4-channel BTL driver for CD players BA6392FP

The BA6392FP is a 4-channel BTL driver for CD player motors and actuators. It has an internal primary filter, and can be directly connected (without attached components) to the servo PWM output of all drivers other than the spindle driver. The BA6392FP is pin compatible with the BA6297AFP.

Applications

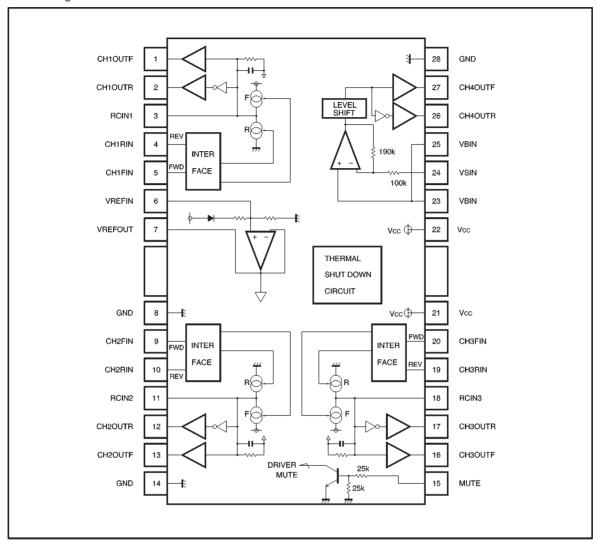
CD players, CD-ROM drives

Features

- HSOP 28-pin package allows for miniaturization of applications.
- 2) PWM input is filtered by the internal primary filter, eliminating the need for attached resistors and capacitors, thereby helping reduce the number of components. Resistor and capacitor time constants can also be changed with attached components.
- 3) Internal thermal shutdown circuit.
- 4) Internal mute circuit.

●Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Power dissipation	Pd	1.7*1	w
Operating temperature	Topr	-30~+85	°C
Storage temperature	Tstg	−55∼ +150	C


^{*1} Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C. When mounted on a 50 \times 50 \times 1.0 mm phenol paper PCB.

• Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	6~16 ^{*2}	V

^{*2} Set the power supply voltage according to power dissipation.

Block diagram

Pin descriptions

Pin No.	Pin name	Function			
1	CH1OUT F	Driver channel 1 forward output			
2	CH1OUT R	Driver channel 1 reverse output			
3	RC IN1	Connect to attached resistor/capacitor (1)			
4	CH1 RIN	Driver channel 1 reverse input			
5	CH1 FIN	Driver channel 1 forward input			
6	VREF IN	Internal reference amplifier input			
7	VREF OUT	Internal reference amplifier output			
8	GND	Ground for internal reference and internal power circuit			
9	CH2 FIN	Driver channel 2 forward input			
10	CH2 RIN	Driver channel 2 reverse input			
11	RC IN2	Connect to attached resistor/capacitor (2)			
12	CH2OUT R	Driver channel 2 reverse output			
13	CH2OUT F	Driver channel 2 forward output			
14	GND	Ground			
15	MUTE	Driver mute control input			
16	CH3OUT F	Driver channel 3 forward output			
17	CH3OUT R	Driver channel 3 reverse output			
18	RC IN3	Connect to attached resistor/capacitor (3)			
19	CH3 RIN	Driver channel 3 reverse input			
20	CH3 FIN	Driver channel 3 forward input			
21	Vcc	Power supply			
22	Vcc	Power supply			
23	VBIN	Driver channel 4 bias input*			
24	VSIN	Driver channel 4 input			
25	VBIN	Driver channel 4 bias input*			
26	CH4OUT R	Driver channel 4 reverse output			
27	CH4OUT F	Driver channel 4 forward output			
28	GND	Ground			

^{*} Pin 23 and pin 25 are shorted internally.

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 8V, f = 1kHz, RL = 8Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current	lα	8	13	18	mA	No load
Bias pin voltage	VBIAS	3.40	3.70	4.00	V	
Bias pin voltage variance	ΔVBIAS	-30	_	30	mV	1 mA Source, sink
Mute-off voltage	VMON	2.0	_	_	V	
Mute-on voltage	VMOFF	_	_	0.5	V	
⟨Drivers (other than spindle⟩						
Input high level voltage	Viн	2.4	_	_	V	
Input low level voltage	VIL	_	_	0.5	V	
Input high level current	Іін	170	310	450	μΑ	V _{IN} =5V
Input low level current	lıL	-10	_	0	μΑ	V _{IN} =0V
Output voltage, offset	Voo	-30	_	30	mV	(same for spindle)
Output high level voltage	Vонd	5.2	5.6	_	V	Fin=5V, Rin=0V
Output low level voltage	V _{OLD}	_	1.3	1.6	V	Fin=0V, Rin=5V
Constant current	Iconst	14	22	30	μΑ	
Internal integral capacitance	С	_	24	_	pF	
Current pulse rise time 1	Δtr	_	0.08	1	μS	At startup
Current pulse fall time 2	∆tf	_	0.55	1	μS	At shutdown
Current pulse time differential	∆tr−f	-160	_	160	μs	
Drive linearity	LIN	90	100	110	%	VIN=VREF±0.5, 1, 1.5V*1
Ripple rejection	RR	_	70	_	dB	V _{IN} =100mV _{rms} , 100Hz
⟨Spindle driver⟩						
Input bias current	lв	_	10	300	nA	
Synchronous input voltage	Vicм	1.6	_	6.4	V	
Max. output voltage high	Vонв	5.2	5.6	_	V	
Max. output voltage low	Vold	_	1.3	1.55	٧	
Voltage gain	Gvc	8.0	10.5	13.0	dB	
Slew rate	SR	_	2	_	V/μs	
Ripple rejection	RRs	_	70	_	dB	V _{IN} =100mV _{rms} , 100Hz

O Not designed for radiation resistance.

