Optical disc ICs

Preservo amplifier for CD players BA6387K

The BA6387K is a preservo amplifier for CD players. By using this paired with a ROHM DSP, a servo and main signal system can be configured with few external components and low power consumption.

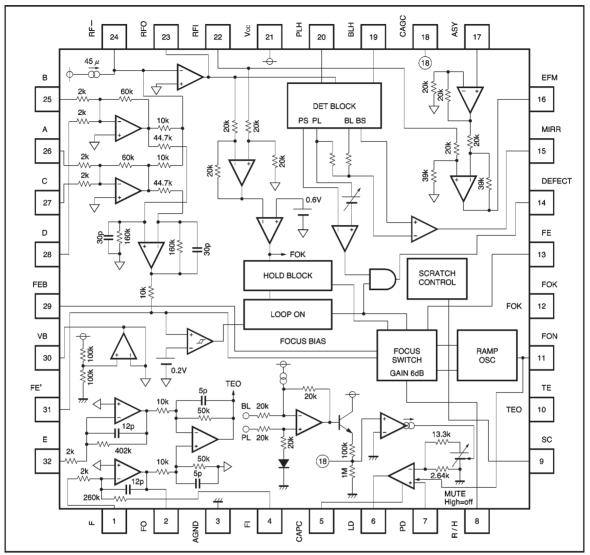
ApplicationsCD players

Features

- 1) Internal RF and AGC circuits.
- 2) Internal APC circuit.
- 3) Internal auto asymmetry circuit.

- 4) Internal disc defect detector.
- 5) Internal focus protect function against disc defects.

• Absolute maximum ratings (Ta = 25° C)


Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	9	V
Power dissipation	Pd	400*	mW
Operating temperature	Topr	-25~+75	Ĵ
Storage temperature	Tstg	-55~+125	Ĉ

* Reduced by 4mW for each increase in Ta of 1℃ over 25℃.

• Recommended operating conditions (Ta = 25° C)

Parameter Symbol		Limits	Unit
Power supply voltage	Vcc	2.5~5.5	V

Block diagram

Pin descriptions

Pin No.	Pin name	Function
1	F	F input
2	FO	F output
3	AGND	Analog GND
4	FI	F gain adjustment feedback
5	CAPC	For capacitor for APC phase compensation
6	LD	APC amplifier output
7	PD	APC amplifier input
8	R/H	For capacitor for ramp wave/ loop off
9	SC	For resistor for scratch depth adjustment
10	TE	Tracking error output
11	FON	Focus on control
12	FOK	Focus OK comparator output
13	FE	Focus error output 1
14	DEFECT	Defect signal output
15	MIRR	Mirror signal output
16	EFM	EFM signal output

Pin No.	Pin name	Function
17	ASY	Auto-asymmetry control input
18	CAGC	For capacitor for AGC constant
19	BLH	For capacitor for bottom long
20	PLH	For capacitor for peak long
21	Vcc	Power supply
22	RFI	RF output capacity coupling reinput
23	RFO	RF summing amplifier output
24	RF-	RF summing amplifier feedback input
25	В	B input
26	A	A input
27	С	C input
28	D	D input
29	FEB	Focus error bias input
30	VB	Bias amplifier output
31	FE'	Focus error output 2
32	E	E input

