3-phase motor driver BA6446FM The BA6446FP and BA6446FM are 3-phase, full-wave, pseudo-linear motor drivers suited for VCR capstan motors. The IC has a torque ripple cancellation circuit to reduce wow and flutter, a forced brake circuit that allows abrupt change of operational mode, and an output transistor saturation prevention circuit that provides superb motor control over a wide range of currents. The IC also contains FG and hysteresis amplifiers. # Applications VCR and DAT capstan motors #### Features - 1) 3-phase, full-wave, pseudo-linear drive system. - Torque ripple cancellation circuit. (cancellation ratio adjustable) - 3) Forced brake circuit. - High- and low-side output transistor saturation prevention circuit. - 5) FG and hysteresis amplifiers. - 6) Thermal shutdown circuit. #### ● Absolute maximum ratings (Ta = 25°C) | Parameter | | Symbol | Limits | Unit | | |--------------------------|----------|------------------|---------------------------|------|--| | Applied voltage | | Vcc | 7 | ٧ | | | Applied voltage | | V _M | 36 | V | | | Power
dissipation | BA6446FP | D4 | 1700*1*3 | \^/ | | | | BA6446FM | Pd | 2200*2*3 | mW | | | Operating temperature | | Topr | −25 ~ +75 | Ĉ | | | Storage temperature | | T _{stg} | − 40∼ + 150 | Ĉ | | | Allowable output current | | lo peak | 1500*4 | mA | | ^{*1} Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C. #### • Recommended operating conditions (Ta = 25°C) | Parameter | Symbol | Limits | Unit | |---------------------------|----------------|----------------|------| | Operating power supply | Vcc | 4~6 | V | | voltage | V _M | 3~32*5 | V | | Hall signal input voltage | Hn± | 1.5~ (Vcc-1.8) | V | ^{*5} Should not exceed ASO value. ^{*2} Reduced by 17.6 mW for each increase in Ta of 1°C over 25°C. ^{*3} When mounted on a glass epoxy board (70×70×1.6 mm). ^{*4} Should not exceed Pd or ASO values. # Block diagram # Pin descriptions | Pin No. | Pin name | Function | | | | |---------|------------------|--|--|--|--| | 1 | Rcc | Resistor connection pin for changing the ripple cancellation ratio | | | | | 2 | ED/S | Forward when LOW, reverse when HIGH | | | | | 3 | BRK | Forced brake pin; brake mode when LOW | | | | | 4 | ECGND | Torque amplifier ground | | | | | 5 | A1 | Motor output | | | | | 6 | A2 | Motor output | | | | | 7 | RNF | Motor ground pin; connect a resistor (0.5 Ω recommended) for current sensing | | | | | 8 | Vм | Motor power supply | | | | | 9 | A3 | Motor output | | | | | 10 | Ec | Torque control voltage input | | | | | 11 | Ecr | Torque control reference voltage input | | | | | 12 | TL | Torque limit | | | | | 13 | PcI | Capacitor connection pin for phase compensation of the low-side saturation prevention circuit | | | | | 14 | PcV | Capacitor connection pin for phase compensation of the high-side saturation prevention circuit | | | | | 15 | Vcc | Power supply | | | | | 16 | Hys OUT | Schmitt trigger amplifier output | | | | | 17 | Hys IN | Schmitt trigger amplifier input | | | | | 18 | Amp OUT | Amplifier output | | | | | 19 | Amp IN— | Amplifier input, inverted | | | | | 20 | Amp IN+ | Amplifier input, non-inverted | | | | | 21 | GND | Ground | | | | | 22 | H ₃ — | Hall signal input | | | | | 23 | H ₃ + | Hall signal input | | | | | 24 | H ₂ — | Hall signal input | | | | | 25 | H ₂ + | Hall signal input | | | | | 26 | H ₁ — | Hall signal input | | | | | 27 | H ₁ + | Hall signal input | | | | | 28 | N.C. | _ | | | | # ●Input / output circuits (1) Rcc pin (1 pin) (3) BRK pin (3 pin) (5) Ec and Ecr pins (10 pin, 11 pin) (7) Hall signal input pins $\begin{array}{l} (H_1+:27\;pin,\,H_1-:26\;pin,\,H_2+:25\;pin,\\ H_2-:24\;pin,\,H_3+:23\;pin,\,H_3-:22\;pin) \end{array}$ (2) ED / S pin (2 pin) (4) Motor output (A1, 5 pin; A2, 6 pin; A3, 9 pin) (6) TL pin (12 pin) # (8) Schmitt trigger amplifier I / O pins (17 pin, 16 pin) # (9) Amplifier I / O pins (20 pin, 19 pin, 18 pin) ●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5V, V_M = 12V) | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | |--------------------------------------|-------------------|------|------|------|------|--| | Supply current | lcc | _ | 9 | 14 | mA | Ec=EcR-0.1, ED / S=L
Input = (L, L, H) | | Hall element input conversion offset | HEofs | -10 | 0 | +10 | mV | | | Torque control offset | Ecots | -120 | _ | +120 | mV | | | Output idle voltage | Ecidle | _ | 0 | 10 | mV | | | Torque control input gain | Gio | 0.52 | 0.58 | 0.64 | A/V | Ec = $2.7 \rightarrow 2.8$, input = (L, L, H)
