package (PLCC68) Weight approximately 4.8 g Dimensions in mm SPGS7004-3/4E

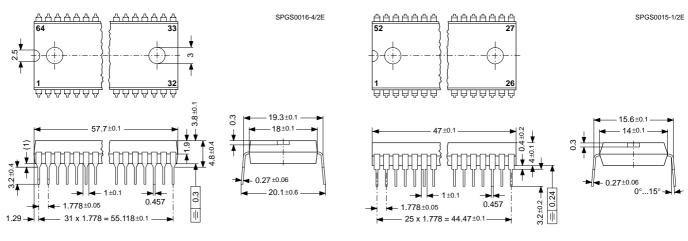
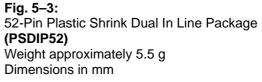
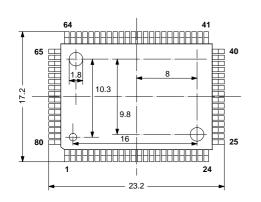
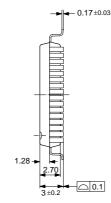
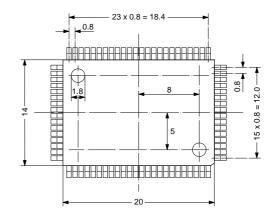






Fig. 5–2: 64-Pin Plastic Shrink Dual Inline Package (PSDIP64) Weight approximately 9.0 g Dimensions in mm

SPGS0025-1/1E

Fig. 5–4: 80-Pin Plastic Quad Flat Pack Package (PQFP80) Weight approximately 1.61 g Dimensions in mm

5.2. Pin Connections and Short Descriptions

NC = not connected; leave vacant

- LV = if not used, leave vacant
- X = obligatory; connect as described in circuit diagram

AHVSS = connect to AHVSS

DVSS = if not used, connect to DVSS

= pin does not exist in this package

	Pin No.		Pin Name	Туре	Connection	Short Description	
PLCC 68-pin	PSDIP 64-pin	PSDIP 52-pin	PQFP 80-pin			(if not used)	
1	16	14	9	TP	OUT	LV	Test pin
2	Ι	Ι	-	NC		LV	Not connected
3	15	13	8	NC		LV	Not connected
4	14	12	7	NC		LV	Not connected
5	13	11	6	TP	OUT	LV	Test pin
6	12	10	5	TP	IN/OUT	LV	Test pin
7	11	9	4	ТР	IN/OUT	LV	Test pin
8	10	8	3	I ² C_DA	IN/OUT	Х	I ² C data
9	9	7	2	I ² C_CL	IN/OUT	Х	I ² C clock
10	8	-	1	NC		LV	Not connected
11	7	6	80	STANDBYQ	IN	Х	Standby (low-active)
12	6	5	79	ADR_SEL	IN	Х	I ² C Bus address select
13	5	4	78	D_CTR_OUT0	OUT	LV	Digital control output 0
14	4	3	77	D_CTR_OUT1	OUT	LV	Digital control output 1
¹⁾ Due	e to compa	atibility wit	h MSP 34	10, it is possible to	connect wit	h DVSS as well.	

