4-channel BTL driver for CD players BA6897S / BA6897FP

The BA6897S and BA6897FP are a 4-channel BTL driver for CD player motors and actuators. It has an internal 5V regulator and standard operational amplifier, and is suited to a wide range of applications.

Applications

CD players, CD-ROM drives

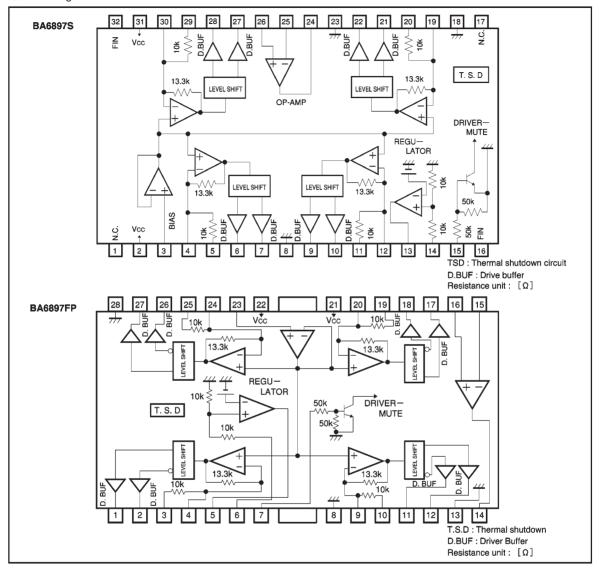
Features

- 1) Minimal number of external components.
- Driver gain is adjustable with just one attached resistor.
- Internal 5V regulator (attached PNP transistor necessary).
- 4) Internal standard operational amplifier.
- 5) Internal thermal shutdown circuit.

● Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit	
Power supply voltage		Vcc	18	V	
Power dissipation	BA6897S	D.J	1.7*1	W	
	BA6897FP	Pd	1.7*2		
Operating temperature		Topr	− 35∼+85	င	
Storage temperature		Tstg	−55∼+150	°C	

^{*1} Unmounted


\bullet Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	6~9* ²	V

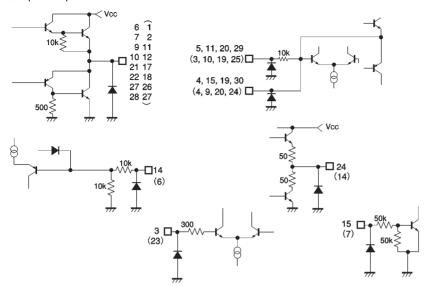
^{*2} However, the driver can operate at up to 4.5V.

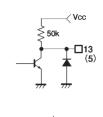
^{*2} When mounted on a 50 \times 50 \times 1 mm paper phenol board Reduced by 13.6 mW for each increase in Ta of 1 $^{\circ}$ C over 25 $^{\circ}$ C.

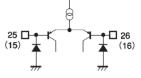
Block diagram

●Pin descriptions BA6897S

Pin No.	Pin name	Function	
1	N.C.	N.C.	
2	Vcc	Power supply	
3	BIAS IN	Bias amplifier input	
4	VIN1'	Input for adjusting the driver channel 1 gain	
5	VIN1	Driver channel 1 input	
6	VO1 (+)	Driver channel 1 positive output	
7	VO1 (-)	Driver channel 1 negative output	
8	GND	Substrate ground	
9	VO2 (-)	Driver channel 2 negative output	
10	VO2 (+)	Driver channel 2 positive output	
11	VIN2	Driver channel 2 input	
12	VIN2'	Input for adjusting the driver channel 2 gain	
13	REG-B	Connect to base of attached transistor	
14	REG OUT	Constant voltage output (connectto collector of attached transistor)	
15	MUTE	Mute control	
16	FIN	FIN	
17	N.C.	N.C.	
18	GND	GND	
19	VIN3'	Input for adjusting the driver channel 3 gain	
20	VIN3	Driver channel 3 input	
21	VO3 (+)	Driver channel 3 positive output	
22	VO3 (-)	Driver channel 3 negative output	
23	GND	Substrate ground	
24	OP OUT	Operational amplifier output	
25	OP IN (-)	Operational amplifier negative input	
26	OP IN (+)	Operational amplifier positive input	
27	VO4 (-)	Driver channel 4 positive output	
28	VO4 (+)	Driver channel 4 negative output	
29	VIN4	Driver channel 4 input	
30	VIN4'	Input for adjusting the driver channel 4 gain	
31	Vcc	Power supply	
32	FIN	FIN	


^{*}Positive and negative output is relative to the polarity of the input pins.