R _{NF} = 0.5Ω | | Brake ON voltage | BR ON | _ | _ | 0.7 | V | | | Brake OFF voltage | BR OFF | 2.0 | _ | _ | V | | | Forward ON voltage | ED/F | _ | _ | 2.2 | V | | | Reverse ON voltage | ED/R | 2.8 | _ | - | V | | | TL-RnF offset | TL-Rnofs | 38 | 60 | 88 | mV | TL=0.35V | | Output high level voltage | Vон | 1.0 | 1.35 | 1.7 | V | Io=0.8A | | Output low level voltage | Vol | 1.15 | 1.6 | 2.05 | V | Io=0.8A | | Output current capacity | Іомах | 1.4 | _ | - | Α | Vcc = 4.5 V, input = (H, L, M) | | ⟨FGAMP⟩ | | | | | | | | Input impedance | Rва | 14 | 20 | 26 | ΚΩ | | | Open gain 1 | G _{A1} | 65 | 70 | - | dB | f=500Hz | | Open gain 2 | G _{A2} | 33 | 38 | _ | dB | f=20kHz | | DC bias voltage | VBA | 2.25 | 2.5 | 2.75 | V | | | Output high level voltage | VонA | 3.6 | 4 | _ | V | Ioa=0.5mA | | Output low level voltage | VolA | _ | 0.9 | 1.3 | V | Ioa=0.5mA | | Input voltage | Vab | 1.5 | _ | 3.8 | V | | | ⟨Schmitt trigger amplifier⟩ | | | | | | | | Hysteresis width | Vhys | ±115 | ±155 | ±195 | mV | | | DC bias voltage | V _{Bhys} | 2.25 | 2.5 | 2.75 | V | | | Output low level voltage | Volhys | _ | 100 | 320 | mV | lo _{Lhys} =2mA | ^{*} Specifications are subject to change without notice. ONot designed for radiation resistance. # Circuit operation (1) Pseudo-linear output and torque ripple cancellation The IC generates a trapezoidal (pseudo-linear) output current, whose waveform phase is 30 degrees ahead of that of the hall input voltage (Fig. 1). #### (2) Torque control The output current can be controlled by adjusting the voltage applied to the torque control pins. The pins are the inputs to a differential amplifier. A reference voltage between 2. 3-3. 0V (2.5 V recommended) is applied to pin 11. A brake is applied to the motor when the brake pin (3 pin) is put to LOW. The brake mode is activated when the brake pin voltage is 0.7V or less and deactivated when the voltage is 2.0V or more. # (3) Output current sensing and torque limitation The RNF pin (7 pin) is the ground pin for the output stage. To sense the output current, a resistor (0.5 Ω recommended) is connected between pin 7 and the ground. The output current is sensed by applying the voltage developed across this resistor to the TL amplifier input as a feedback. The output current can be limited by adjusting the voltage applied to pin 12. The current is limited when pin 12 reaches the same potential as pin 7. The output current (IMAX.) under this condition is given by: $$I_{MAX.=} \frac{V_{TL} - (TL - R_{NF} \text{ offset})}{R_{RNF}}$$ where R_{RNF} is the value of the resistor connected between the R_{NF} pin and the ground, and V_{TL} is the voltage applied to the TL pin. #### (4) Motor direction control (ED / S pin) The motor mode is: Forward when the ED / S-pin voltage is less than 2.2V, Reverse when the voltage is above 2.8V. ### (5) Output transistor saturation prevention circuit This circuit monitors the output voltage and maintains the operation of the output transistors below their saturation levels. Operating the transistors in the linear characteristic range provides good control over a wide range of current and good torque characteristics even during overloading. Output low level voltage Output saturation voltage RNF pin voltage 800mA Output current # (6) Ripple cancellation circuit The torque ripple cancellation ratio can be adjusted by an external resistor connected to pin 1. Select a suitable value by taking wow and flutter into consideration. #### (7) Brake pin The brake pin threshold depends on the chip temperature as shown in Fig. 5. Make sure that your application will work properly when using the IC at low or high temperatures. ig.5 Brake pin threshold vs. chip temperature #### Operation notes #### (1) Thermal shutdown circuit The BA6446FP / FM has a thermal shutdown circuit to protect the IC. The shutdown temperatures is 175°C (typical) with a hysteresis width of 45°C (typical). When the circuit is activated due to an increase in the chip temperature, the output pins (pins 5, 6, and 9) are set to the open state. The circuit is functional against excessive power dissipation, output short-circuiting, and other irregularities in the output current, but does not work against overheating caused by high internal currents due to externally caused IC damage or pin-to-pin short-circuiting. #### (2) Brake circuit The brake circuit has temperature-dependent thresholds as shown in Fig. 5. Make sure that your application will work properly when using the IC at low or high temperatures. (3) Be sure to connect the radiation fins to the ground. #### (4) Hall input The Hall input circuit is described in (7) of "I / O equivalent circuits." Hall devices can be connected in either series or parallel. Be sure to keep the Hall input within the range of 1.5V to (Vcc - 1.8V). #### (5) FG amplifier Note that unpredictable outputs may occur when the FG amplifier input is outside the recommended range. # (6) ECGND pin (4 pin) Pin 4, a torque amplifier ground pin, should be connected to the ground. By connecting this pin to a point close to the motor ground, you can prevent the effect of GND common impedance on the current-sensing resistor (0.5 Ω recommended) connected between R_{NF} (pin 7) and the motor ground pin. #### Electrical characteristic curves Fig.7 R_{NF}-pin voltage vs. Ec-pin voltage Fig.8 Output low level voltage vs. output current Fig.9 Output high level voltage vs. output current Fig.10 TL-RNF offset voltage vs. TL voltage Fig.11 Temperature dependence of power dissipation (BA6446FP) Fig.12 Temperature dependence of power dissipation (BA6446FM) # External dimensions (Units: mm)