	Pin No.		Pin Name	Туре	Connection	Short Description	
PLCC 68-pin	PSDIP 64-pin	PSDIP 52-pin	PQFP 80-pin			(if not used)	
15	3	_	76	NC		LV	Not connected
16	2	_	_	NC		LV	Not connected
17	_	_	75	NC		LV	Not connected
18	1	2	74	AUD_CL_OUT	OUT	LV	Audio clock output
19	64	1	73	NC		LV	Not connected
20	63	52	72	XTAL_OUT	OUT	Х	Crystal oscillator
21	62	51	71	XTAL_IN	IN	Х	Crystal oscillator
22	61	50	70	TESTEN	IN	Х	Test pin
23	60	49	69	NC		LV	Not connected
24	59	48	68	NC		LV	Not connected
25	58	47	67	NC		LV	Not connected
26	57	46	66	AVSUP		Х	Analog power supply +5 V
_	_	_	65	AVSUP		Х	Analog power supply +5 V
_	_	_	64	NC		LV	Not connected
_	_	_	63	NC		LV	Not connected
27	56	45	62	AVSS		Х	Analog ground
_	_	_	61	AVSS		Х	Analog ground
28	55	44	60	MONO_IN	IN	LV	Mono input
_	_	_	59	NC		LV	Not connected
29	54	43	58	VREFTOP		Х	Reference voltage
30	53	42	57	SC1_IN_R	IN	LV	Scart input 1 in, right
31	52	41	56	SC1_IN_L	IN	LV	Scart input 1 in, left
32	51	_	55	ASG1		AHVSS	Analog Shield Ground 1
33	50	40	54	SC2_IN_R	IN	LV	Scart input 2 in, right
34	49	39	53	SC2_IN_L	IN	LV	Scart input 2 in, left
35	48	_	52	ASG2		AHVSS	Analog Shield Ground 2
36	47	38	51	SC3_IN_R	IN	LV	Scart input 3 in, right
37	46	37	50	SC3_IN_L	IN	LV	Scart input 3 in, left
38	45	_	49	NC		LV	Not connected
39	44	_	48	NC		LV	Not connected
¹⁾ Due	e to compa	atibility wit	h MSP 34	10, it is possible to	connect w	ith DVSS as well.	

Pin No.		Pin Name	Туре	Connection	Short Description		
PLCC 68-pin	PSDIP 64-pin	PSDIP 52-pin	PQFP 80-pin			(if not used)	·
40	43	_	47	NC		LV	Not connected
41	-	-	46	NC		LV or AHVSS	Not connected
42	42	36	45	AGNDC		Х	Analog reference voltage high voltage part
43	41	35	44	AHVSS		Х	Analog ground
-	-	Ι	43	AHVSS		Х	Analog ground
_	-	_	42	NC		LV	Not connected
_	-	_	41	NC		LV	Not connected
44	40	34	40	CAPL_M		Х	Volume capacitor MAIN
45	39	33	39	AHVSUP		Х	Analog power supply 8.0 V
46	38	32	38	CAPL_A		Х	Volume capacitor AUX
47	37	31	37	SC1_OUT_L	OUT	LV	Scart output 1, left
48	36	30	36	SC1_OUT_R	OUT	LV	Scart output 1, right
49	35	29	35	VREF1		Х	Reference ground 1 high voltage part
50	34	28	34	SC2_OUT_L	OUT	LV	Scart output 2, left
51	33	27	33	SC2_OUT_R	OUT	LV	Scart output 2, right
52	-	Ι	32	ASG3		AHVSS ¹⁾	Analog Shield Ground 3
53	32	Ι	31	NC		LV	Not connected
54	31	26	30	NC		LV	Not connected
55	30	-	29	NC		LV	Not connected
56	29	25	28	DACM_L	OUT	LV	Analog output MAIN, left
57	28	24	27	DACM_R	OUT	LV	Analog output MAIN, right
58	27	23	26	VREF2		Х	Reference ground 2 high voltage part
59	26	22	25	DACA_L	OUT	LV	Analog output AUX, left
60	25	21	24	DACA_R	OUT	LV	Analog output AUX, right
_	_	_	23	NC		LV	Not connected
_	_	_	22	NC		LV	Not connected
61	24	20	21	RESETQ	IN	Х	Power-on-reset
¹⁾ Due	e to compa	atibility wit	h MSP 34	10, it is possible to	connect w	ith DVSS as well.	

	Pin No.		Pin No. Pin Name Type				Connection	Short Description	
PLCC 68-pin	PSDIP 64-pin	PSDIP 52-pin	PQFP 80-pin			(if not used)			
62	23	_	20	NC		LV	Not connected		
63	22	_	19	NC		LV	Not connected		
64	21	19	18	NC		LV	Not connected		
65	20	18	17	NC		LV	Not connected		
66	19	17	16	DVSS		Х	Digital ground		
_	_	-	15	DVSS		Х	Digital ground		
_	_	_	14	DVSS		Х	Digital ground		
67	18	16	13	DVSUP		Х	Digital power supply +5 V		
_	_	_	12	DVSUP		Х	Digital power supply +5 V		
_	_	_	11	DVSUP		Х	Digital power supply +5 V		
68	17	15	10	TP	OUT	LV	Test pin		
¹⁾ Due	¹⁾ Due to compatibility with MSP 3410, it is possible to connect with DVSS as well.								

