3-phase motor driver for VCR cylinders BA6467FP-Y

The BA6467FP-Y is a motor driver developed for cylinders. It contains a power supply with a constant voltage 8V, and a start / stop pin that opens the output.

Applications

VCR cylinders

Features

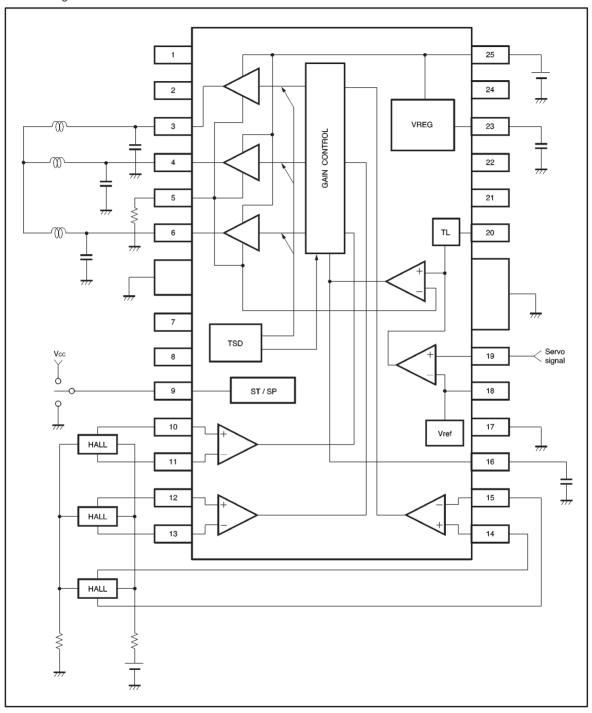
- 1) 3-phase, full-wave, pseudo-linear drive system.
- 2) Internal constant voltage power supply (8V).
- 3) Internal thermal shutdown circuit.

● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Applid voltage	Vcc	18	V
Power dissipation	Pd	1450* ¹	mW
Operating temperature	Topr	−20~ +75	°
Storage temperature	Tstg	−55∼ +150	င
Allowed output current	Iomax	1000*2	mA
Junction temperature	Tjmax	150	င

^{*1} When mounted on 70mm×70mm ×1.6mm glass epoxy board.

Reduced by 11.6mW for each increase in Ta of 1°C over 25°C when mounted.

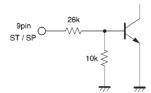

■Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Operating power supply voltage	Vcc	10~16* ³	٧
Hall input common-mode voltage	VHB	1.5~VREG-1.0	٧
Allowed torque control voltage input	VEC	0~VREG	V

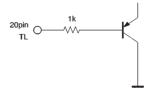
^{*3} Should not exceed Pd or ASO values.

^{*2} Should not exceed Pd or ASO values.

●Block diagram

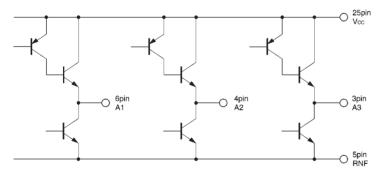


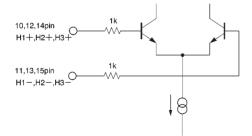
Pin descriptions


Pin No.	Pin name	Functiom		
1	N.C.	N.C.		
2	N.C.	N.C.		
3	А3	Output		
4	A2	Output		
5	RNF	Output current detector		
6	A1	Output		
7	N.C.	N.C.		
8	N.C.	N.C.		
9	ST / SP	Start / stop switching		
10	H1+	Hall signal input		
11	H1 —	Hall signal input		
12	H2+	Hall signal input		
13	H2-	Hall signal input		
14	нз+	Hall signal input		
15	Н3—	Hall signal input		
16	CNF	For connection of capacitor for phase compensation		
17	GND	GND		
18	ECR	Output current control reference voltage		
19	EC	Output current control		
20	TL	Torque limit		
21	N.C.	N.C.		
22	N.C.	N.C.		
23	VREG	Internal constant voltage		
24	N.C.	N.C.		
25	Vcc	Power supply		
FIN	FIN	Be sure to connect this radiation fin to the ground.		

