LED level meter driver, 5-point, VU scale

BA6137

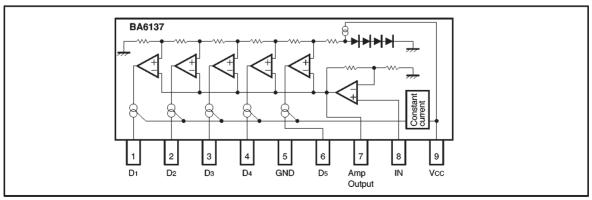
The BA6137 is a driver IC for LED VU level meters in stereo equipment and other display applications. The IC displays the input level (range: -10dB to +6dB) on a 5-point, bar-type LED display.

The BA6137 includes a rectifier amplifier allowing direct AC input, and has constant-current outputs, so it can directly drive the LEDs without variations in LED current due to power supply voltage fluctuations.

Applications

VU meters, signal meters, and other display devices.

Features


- 1) Rectifier amplifier allows either AC or DC input.
- Constant-current outputs for constant LED current when the power supply voltage fluctuates.
- Current output is optimized for red LEDs, for low power dissipation.
- 4) Built-in reference voltage means that power supply voltage fluctuations do not effect the display.
- 5) Wide operating power supply voltage range (3.5V to 16V) for a wide range of applications.
- Low PCB space requirements. Comes in a compact 9-pin SIP package and requires few attached components.

● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Power dissipation	Pd	800*	mW
Operating temperature	Topr	−25~ +60	°C
Storage temperature	Tstg	−55∼+125	C
Junction temperature	Tj	150	°C

^{*} Reduced by 6.4mW for each increase in Ta of 1°C over 25°C.

Block diagram

Audio ICs BA6137

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 6.0V, and f = 1kHz)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Power supply voltage	Vcc	3.5	6	16	V	_
Quiescent current	lα	_	5	8	mA	V _{IN} =0V
Comparator level 1	V _{C1}	-11.5	-10	-8.5	dB	_
Comparator level 2	V _{C2}	-6	- 5	-4	dB	_
Comparator level 3	Vcз	_	0	_	dB	Adjustment point
Comparator level 4	Vc4	2.5	3	3.5	dB	_
Comparator level 5	V _{C5}	5	6	7	dB	_
Sensitivity	Vin	74	85	96	mV _{rms}	Vc3 on level
LED current	ILED	5	7	9.5	mA	_
Input bias current	lino	_	0.3	1.0	μΑ	_

Measurement circuit

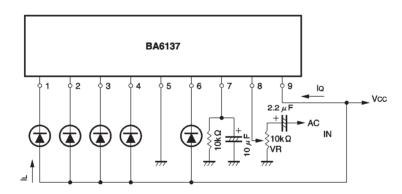
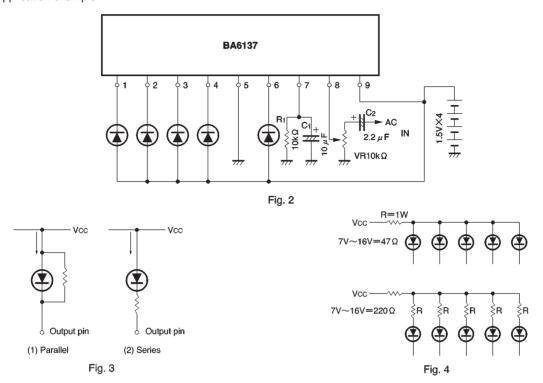
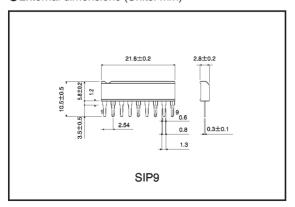



Fig. 1

Audio ICs BA6137

Application example



The response time (attack and release time) can be changed by varying the values of C_1 and R_1 to change the time constant.

 C_2 is a coupling capacitor, and VR varies the input level. Input the desired fixed voltage and adjust VR so that the LED lights at 0dB.

To reduce the LED current, connect a resistor either in

External dimensions (Units: mm)

parallel (Fig. 3 (1)) or in series (Fig. 3 (2)) with the LED. If a resistor is connected in series with the LED, the LED current will change if the supply voltage fluctuates.

Note: If the power supply voltage exceeds 9V, insert a resistor in series with the LED current supply line, or connect a heat sink so that the maximum power dissipation Pd Max. is not exceeded (see Fig. 4).