5.3. Pin Configurations

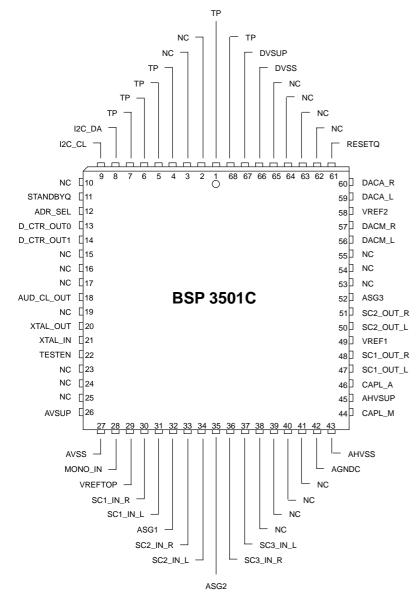


Fig. 5-5: 68-pin PLCC package

AUD_CL_OUT	С	1	\bigcirc	64		NC
NC	С	2		63		XTAL_OUT
NC	С	3		62		XTAL_IN
D_CTR_OUT1	C	4		61		TESTEN
D_CTR_OUT0	С	5		60		NC
ADR_SEL	С	6		59		NC
STANDBYQ	С	7		58		NC
NC	C	8		57		AVSUP
I2C_CL	С	9		56		AVSS
I2C_DA	Ε	10		55		MONO_IN
TP	Ε	11		54		VREFTOP
TP	С	12		53		SC1_IN_R
TP	C	13		52		SC1_IN_L
NC	Ε	14	C	51		ASG1
NC	Ε	15	3501	50		SC2_IN_R
TP	C	16	35	49		SC2_IN_L
TP	С	17	۵.	48		ASG2
DVSUP	C	18	S	47		SC3_IN_R
DVSS	Ε	19	Ö	46		SC3_IN_L
NC	E	20		45		NC
NC	С	21		44	ב	NC
NC	Е	22		43	ב	NC
NC	С	23		42	ב	AGNDC
RESETQ	С	24		41	ב	AHVSS
DACA_R	Е	25		40	ב	CAPL_M
DACA_L	С	26		39	ב	AHVSUP
VREF2	C	27		38	ב	CAPL_A
DACM_R	С	28		37	כ	SC1_OUT_L
DACM_L	С	29		36		SC1_OUT_R
ASG3	С	30		35		VREF1
NC	С	31		34	þ	SC2_OUT_L
NC	С	32		33		SC2_OUT_R
	l					

	1		1 1		1	
NC	C	1	\bigcirc	52	þ	XTAL_OUT
AUD_CL_OUT	C	2		51	þ	XTAL_IN
D_CTR_OUT1	C	3		50	þ	TESTEN
D_CTR_OUT0	C	4		49	þ	NC
ADR_SEL	C	5		48	þ	NC
STANDBYQ	C	6		47	þ	NC
I2C_CL	C	7		46	þ	AVSUP
I2C_DA	C	8		45	þ	AVSS
TP	C	9		44	þ	MONO_IN
TP	C	10		43	þ	VREFTOP
TP	C	11	C	42	þ	SC1_IN_R
NC	C	12	5	41	þ	SC1_IN_L
NC	C	13	3501	40	þ	SC2_IN_R
TP	C	14	۵.	39	þ	SC2_IN_L
TP	C	15	S	38	þ	SC3_IN_R
DVSUP	C	16	Ď	37	þ	SC3_IN_L
DVSS	C	17		36	þ	AGNDC
NC	C	18		35	þ	AHVSS
NC	C	19		34	þ	CAPL_M
RESETQ	C	20		33	þ	AHVSUP
DACA_R	C	21		32	þ	CAPL_A
DACA_L	C	22		31	þ	SC1_OUT_L
VREF2	C	23		30	þ	SC1_OUT_R
DACM_R	C	24		29	þ	VREF1
DACM_L	C	25		28	þ	SC2_OUT_L
NC	C	26		27	þ	SC2_OUT_R
					1	