Input / output circuits


(1) Start / stop (ST / SP: pin 9)


2) Torque limit (TL: pin20)


(3) Torque control input (EC: pin19, ECR: pin 18)

(4) Coil output (A1: pin 6, A2: pin4, A3: pin 3)

(5) Hall input (H1+: pin10, H1-: pin 11, H2+: pin 12, H2-: pin 13, H3+: pin 14, H3-: pin 15)

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 12V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Coniditions
Circuit current	Icc	_	5.0	10.0	mA	
Constant voltage output	VREG	7.2	8.0	8.8	V	
Hall input bias current	IBH	_	0.25	5.0	μΑ	H+=H, H-=L or H+=L H-=H
Hall device minimum input level	VINM	30	_	_	mV _{P-P}	
Torque cntrol reference voltage	VECR	*-0.15	*+0	*+0.15	V	*=VREG×2.3 / 8
Torque cntrol voltage offset	Ecofs	-150	_	150	mV	For ECR pin
Output idle voltage	ECidle	_	0	10	mV	EC=ECR-0.15V, RNF=0.5Ω
Input / output gain	GEC	0.41	0.50	0.59	A/V	Measured at EC=ECR $+$ 0.5V and ECR $+$ 1.0V; RNF=0.5 Ω
Start / stop ON voltage	Vs/sON	3.5	_	VREG	V	
Start / stop OFF voltage	Vs/sOFF	0	_	1.2	V	
High level output saturation voltage	VOH	_	1.05	1.75	V	lo=600mA
Low level output saturation voltage	VOL	_	0.45	1.05	٧	lo=600mA
Output drive current capacity	IO(MAX)	800	_	_	mA	RNF=0.5Ω, Tj=25℃
Torque limit current	ITL	520	650	780	mA	TL=0.4V, RNF=0.5Ω

ONot designed for radiation resistance.

Circuit operation

(1) Hall I / O

The 3-phase Hall signal is amplified in the hall amplifiers and sent to the matrix circuit, where the signal is further amplified and combined. After the signal is converted to a current in the amplitude control circuit, the current is supplied to the output driver, which then provides a motor drive current. The phases of the Hall input signal, output voltage, and output current are shown in Fig.1.

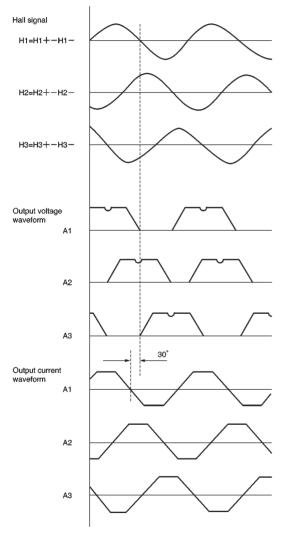
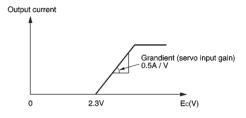



Fig.1

(2) Torque control pin

The output current can be controlled by adjusting the voltage applied to the torque control pin.

(3) Start / stop pin

The motor is in the run mode when the pin input voltage is 3.5V or more and in the standby mode (all output transistors are off) when the voltage is 1.2V or less.

(4) Power ground pin (RNF pin)

The power ground pin is the output stage ground pin. Connect a resistor (0.5 Ω recommended) between this pin and the ground to monitor the output current.

(5) Phase compensation pin (CNF pin)

Connect a capacitor between this pin and $V \circ \circ$ if the output tends to oscillate.