Optical disc ICs

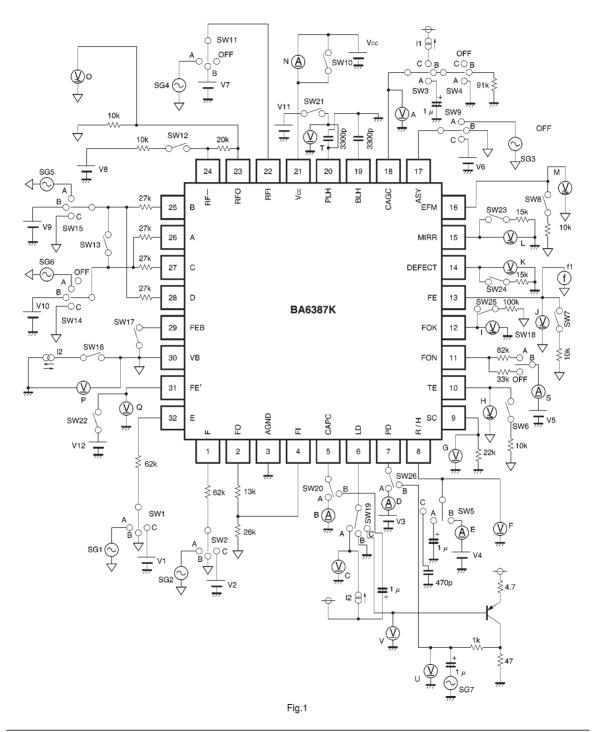
•Electrical characteristics (unless otherwise noted, $Ta = 25^{\circ}C$ and $V_{CC} = 2.5V$)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Quiescent current	la	-	8.7	12.7	mA	_	
(Bias amplifier)						·	
Bias voltage	Vв	1.12	1.25	1.38	V	_	
Maximum output high level voltage	Іон	3.0	-	_	mA	Bias fluctuation below 200mV	
Maximum output low level voltage	lol	3.0	-	_	mA	Bias fluctuation below 200mV	
<pre></pre>							
Output offset voltage	VOFRF	-1.02	-0.90	-0.78	V		2
Voltage gain	Grf	21.0	24.0	27.0	dB	V8=0.8V, SG5=30mV _{P-P} , 1kHz	
Maximum output high level amplitude	VOHRF	0.90	1.10	-	V	Simultaneous AC and BD input	
Maximum output low level amplitude	VOLRF	-	-1.10	-0.90	V	V9=V _B +0.25V, V _B −0.05V	,
Cutoff frequency	FCRF	_	6	_	MHz	—3dB point	
〈FE amplifier〉				1		·	
Output offset voltage	Voffe	-80	0	80	mV		×
Voltage gain AC	GFEAC	26	29	32	dB	SG5=30mV _{P-P} , 1kHz	
Voltage gain BD	GFEBD	26	29	32	dB	SG6=30mV _{P-P} , 1kHz	
Voltage gain difference	ΔG_{FE}	-3	0	3	dB	-	
Maximum output high level amplitude	VOHFE	0.90	1.10	_	V	Measurement with AC and BD input	
Maximum output low level amplitude	VOLFE	-	-1.10	-0.90	V	V9 (V10) =V _B ±0.15V	;
Frequency characteristics	FCFE	19	22	25	dB	SG5 (SG6) =60mV _{P-P} , 60kHz	
(TE amplifier)							
Output offset voltage	Vofte	-80	0	80	mV		2
Voltage gain E	GTEE	27	30	33	dB	SG1=30mV _{P-P} , 1kHz	
Voltage gain F	GTEF	27	30	33	dB	SG2=30mV _{P-P} , 1kHz	
Voltage gain difference	ΔGTE	-3	0	3	dB	-	
Maximum output high level amplitude	VOHTE	0.90	1.10	_	V	V1=V _B +0.1V	×
Maximum output low level amplitude	Volte	-	-1.10	-0.90	V	V2=V _B +0.1V	,
Frequency characteristics	FCTE	19	22	25	dB	SG1 (SG2) =60mV _{P-P} , 60kHz	-
(FOK comparator)						Input pin 22	
Threshold voltage	VTHFK	-0.42	-0.30	-0.18	V		×
Output high level voltage	Vohek	2.0	-	-	V	V7=V _B -0.42V	
Output low level voltage	Volfk	-	-	0.5	V	V7=VB-0.18V	
Maximum operating frequency	Fmxfk	45	-	_	kHz	_	
<pre>Asymmetry amplifier></pre>							
Output offset voltage	Vofas	-60	-	60	mV		;
Voltage gain 1	GIAS	3	6	9	dB	Input pin 22, 80mVP-P, 1kHz	
Voltage gain 2	G2AS	8.5	11.5	14.5	dB	Input pin 17, 80mVP-P, 1kHz	
Maximum output high level amplitude	Vohas	0.90	1.10	-	V	V7=V _B ±0.8	
Maximum output low level amplitude	Volas	_	-1.10	-0.90	V	V6=V _B ±0.4	×