Fig. 5-6: 64-pin shrink PSDIP package

Fig. 5-7: 52-pin shrink PSDIP package

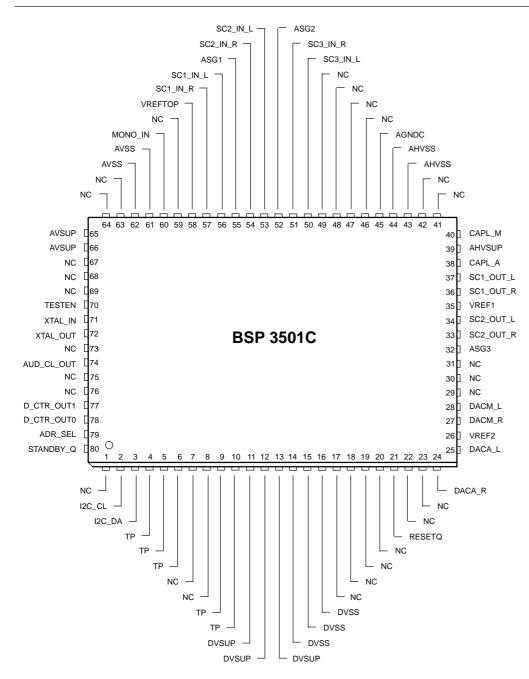


Fig. 5-8: 80-pin PQFP package

5.4. Pin Circuits

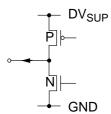
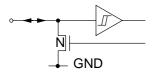
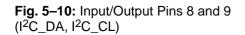




Fig. 5–9: Output Pins 13, 14 (D_CTR_OUT0/1)

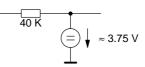


Fig. 5–14: Input Pins 30, 31, 33, 34, 36, and 37 (SC1–3_IN_L/R)

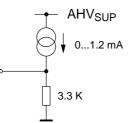


Fig. 5–15: Output Pins 56, 57, 59, and 60 (DACA_L/R, DACM_L/R)

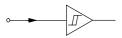


Fig. 5–11: Input Pins 11, 12, 61, and 62 (STANDBYQ, ADR_SEL, RESETQ, TESTEN)

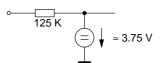


Fig. 5-16: Pin 42 (AGNDC)

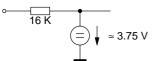
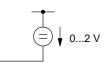



Fig. 5-12: Input Pin 28 (MONO_IN)

Fig. 5–13: Capacitor Pins 44 and 46 (CAPL_M, CAPL_A)

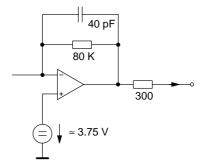


Fig. 5–17: Output Pins 47, 48, 50 and 51 (SC_1/2_OUT_L/R)

5.5. Electrical Characteristics

5.5.1. Absolute Maximum Ratings

Symbol	Parameter	Pin Name	Min.	Max.	Unit
T _A	Ambient Operating Temperature	_	0	70	°C
T _S	Storage Temperature	_	-40	125	°C
V _{SUP1}	First Supply Voltage	AHVSUP	-0.3	9.0	V
V _{SUP2}	Second Supply Voltage	DVSUP	-0.3	6.0	V
V _{SUP3}	Third Supply Voltage	AVSUP	-0.3	6.0	V
$\mathrm{dV}_{\mathrm{SUP23}}$	Voltage between AVSUP and DVSUP	AVSUP, DVSUP	-0.5	0.5	V
P _{TOT}	Chip Power Dissipation PLCC68 without Heat Spreader	AHVSUP, DVSUP, AVSUP		1100	mW
V _{Idig}	Input Voltage, all Digital Inputs		-0.3	V _{SUP2} +0.3	V
l _{ldig}	Input Current, all Digital Pins	_	-20	+20	mA ¹⁾
V _{lana}	Input Voltage, all Analog Inputs	SCn_IN_s, ²⁾ MONO_IN	-0.3	V _{SUP1} +0.3	V
l _{lana}	Input Current, all Analog Inputs	SCn_IN_s, ²⁾ MONO_IN	-5	+5	mA ¹⁾
I _{Oana}	Output Current, all SCART Outputs	SCn_OUT_s ²⁾	3), 4)	3), 4)	
I _{Oana}	Output Current, all Analog Outputs except SCART Outputs	DACp_s ²⁾	3)	3)	
I _{Cana}	Output Current, other pins connected to capacitors	CAPL_p, ²⁾ AGNDC	3)	3)	

