Headphone driver for portable CD players BA3571F / BA3571FS

The BA3571F and BA3571FS are headphone drivers designed for portable CD players. An oscillation damper is not needed at the headphone output, minimizing external components. Includes a bass boost circuit which enables setting of the bass boost with external components.

ApplicationsPortable CD players

Features

- 1) An external oscillation damper is not needed.
- 2) Includes a bass boost circuit making it possible to set the bass boost with attached components.

● Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit
Power supply voltage		Vcc	5.5	٧
Power dissipation	BA3571FS	Dd	750*1	m\\/
	BA3571F	- Pd	550* ²	mW
Operating temperature		Topr	−25~+75	Ç
Storage temperature		Tstg	−55∼ +125	Ç

^{*1} Reduced by 7.5mW for each increase in Ta of 1°C over 25°C.

■Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	2.0	_	5.5	٧

^{*2} Reduced by 5.5mW for each increase in Ta of 1°C over 25°C.

●Block diagram

Electrical characteristics

(unless otherwise noted, Ta = 25° C, Vcc = 3V, R_L = 16Ω , and f = 1kHz; measurement circuit shown in Fig 1)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current	lα	_	9	18	mA	V _{IN} =0V _{rms}
Voltage gain 1	G _{V1}	13.5	15	16.5	dB	BB=OFF
Voltage gain 2	G _{V2}	11.5	13	14.5	dB	BB=ON
Rated output power	Роит	20	30	_	mW	THD=10%
Total harmonic distortion	THD	_	0.15	1.0	%	V _O =-16dBm
Channel balance	СВ	-1.5	0	1.5	dB	V _O =-16dBm
Output noise voltage 1	V _{NO1}	_	-92	-88	dBm	BB=OFF, IHF-A
Output noise voltage 2	V _{NO2}	_	-88	-84	dBm	BB=ON, IHF-A
Input resistance	Rin	10.8	13.5	16.2	kΩ	
Ripple rejection	RR	23	36	_	dB	f _{RR} =100Hz, V _{RR} =-30dBm, BB=OFF
Boost	BB	4	6	8	dB	f=100Hz, V _{IN} =-36dBm
Channel separation	CS	52	62	_	dB	f=1kHz, BB=OFF

ONot designed for radiation resistance.

Measurement circuit

Fig. 1

Application example

Fig. 2

Electrical characteristic curve

Fig. 3 Voltage gain vs. frequency

External dimensions (Units: mm)