BA6897FP


Pin No.	Pin name	Description	
1	VO1 (-)	Driver channel 1 negative output	
2	VO1 (+)	Driver channel 1 Positive output	
3	VIN1	Driver channel 1 input	
4	VIN1'	Driver channel 1 input, gain adjustment pin	
5	REG-B	Connect to external transistor base	
6	REG OUT	Constant voltage output, connects to external transistor collector	
7	MUTE	Driver mute control input	
8	GND	Ground	
9	VIN2'	Driver channel 2 input, gain adjustment pin	
10	VIN2	Driver channel 2 input	
11	VO2 (+)	Driver channel 2 positive output	
12	VO2 (-)	Driver channel 2 negative output	
13	GND	Substrate ground	
14	OP OUT	Operational amplifier output	
15	OP IN(-)	Operational amplifier input, negative	
16	OP IN(十)	Operational amplifier input, positive	
17	VO3 (-)	Driver channel 3 negative output	
18	VO3 (+)	Driver channel 3 Positive output	
19	VIN3	Driver channel 3 input	
20	VIN3′	Driver channel 3 input, gain adjustment pin	
21	Vcc	Power supply	
22	Vcc	Power supply	
23	BIAS IN	Bias amplifier input	
24	VIN4′	Driver channel 4 input, gain adjustment pin	
25	VIN4	Driver channel 4 input	
26	VO4 (+)	Driver channel 4 positive output	
27	VO4 (-)	Driver channel 4 negative output	
28	GND	Substrate ground	

Note: Positive and negative output is relative to the polarity of the input pins.

Input/output circuits

Values without parentheses are for BA6897S Values within parentheses are for BA6897FP •Electrical characteristics (unless otherwise noted, Ta = 25 $^{\circ}$ C, Vcc = 8V, f = 1kHz, R_L = 8 Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current dissipation	lcc	6.0	10.0	14.0	mA	No load
Output voltage, offset	Voo	-40	_	40	mV	_
Max. output voltage, HIGH	Vohd	5.2	5.6	_	V	_
Max. output voltage, LOW	Vold	_	1.3	1.55	V	_
Closed loop voltage gain	Gvc	7.0	8.0	9.0	dB	V _{IN} =0.1V _{rms} , 1kHz
Ripple rejection	RR	_	60	_	dB	V _{IN} =0.1V _{rms} , 100Hz
Slew rate	SR	_	2.0	_	V/ μs	100 kHz square wave, 3 VP-P output
Mute Off voltage	VMOFF	2.0	_	_	V	_
⟨5 V regulator⟩						
Output voltage	Vreg	4.75	5.00	5.25	V	IL=100mA
Output load differential	ΔVRL	-50	0	10	mV	IL=0~200mA
Power supply voltage differential	ΔVvcc	-10	0	25	mV	(Vcc=6~9V) L=100mA
〈Operational amplifier〉						
Offset voltage	Vofop	- 5	0	5	mV	_
Input bias current	V _{BOP}	_	_	300	nA	_
Output high level voltage	Vонор	6.0	_	_	V	_
Output low level voltage	Volop	_	_	1.8	٧	_
Output drive current (sink)	Isink	10	50	_	mA	50 Ω at Vcc
Output drive current (source)	Isource	10	40	_	mA	50 Ω at GND
Open loop voltage gain	Gvo	_	78	_	dB	V _{IN} =-75dBV, 1kHz
Slew rate	SRop	_	1	_	V/ μs	100 kHz square wave, 4 VP-P output
Ripple rejection	RRop	_	65	_	dB	V _{IN} =-20dBV, 100Hz
Common mode rejection ratio	CMRR	_	84	_	dB	V _{IN} =-20dBV, 1kHz