²⁾ "n" means "1", "2" or "3", "s" means "L" or "R", "p" means "M" or "A"

³⁾ The Analog Outputs are short circuit proof with respect to First Supply Voltage and Ground.

⁴⁾ Total chip power dissipation must not exceed absolute maximum rating.

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions/Characteristics" of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

5.5.2. Recommended Operating Conditions

(at $T_A = 0$ to 70 °C)

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
V _{SUP1}	First Supply Voltage	AHVSUP	7.6	8.0	8.4	V
V _{SUP2}	Second Supply Voltage	DVSUP	4.75	5.0	5.25	V
V _{SUP3}	Third Supply Voltage	AVSUP	4.75	5.0	5.25	V
V _{REIL}	RESET Input Low Voltage	RESETQ			0.45	V _{SUP2}
V _{REIH}	RESET Input High Voltage		0.8			V _{SUP2}
t _{REIL}	RESET Low Time after DVSUP Stable and Oscillator Startup		5			μs
V _{DIGIL}	Digital Input Low Voltage	STANDBYQ, ADR_SEL,			0.25	V _{SUP2}
V _{DIGIH}	Digital Input High Voltage	TESTEN	0.75			V _{SUP2}
t _{STBYQ1}	STANDBYQ Setup Time before Turn-off of Second Supply Voltage	STANDBYQ, DVSUP	1			μs
I ² C-Bus Reco	ommendations		•			
V _{IMIL}	I ² C-BUS Input Low Voltage	I ² C_CL,			0.3	V _{SUP2}
V _{IMIH}	I ² C-BUS Input High Voltage	I ² C_DA	0.6			V _{SUP2}
f _{IM}	I ² C-BUS Frequency	I ² C_CL			1.0	MHz
t _{I2C1}	I ² C START Condition Setup Time	I ² C_CL,	120			ns
t _{I2C2}	I ² C STOP Condition Setup Time	I ² C_DA	120			ns
t _{I2C3}	I ² C-Clock Low Pulse Time	I ² C_CL	500			ns
t _{I2C4}	I ² C-Clock High Pulse Time		500			ns
t _{I2C5}	I ² C-Data Setup Time Before Rising Edge of Clock	I ² C_CL, I ² C_DA	55			ns
t _{I2C6}	I ² C-Data Hold Time after Falling Edge of Clock		55			ns