Optical disc ICs

BA6387K

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
(APC)	-,		.,,			
Output voltage 1	V01AP	1.90	2.30	_	v	230mV input at pin 7
Output voltage 2	V02AP	-	1.0	1.4	v	170mV input at pin 7, I2=1mA
Reference voltage	VAPR	190	200	210	mV	_
Frequency characteristics	Fap	-5	-1	3	dB	SG7=40mV _{P-P} , 500Hz
〈AGC〉		1	1			<u> </u>
Reference voltage 1	VAGC1	0	-	100	mV	V8=0.8V, RFO=1.2V _{P-P}
Reference voltage 2	VAGC2	180	195	210	mV	V8=0.8V, RFO=0.7V _{P-P}
Attack time	RATT	70	100	130	kΩ	Macourement of internal D
Recovery time	RRCV	0.7	1.0	1.3	MΩ	Measurement of internal R
(Mirror detector)						
Output high level voltage	VOHMR	2.0	_	-	v	RL=15kΩ
Output low level voltage	VOLMR	-	-	0.5	v	-
Minimum operating frequency	FMNMR	-	-	600	Hz	-
Maximum operating frequency	Fмхмв	30	-	-	kHz	-
Minimum input operating voltage	VMNMR	-	-	0.2	VP-P	-
Maximum input operating voltage	VMXMR	1.2	-	-	VP-P	-
(Defect detector)						
Output high level voltage	VOHDF	2.0	-	-	v	$R_L=15k\Omega$
Output low level voltage	Voldf		-	0.5	v	_
Minimum operating frequency	FMNDF	_	-	1	kHz	_
Maximum operating frequency	FMXDF	2	-	—	kHz	-
Minimum input operating voltage		-	-	0.5	VP-P	_
Maximum input operating voltage	VMXDF	1.2	—	—	VP-P	-
Scratch depth	Vsc	0.13	0.20	0.27	v	_
$\langle Ramp \ wave \ generator \ circuit \rangle$				-		
Period	ISIRA	220	340	460	ms	
High level limit voltage	VLHRA	80	124	168	mV	FEO output value *
Low level limit voltage	VLLRA	-168	-124	-80	mV	
〈FON pin〉						
Inflow current	IFON	10.4	13.5	16.6	μA	_
Input threshold voltage	VTHFO	1.10	1.45	1.80	V	_
〈Loop on unit〉						
Loop off delay time	t OFLO	4.0	6.6	10.0	ms	
$\langle FZC \ comparator angle$						
Input sensitivity level	VFZH	320	400	480	mV	_
Zero cross sensitivity level	Vfzl	120	200	280	mV	


* Standards are with VB reference.

*When FON is LOW, 8 voltage is VB.

*The ramp wave begins at the bottom.

%The loop will not turn on when the ramp wave is at the bottom.

 $\% \rm Pin$ 8 is charged rapidly when the loop turns on.

●Circuit operation

(1) RF amplifier, FOK comparator + \sim 20k 0.01 µ (24 23 22 45 µ . ăŚ \forall 10k ~~~ 10k \sim 20k 60k (25 $\Lambda \Lambda \Lambda$ 2k ăŚ Śğ (28 $\sqrt{\sqrt{2}}$ 2k \bigtriangledown \sim 60k (26 \sim 12 2k (27 \sim 0.6V 2k ∇

Fig.2 RF and FOK block

RFO is shifted downwards from V_B by 0.9V. However, the resistance between pins 23 and 24 is set to $20k\Omega$ and if this resistance is changed use external components to adjust the shift back to 0.9V. Have the feedback resistance $10k\Omega$ or greater. If the DC component of RF rises 0.3V, then FOK becomes high.

(2) FE amplifier and focus search

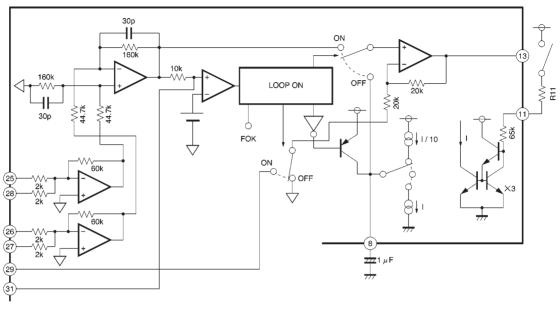
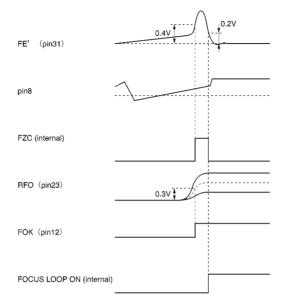


Fig.3 Focus error block

The voltage for focus search is obtained by the charging and discharging of the capacitor attached to pin 8. The charging current is I/10 and the discharging current is I. The FEO output amplitude (VSERCH) at this time is determined by the formula given below.

 $V_{\text{SERCH}} = \pm I \times 15 k\Omega \times 2 (V_{\text{B}} \text{ reference})$

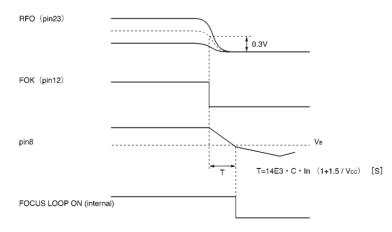
Moreover, from Fig.3, I can be approximated by the formula given below.


$$I = \frac{V_{cc} - 1.4}{65k + R11} \times \frac{1}{3}$$

Set R11 so that I becomes $2\mu A$ or greater. Apply biasing to the focus error signal from pin 29. If no adjustment occurs, pin $29 = V_B$.

The timing charts when the focus loop turns ON or OFF are given on the next page.