^{*1} If Vo = V01 when V_{IN} = VREF ± 0.5 V, Vo = Vo2 when V_{IN} = VREF ± 1.0 V, and Vo = V3 when V_{IN} = VREF ± 1.5 V, then L_{IN} = (Vo3 - Vo2)/(Vo2 - Vo1) \times 100%.

Input / output circuits

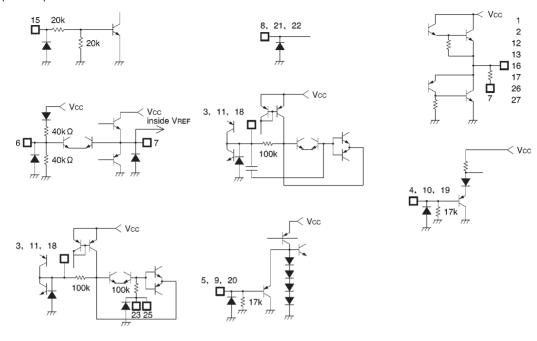


Fig. 1

Circuit operation

(1) Fig. 3 shows the inputs from the digital servo IC for CH1-CH3 drivers (all drivers except the spindle).

SW1 is on when the forward input signal (HIGH level, over 2.4V) is present. SW2 is on when the reverse input signal is present (Fig. 2)

The constant current (I_1) at this time enters the RC and generates an integral waveform based on the duty of the input waveform. The BTL is output from BUF1 and BUF2 (Fig. 4).

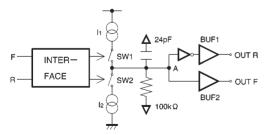
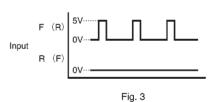



Fig. 2

To maintain the HIGH level with forward (or reverse) input, the DC voltage generated at point A is:

$$I_1 \times R = 2.5V \text{ (reverse : } -2.5V\text{)}$$

This is the voltage generated relative V_{REF} . The setting is such that a voltage differential of 5V is generated between output pins. The time constant is:

$$R \times C = 2.4 \mu sec$$

This can be increased by inserting a capacitor between point A (pins 3, 11 and 18) and V_{REF} . The constant current (Iconst) given in the electrical characteristics refers to I_1 and I_2 in Fig. 2.

F	R	SW1	SW2
L	L	OFF	OFF
L	Н	OFF	ON
Н	L	ON	OFF
Н	Н	OFF	OFF

H • • • 2.4V Max.

L··· 0.5V Min.

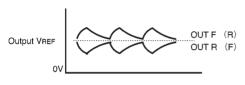


Fig. 4

(2) CH4 driver (spindle driver)

Pins 23 and 25 are shorted inside the IC. Bias amplitudes are the primary type of inputs assumed. The level shift circuit converts the pre-stage amplifier output (centered on the bias level and impressed on pins 23 and 25) to positive and negative amplitudes centered on VREF. The level shift circuit's output is BTL-output from the buffer amplifier.

Because of the high input impedance, the IC is designed to accommodate a filter comprising attached resistors and capacitors.

(Example) For secondary filters

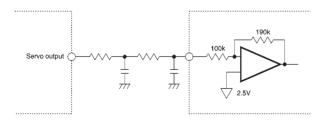


Fig. 5

Operation notes

- (1) The BA6392FP has an internal thermal shutdown circuit. Output current is muted when the chip temperature exceeds 180°C (typically).
- (2) The output current can also be muted by lowering the mute pin (pin 15) voltage below 0.5V.
- (3) All four driver output channels are muted during thermal shutdown, muting and a drop in bias pin voltage. No other components are muted.

Electrical characteristics curves

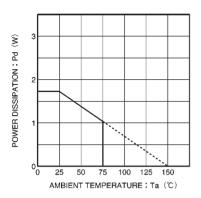


Fig. 6 Thermal derating curve

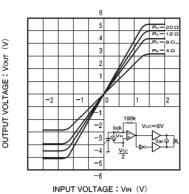


Fig. 7 Spindle driver (CH4) I / O characteristics

(load variation)

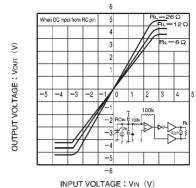
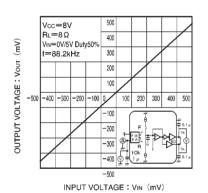
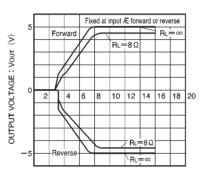
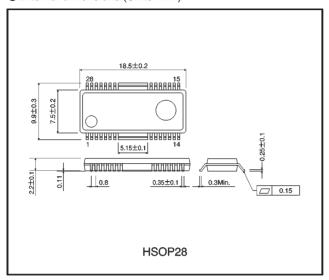


Fig. 8 I / O characteristics of driver

stages CH1-CH3


Fig. 9 I / O characteristics with pulse input (drivers CH1-CH3)

POWER SUPPLY VOLTAGE: Vcc (V)

Fig. 10 Driver CH1-CH3 power supply voltage vs. output voltage

●External dimensions (Units: mm)