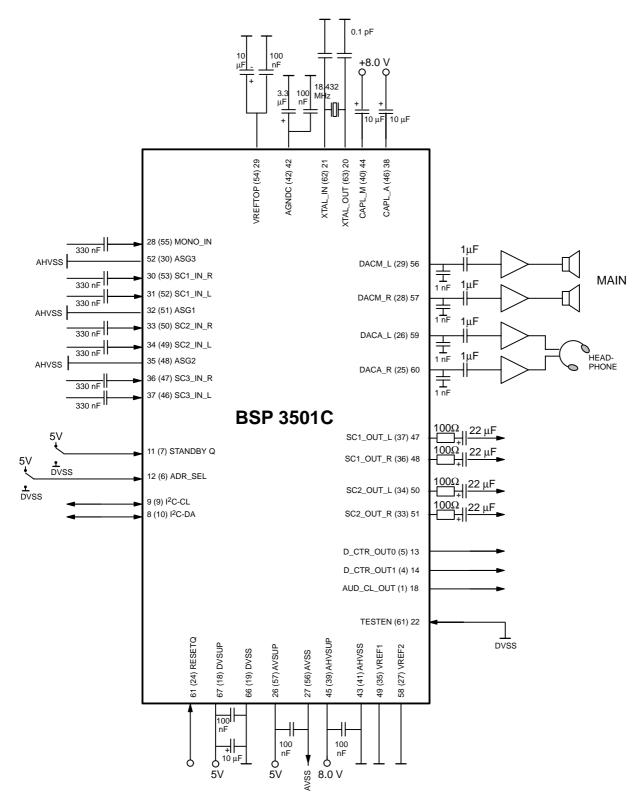
BSP 3501C

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
Crystal Rec	ommendations					
f _P	Parallel Resonance Frequency at 12 pF Load Capacitance			18.432		MHz
f _{TOL}	Accuracy of Adjustment		-100		+100	ppm
D _{TEM}	Frequency Variation versus Temperature		-50		+50	ppm
R _R	Series Resistance			8	25	Ω
C ₀	Shunt (Parallel) Capacitance			6.2	7.0	pF
Load Capac	sitance Recommendations		•			
CL	External Load Capacitance ²⁾ XTAL_IN, PSDIP 1.5 XTAL_OUT PLCC 3.3					pF pF
Amplitude F	Recommendation for Operation with Exte	ernal Clock Input (C	load after r	eset = 22	pF)	
V _{XCA}	External Clock Amplitude	XTAL_IN	0.7			V _{pp}
Analog Inpu	it and Output Recommendations					
C _{AGNDC}	AGNDC-Filter-Capacitor	AGNDC	-20%	3.3		μF
	Ceramic Capacitor in Parallel		-20%	100		nF
C _{inSC}	DC-Decoupling Capacitor in front of SCART Inputs	SCn_IN_s ¹⁾	-20%	330	+20%	nF
V _{inSC}	SCART Input Level				2.0	V _{RMS}
V _{inMONO}	Input Level, Mono Input	MONO_IN			2.0	V _{RMS}
R _{LSC}	SCART Load Resistance	SCn_OUT_s1)	10			kΩ
C _{LSC}	SCART Load Capacitance				6.0	nF
C _{VMA}	Main/AUX Volume Capacitor	CAPL_M, CAPL_A		10		μF

¹⁾ "n" means "1", "2" or "3", "s" means "L" or "R", "p" means "M" or "A"

²⁾ External capacitors at each crystal pin to ground are required. They are necessary to tune the open-loop frequency of the internal oscillator. The higher the capacitors, the lower the clock frequency results. The nominal free running frequency should match 18.432 MHz as closely as possible. Due to different layouts of customer PCBs, the matching capacitor size should be defined in the application. The suggested values (1.5 pF/3.3 pF) are figures based on experience with various PCB layouts.

5.5.3. Characteristics at T_A = 0 to 70 $^{\circ}C,\,f_{CLOCK}$ = 18.432 MHz


(Typical values are measured at T_A = 25 °C, AHVSUP = 8 V, DVSUP = 5 V, AVSUP = 5 V.)