Measruement circuit (BA6897S)

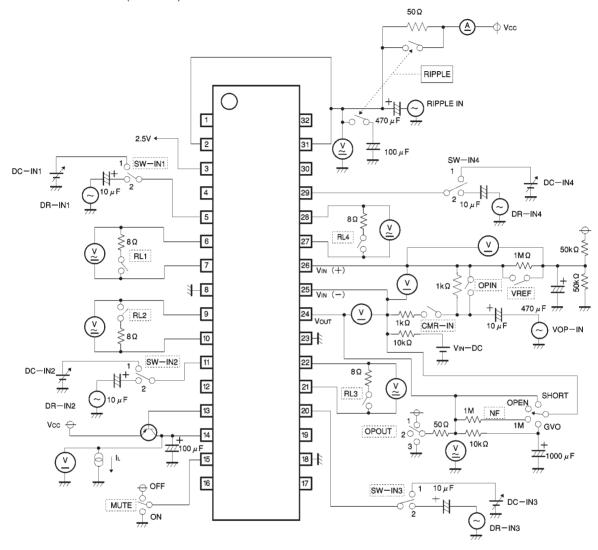


Fig.1

Circuit operation

(1) Driver

Inputs to the IC are the focus tracking error signal from the servo preamplifier and the control signal from the motor

The input signals, which normally center on 2.5V, are V/I converted by the preamplifier, generating a current corresponding to the input voltage. This current is passed through a resistor and into the internal reference voltage component, the preamplifier output being a signal centering on the internal reference voltage. Two systems (positive phase and negative phase) are created during V/I conversion, generating BTL output via the driver buffer.

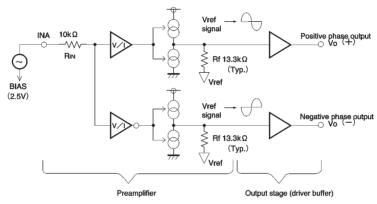


Fig. 2

(2) Regulator

This is a typical series regulator that generates a reference voltage internally. A PNP low saturation transistor must be connected.

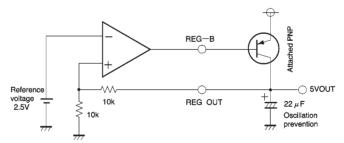


Fig. 3

(3) Amplifier General 4558 type.