Application example

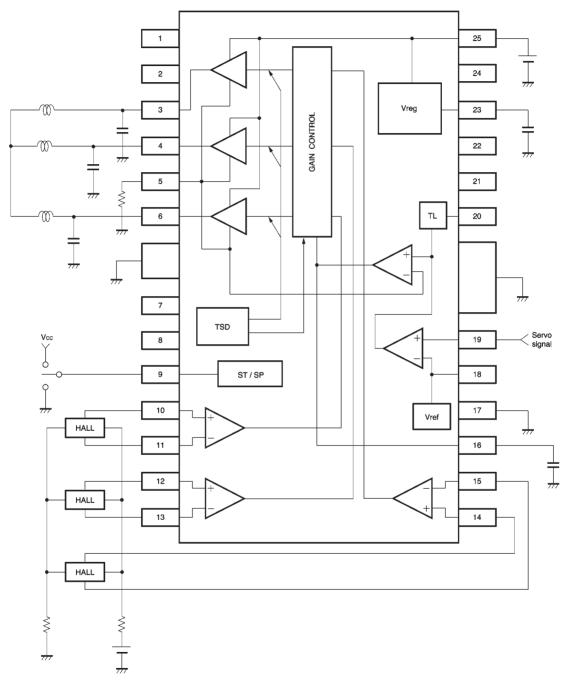
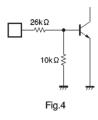
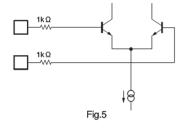



Fig.3

Operation notes


(1) Start / stop pin

The I / O equivalent circuit of the start / stop pin is shown in Fig.4. The pin has a temperature dependence of $-7 \text{mV}\,/\,^{\circ}\text{C}$, and its resistance can vary $\pm 30\%$. The voltage on this pin should be less than V_{REG} .

(2) Hall input

The input circuit of the Hall input pins is shown in Fig.5. The Hall devices can be connected in either series or parallel. The input Hall signal should be within the range of the Hall input common-mode voltage.

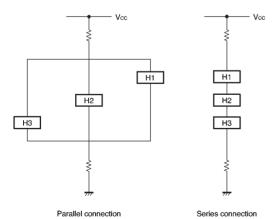
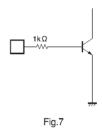



Fig.6

(3) Torque limit pin

The output current can be limited by applying a voltage to the torque limit pin. Control is provided so that this pin will have the same potential as the power ground pin (RNF).

Note that there is a voltage offset on this pin. The RNF-pin voltage is 0.325V when the TL-pin voltage is 0.4V (typical) and the RNF-pin resistance is 0.5 Ω . Note that the voltage offset changes with RNF-pin resistance. Connect the TL pin to V_{REG} (pin 23) when the TL pin is not used.

(4) Thermal shutdown circuit (TSD)

The thermal shutdown circuit puts the coil outputs (A1, A2, and A3) to the open state at the temperature of 175° C (typical). There is an approximate 25° C temperature hysteresis.

•Electrical characteristic curves

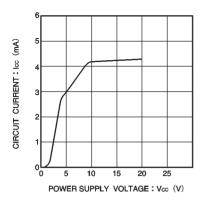


Fig.8 Supply current vs. power supply voltage

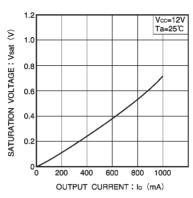


Fig.9 Low output saturation voltage vs. output current

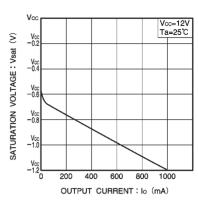
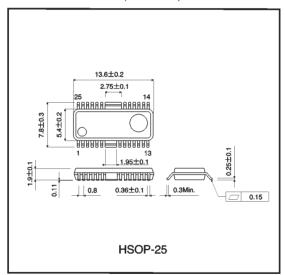



Fig.10 High output saturation voltage vs. output current

External dimensions (Units: mm)