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
DCO							
fclock	Clock Input Frequency	XTAL_IN		18.432		MHz	
D _{CLOCK}	Clock High to Low Ratio		45		55	%	
t _{JITTER}	Clock Jitter (verification not provided in production test)				50	ps	
V _{xtalDC}	DC-Voltage Oscillator			2.5		V	
t _{Startup}	Oscillator Startup Time at VDD Slew-rate of 1 V / 1 μs	XTAL_IN, XTAL_OUT		0.4	2.0	ms	
Power Supp	ly						
I _{SUP1A}	First Supply Current (active) Analog Volume for Main and Aux at 0dB Analog Volume for Main and Aux at $-30dB$ at T _j = 27 °C	AHVSUP	8.2 5.6	14.8 10.0	22.0 15.0	mA mA	f = 18.432 MHz AHVSUP = 8 V DVSUP = 5 V AVSUP = 5 V
I _{SUP2A}	Second Supply Current (active)	DVSUP	60	65	70	mA	f = 18.432 MHz DVSUP = 5 V
I _{SUP3A}	Third Supply Current (active)	AVSUP		25		mA	f = 18.432 MHz AVSUP = 5 V
I _{SUP1S}	First Supply Current (standby mode) at $T_j = 27 \text{ °C}$	AHVSUP	2.8	5.0	7.2	mA	STANDBYQ = low VSUP = 8 V
Audio Clock	Output						
V _{APUAC}	Audio Clock Output AC Voltage	AUD_CL_OUT	1.2			V _{pp}	40 pF load
VAPUDC	Audio Clock Output DC Voltage		0.4		0.6	V _{SUP1}	
Digital Outpu	ıt						
V _{DCTROL}	Digital Output Low Voltage	D_CTR_OUT0			0.4	V	I _{DDCTR} = 1 mA
V _{DCTROH}	Digital Output High Voltage	D_CTR_OUT1	4.0			V	I _{DDCTR} = -1 mA
I ² C Bus							
V _{IMOL}	I ² C-Data Output Low Voltage	I ² C_DA	0.4			V	I _{iMOL} = 3 mA
I _{IMOH}	I ² C-Data Output High Current				1	μΑ	V _{IMOH} = 5 V
t _{IMOL1}	I ² C-Data Output Hold Time after Falling Edge of Clock	I ² C_DA, I ² C_CL	15			ns	
t _{IMOL2}	I ² C-Data Output Setup Time before Rising Edge of Clock		100			ns	f _{IM} = 1 MHz DVSUP = 5 V
Analog Grou	nd						
V _{AGNDC0}	AGNDC Open Circuit Voltage	AGNDC	3.64	3.73	3.84	V	$R_{load} \ge 10 M\Omega$
R _{outAGN}	AGNDC Output Resistance at $T_j = 27 \ ^{\circ}C$ from $T_A = 0$ to 70 $^{\circ}C$		70 70	125	180 180	kΩ kΩ	$3 \text{ V} \leq \text{V}_{\text{AGNDC}} \leq 4 \text{ V}$

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Analog Inpu	t Resistance						
R _{inSC}	SCART Input Resistance at $T_j = 27 \degree C$ from $T_A = 0$ to 70 $\degree C$	SCn_IN_s ¹⁾	25 25	40	58 58	kΩ kΩ	$f_{signal} = 1 \text{ kHz},$ I $\leq 0.05 \text{ mA}$
R _{inMONO}	MONO Input Resistance at $T_j = 27 \degree C$ from $T_A = 0$ to 70 $\degree C$	MONO_IN	10 10	16	23 23	kΩ kΩ	f _{signal} = 1 kHz, I ≤ 0.1 mA
Audio Analo	g-to-Digital-Converter		•	•	•		
V _{AICL}	Analog Input Clipping Level for Analog-to-Digital-Conversion	SCn_IN_s, ¹⁾ MONO_IN	2.02	2.12	2.22	V _{RMS}	f _{signal} = 1 kHz
SCART Out	puts						
R _{outSC}	SCART Output Resistance at $T_j = 27 \degree C$ from $T_A = 0$ to 70 $\degree C$	SCn_OUT_s ¹⁾	0.20 0.20	0.33	0.46 0.5	kΩ kΩ	f _{signal} = 1 kHz, I = 0.1 m.
dV _{OUTSC}	Deviation of DC-Level at SCART Output from AGNDC Voltage		-70		+70	mV	
A _{SCtoSC}	Gain from Analog Input to SCART Output	SCn_IN_s ¹⁾ MONO_IN	-1.0	0	+0.5	dB	f _{signal} = 1kHz
f _{rSCtoSC}	Frequency Response from Analog Input to SCART Output bandwidth: 0 to 20000 Hz	→ SCn_OUT_s ¹⁾	-0.5	0	+0.5	dB	with respect to 1 kHz
V _{outSC}	Signal Level at SCART-Output during full-scale digital input signal from DSP	SCn_OUT_s ¹⁾	1.8	1.9	2.0	V _{RMS}	f _{signal} = 1 kHz
Main and Al	JX Outputs		•	•		•	1
R _{outMA}	Main/AUX Output Resistance at $T_j = 27 \degree C$ from $T_A = 0$ to 70 $\degree C$	DACp_s ¹⁾	2.1 2.1	3.3	4.6 5.0	kΩ kΩ	f _{signal} = 1 kHz, I = 0.1 m.
VoutDCMA	DC-Level at Main/AUX-Output for Analog Volume at 0 dB for Analog Volume at –30 dB		1.74	1.94 61	2.14 -	V mV	
V _{outMA}	Signal Level at Main/AUX-Output during full-scale digital input signal from DSP for Analog Volume at 0 dB		1.23	1.37	1.51	V _{RMS}	f _{signal} = 1 kHz