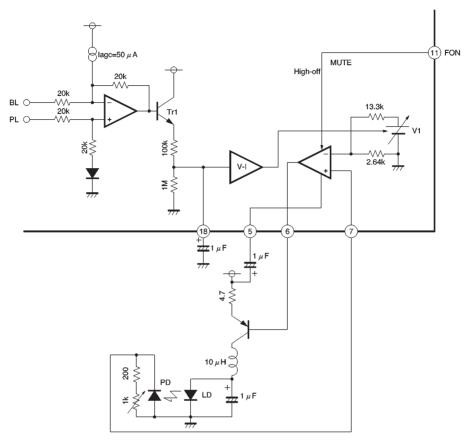
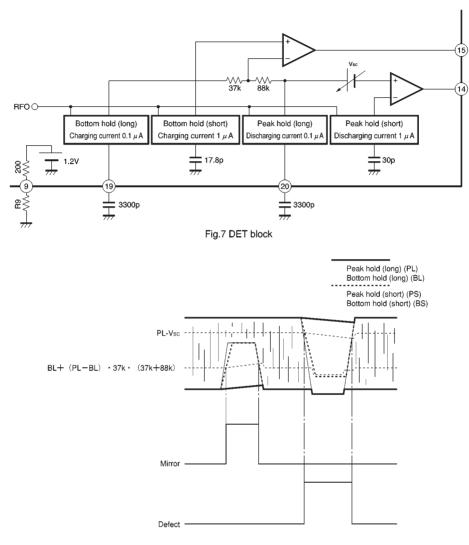
1) LOOP ON timing

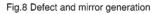

When FOK turns high, the fall of FE' is detected and the FOCUS LOOP turns ON.

2) LOOP OFF timing

After FOK turns low, the FOCUS LOOP turns OFF after the delay T (s) shown in the figure below.

(3) APC block and AGC block


Fig.6 APC and AGC blocks

The initial setting for V1 is 1.2V. When PL-BL (the RF AC amplitude) exceeds a certain value (V_{AGC}), then AGC lowers V1 and suppresses the laser power. The value of V_{AGC} is (50 μ A \times 20k) = 1V.

When defect turns high, Tr1 turns OFF. When FON (pin 11) is low, the LD output (pin 6) becomes high.

(4) DET block

When defect is high, the bottom hold (long) charging current is 50μ A. The scratch depth (Vsc) can be adjusted by changing the resistance at pin 9.

$$V_{SC} = \frac{1.2}{R9 + 200} \times 4k$$

The peak hold voltage will not go below (GND + 0.9V) and the bottom hold voltage will not go below (Vcc - 0.9V).

Application example

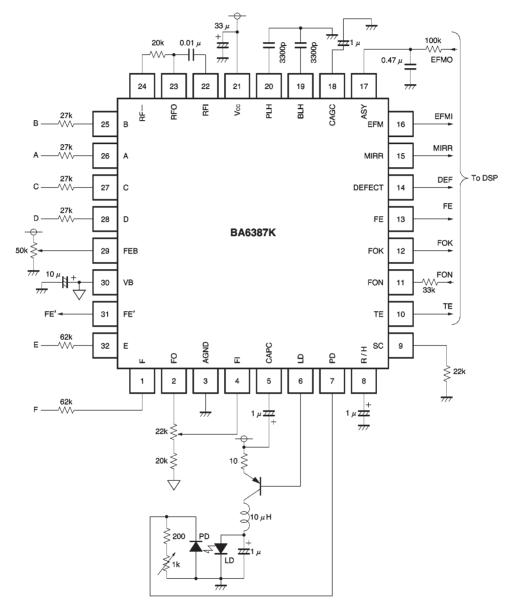
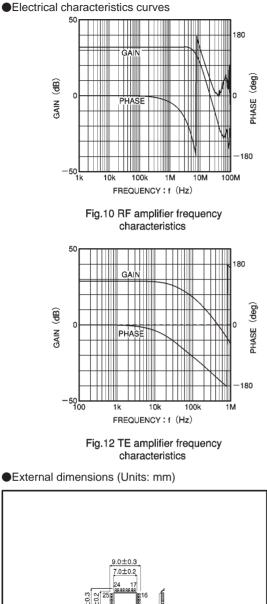



Fig.9

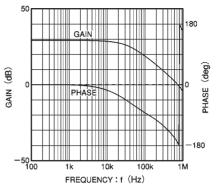
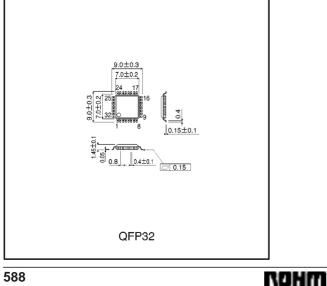



Fig.11 FE amplifier frequency characteristics