Application examples

BA6897S

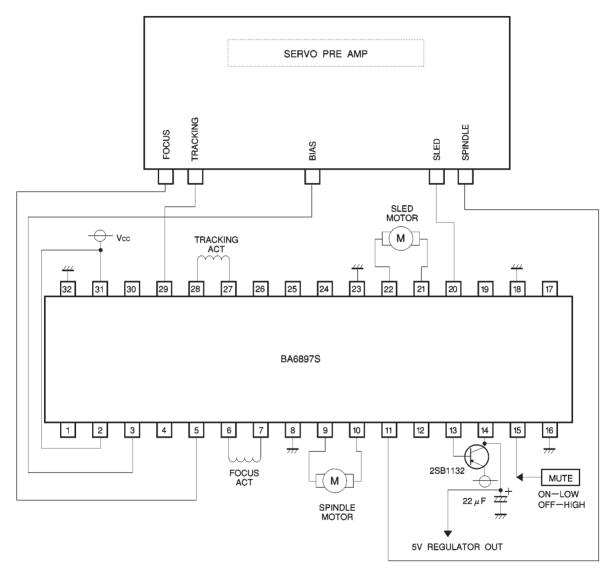


Fig.4

BA6897FP

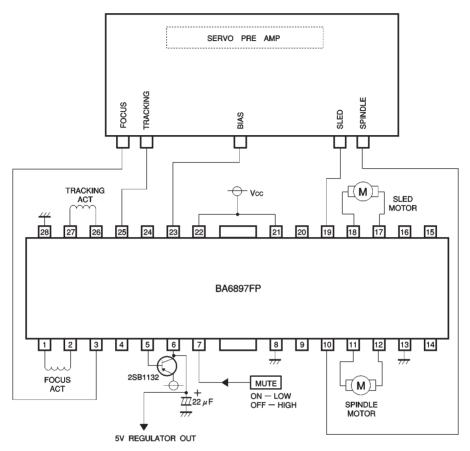
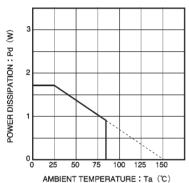


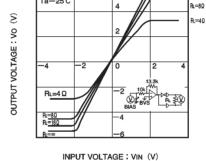
Fig.5

ROHM


Operation notes

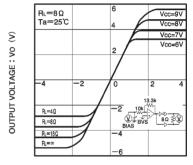
- The BA6897S and BA6897FP have an internal thermal shutdown circuit. Output current is muted when the chip temperature exceeds 175°C (typically).
- (2) If the mute pin voltage is opened or lowered below 0.5V, the output current will be muted. The mute pin should be pulled up above 2.0V during normal use.
- (3) The bias pin is muted when lowered below 1.4V (typically). Make sure it stays above 1.6V during normal use.
- (4) Muting occurs during thermal shutdown, mute-on operations or a drop in the bias pin voltage or supply volt-

- age. In each case, only the drivers are muted, During muting, the output pins remain at the internal bias voltage, roughly (Vcc-V_F)/2.
- (5) Be sure to connect the IC to a 0.1 µF bypass capacitor to the power supply, at the base of the IC.
- The radiating fin is connected to the packages internal GND, but should also be connected to an external around.
- (7) The capacitor between regulator output (pin 6) and GND also serves to prevent oscillation of the IC, so select one with good temperature characteristics.


RL=16Ω

Electrical characteristic curves

BA6897S.When separate BA 6897FP, PCB When mounted on a 50×50×1 mm paper phenol board.


Fig. 6 Thermal derating curve

Vcc=8V

Ta=25°C

Fig. 7 Driver I / O characteristics (variable load)

INPUT VOLTAGE: VIN (V)

Fig. 8 Driver I / O characteristics (variable Vcc)

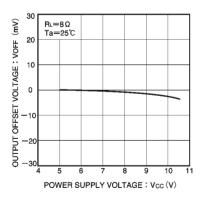


Fig. 9 Power supply voltage vs. output voltage (offset)

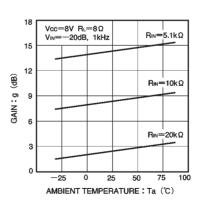


Fig. 10 Driver gain vs. temperature (Rin connected via gain adjustment pin)

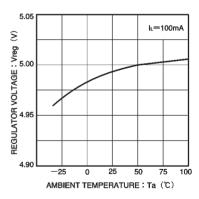
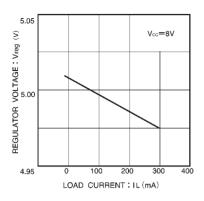



Fig. 11 Regulator voltage vs. temperature

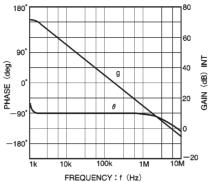
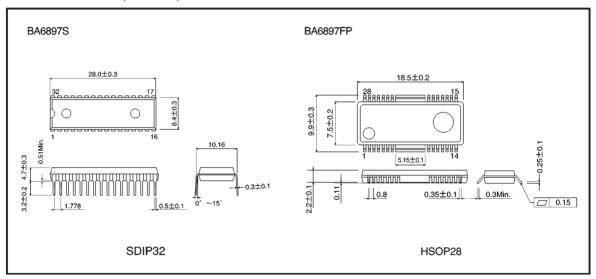



Fig. 12 Load current vs. regulator current

Fig. 13 Operational amplifier vs. open loop

External dimensions (Units: mm)