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Analog Perf	ormance			•	•		•
SNR	Signal-to-Noise Ratio						
	from Analog Input to Main/AUX/ SCART Output via DSP	MONO_IN, SCn_IN_s ¹⁾	80	85		dB	Input Level = -20 dB with resp. to V _{AICL} , f _{sig} = 1 kHz, equally weighted 20 Hz16 kHz
	from Analog Input to SCART Output (analog)	$\begin{array}{c} \text{MONO_IN,} \\ \text{SCn_IN_s^{1)}} \\ \rightarrow \\ \text{SCn_OUT_s^{1)}} \end{array}$	93	96		dB	Input Level = –20 dB, f _{sig} = 1 kHz, equally weighted 20 Hz20 kHz
THD	Total Harmonic Distortion						
	from Analog Input to Main/AUX/ SCART Output via DSP	MONO_IN, SCn_IN_s ¹⁾			0.10	%	Input Level = -3 dBr with resp. to V _{AICL} , f _{sig} =1kHz equally weighted 20 Hz16 kHz, R _{Load} = 30 kΩ
	from Analog Input to SCART Output (analog)	$\begin{array}{c} \text{MONO_IN,} \\ \text{SCn_IN_s} \\ \\ \text{SCn_OUT_s^{1)}} \end{array}$		0.01	0.03	%	Input Level = -3 dBr , f _{sig} = 1 kHz, equally weighted 20 Hz20 kHz R _{Load} = 30 k Ω
XTALK	Crosstalk attenuation – PLCC68 – PSDIP64						Input Level = -3 dB , f _{sig} = 1 kHz, unused ana- log inputs connected to ground by Z<1 k Ω
	between left and right channel within SCART Input/Output pair (L $\!$						equally weighted 20 Hz20 kHz
	$SCn_IN \rightarrow SCn_OUT^{1)}$	PLCC68 PSDIP64	80 80			dB dB	
	$\texttt{SCn_IN} \rightarrow \texttt{DSP} \rightarrow \texttt{SCn_OUT}$	PLCC68 PSDIP64	74 74			dB dB	
PSRR: reje	ction of noise on AHVSUP at 1 kHz						
PSRR	AGNDC	AGNDC		80		dB	
	from Analog Input to SCART Output	MONO_IN SCn_IN_s, ¹⁾ SCn_OUT_s ¹⁾		74		dB	
	from Analog Input to Main/AUX/ SCART Output via DSP	DACp_s ¹⁾		63		dB	

6. Application of the BSP 3501C

Note: Pin numbers refer to PLCC packages, pin numbers for PSDIP packages in brackets. not connected pins are 2,10,15,16,17,38,39,40,41,53,54,55,62,63,64 (2,3,8,21,22,23,31,32,43,44,45)

7. Data Sheet History

1. Preliminary data sheet: "BSP 3501C Baseband Sound Processor", March 16, 1998, 6251-469-1PD. First release of the preliminary data sheet.

MICRONAS INTERMETALL GmbH Hans-Bunte-Strasse 19 D-79108 Freiburg (Germany) P.O. Box 840 D-79008 Freiburg (Germany) Tel. +49-761-517-0 Fax +49-761-517-2174 E-mail: docservice@intermetall.de Internet: http://www.intermetall.de

Printed in Germany Order No. 6251-469-1PD All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery dates are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, MICRONAS INTERMETALL GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use. Reprinting is generally permitted, indicating the source. However, our prior consent must be obtained in all cases.