# **AN960**

# Equalization of DTMF Signals Using the MC34014

by Scott Bader and Dennis Morgan Bipolar Analog IC Division

#### INTRODUCTION

This application note will describe how to obtain equalization (line length compensation) of the DTMF dialing tones using the MC34014 speech network. While the MC34014 does not have an internal dialer, it has the interface for a dialer so as to provide the means for putting the DTMF tones onto the Tip & Ring lines. The Equalization amplifier, whose gain varies with loop current, was meant primarily to equalize the speech signals. However, by adding one resistor, it can be used to equalize the DTMF signals as well.

## CIRCUIT DESCRIPTION

Referring to Figure 1, the gain of the equalization amplifier varies with loop current as it is a function of the voltage at the LR pin (Pin 13). The gain varies from a minimum of –12 dB at low loop currents (long line), to –2.5 dB at high loop currents (short line). The output at EQ (Pin 6) is in phase with the signals going out onto Tip & Ring, but is out of phase with the DTMF input signals from the dialer at R7 (see Figure 2). Because of the out-of-phase relationship, the signal at EQ can be used to partially cancel the signals at the Tone Input (Pin 16). The addition of resistor R10 provides the path for this function, with the result that the DTMF gain increases as loop current decreases.



Figure 1. Equalization Amplifier Gain

Because the addition of R10 cancels some of the signal going into Pin 16, resistor R7 must be decreased in order to restore the overall gain from the dialer to Tip & Ring.

The DTMF gain values indicated in Figures 3 and 4 is the gain from the tone dialer (input at R7) to the Tip & Ring lines terminated with a 600 ohm resistor. Figure 3 indicates the gain CHANGE (as the loop current is varied from 60 to 20 mA) versus different values of R10. The gain change is a function of R10, and independent of R7. Figure 4 indicates the DTMF gain versus R7 for different values of R10 at a loop current of 20 mA.

Because the typical telephone line is not purely resistive, there will be a phase shift of other than 180° from the DTMF dialer to Tip & Ring in most applications. For this reason, the values of R10 and R7 will have to be adjusted slightly from those in the graphs to compensate for the phase shift.

The MC34014 data sheet mentions that a dc bias current of 20–50  $\mu A$  is required into Pin 16 in order to bias the DTMF amplifier. The addition of R10 will provide the bias current from the EQ output for most applications, in which case it may be desirable to ac couple the dialer to R7 with a 0.5  $\mu F$  capacitor. Excessive bias current will result in clipping of the signals at Tip & Ring. If just the addition of R10 results in excessive bias current, then the EQ output should be ac coupled to R10 with a 0.5  $\mu F$  capacitor, and the bias current supplied either from the dialer or from an additional resistor as shown in Figure 5.

For further information on the MC34014, refer to its' data sheet.



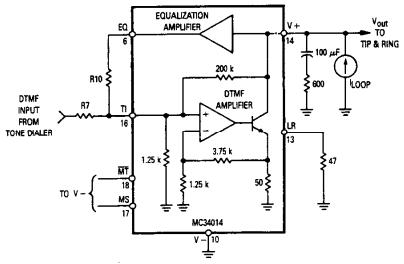
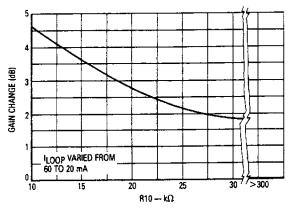




Figure 2. DTMF Driver



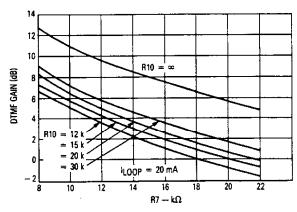



Figure 3. Gain Change

Figure 4. DTMF Gain

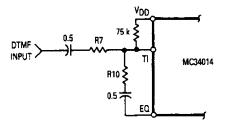



Figure 5. Alternate Biasing

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees anising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Motorola and Poportunity/Affirmative Action Employer.

## Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

