

VB025

HIGH VOLTAGE IGNITION COIL DRIVER POWER IC

TYPE	Vcl	Ici	ld
VB025	380 V	9 A	100 mA

- PRIMARY COIL VOLTAGE INTERNALLY SET
- COIL CURRENT LIMIT INTERNALLY SET
- LOGIC LEVEL COMPATIBLE INPUT
- DRIVING CURRENT QUASI PROPORTIONAL TO COLLECTOR CURRENT
- SINGLE FLAG-ON COIL CURRENT

DESCRIPTION

The VB025 is a high voltage power integrated circuit made using SGS-THOMSON Microelectronics Vertical Intelligent Power Technology, with vertical current flow power darlington and logic level compatible driving circuit. Built-in protection circuits for coil current limiting and collector voltage clamping allows the VB025 to be used as a smart, high voltage, high current interface in advanced electronic ignition systems.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
HVc	Collector Voltage (Internally Limited)	-0.3 to V _{clamp}	V
Ι _C	Collector Current (Internally Limited)	10	A
I _{C(gnd)}	DC Current on Emitter Power	± 10.5 (*)	A
Vcc	Driving Stage Supply Voltage	-0.3 to 7	V
ls	Driving Circuitry Supply Current	± 200	mA
I _{s(gnd)}	DC Current on Ground Pin	± 1	A
Vin	Input Voltage	-0.3 to VCC + 0.3	V
l _{in}	Maximum Input Current	100	mA
f _{in}	Logic Input Frequency in Operative Mode	DC to 100	Hz
V _{out(flag)}	Output Voltage Primary Threshold Current Level	-0.3 to VCC + 0.3	V
I _{out(flag)}	Flag Output Current	100	mA
P _{max}	Power Dissipation (TC = $105 ^{\circ}$ C)	TBD	W
E _{s/b}	Clamped Energy During Output Power Clamping	300	mJ
V _{ESD}	ESD Voltage (HVC Pin)	± 4	K٧
V _{ESD}	ESD Voltage (Other Pins)	± 2	KV
Tj	Operating Junction Temperature	-40 to 150	°C
T _{stg} *) With 10 mils	Storage Temperature Range	-55 to 150	°C

(*) With 10 mils Al wire

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction Case	(MAX)	1.2	°C/W
R _{thj-h}	Thermal Resistance Junction Heatsink with FR4	(MAX)	TBD	°C/W
T _{sold}	Lead Temperature During Soldering	(MAX)	TBD	°C

CONNECTION DIAGRAM

PIN FUNCTION

No	NAME	FUNCTION
1-5	GND	Emitter Power Ground
6	GND	Control Ground (*)
7	Vcc	Logic Supply Voltage
8	BD	Base Darlington
9	INPUT	Logic Input Channel
10	FLAG	Diagnostic Output Signal
TAB	HVC	Primary Coil Output Driver

(*) Pin 6 must be connected to pins 1-5 externally

ELECTRICAL CHARACTERISTICS $(5.3V < V_b < 24V; V_{CC} = 5 V \pm 5\%; -40^{\circ}C < T_j < 125^{\circ}C;$ R_{coil} = 580 m Ω ; L_{coil} = 3.75 mH; unless otherwise specified; see note 1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{cl}	High Voltage Clamp	$I_{coil} = 6.5 \text{ A}$	340	380	460	V
$V_{ce(sat)}$	Saturation Voltage of The Power Stage	$I_c = 6.5A;$ $V_{in} = 4V$		1.5	2	V
I _{d(stdby)}	Stand-by Supply Current	IN = OFF			10	mA
Icc	DC Logic Current	$V_b = 16 V$ $I_c = 6.5 A f = 100 Hz$ Load = Coil $V_{CC} = 5.5V$			40	mA
I _{CC(peak)}	Peak DC Logic Current During On Phase	$I_c = 6.5 A$ (see Figure 1)		100	150	mA
V _{CC}	DC Logic Voltage		4.5		5.5	V
Icl	Coil Current Limit	$25^{\circ}C < T_j < 125^{\circ}C$ (see note 2)	8		9.5	А
Ici	Coil Current Limit	$-40^{\circ}C < T_{j} < 25^{\circ}C$ (see note 2)	8		10	А
I _{c(leak)}	Output leakage Current	IN = OFF V _{HVC} = 24V			0.8	mA
T _{shdw}	Thermal Temperature Output Current Control	OUT = ON	150		(*)	°C
$V_{\text{in}H}$	High Level Input Voltage		4		Vcc	V

57

Symbol Parameter		Test Conditions	Min.	Тур.	Max.	Unit
VinL	Low Level Input Voltage		-0.3		0.8	V
Vin(hys)	Input Threshold Hysteresis		0.4			V
l _{inH}	High Level Input Current	V _{in} = 4 V			100	μA
l _{inL}	Low Level Input Current	V _{in} = 0.8 V			-100	μA
l _{inpd}	Input Active Pull-Down	V _{in} = 4 V	10		100	μA
V_{diagH}	High Level Flag Output Voltage	$ \begin{array}{ll} R_{EXT} = 22 \; K\Omega & C_{EXT} = 1 \; nF \\ (\text{see note 3}) \end{array} $	V _{CC} -1		Vcc	V
V_{diagL}	Low Level Flag Output Voltage	$ \begin{array}{l} R_{EXT} = 22 \; K\Omega C_{EXT} = 1 \; nF \\ (\text{see note } 3) \end{array} $			0.5	V
I _{diagTH}	Coil Current Level Threshold	$T_j = 25^{\circ}C$	4.25	4.5	4.75	A
I _{diagTD}	Coil Current Level Threshold Drift	(see figure 2)				
I _{diag}	High Level Flag Output Current	$I_{C} > I_{diagTH}$	0.5			mA
I _{diag(leak)}	Leakage Current On Flag Output	V _{in} = LOW			10	μA
VF	Antiparallel Diode Forward Voltage	I _c = -1 A			2	V
E _{s/b}	Single Pulse Avalanche Energy		300			mJ
t _{pHL}	Turn-on Delay Time of Coil Current	$R_{c} = 0.5 \ \Omega$ $L_{c} = 3.75 \text{ mH}$ (see note 4)		TBD		μs
t _{pLH}	Turn-off Delay Time of Coil Current			TBD		μs
$t_{r(diag)}$	Rise Flag Voltage Time	$ \begin{array}{ll} R_{EXT} = 22 \; K\Omega & C_{EXT} = 1 \; nF \\ (\text{see note 5}) \end{array} $		TBD		μs
t _{f(diag)}	Fall Flag Voltage Time	(see note 6)		TBD		μs

ELECTRICAL CHARACTERISTICS (continued)

Note 1: Parametric degradation are allowed with $5.3 < V_b < 10V$ and $V_b > 24V$.

Note 2: The primary coil current value Ic must be measured 1ms after desaturation of the power stage.

Note 3: No Internal Pull-Down

Note 4: Propagation time measured from input voltage rising edge to 50% of output voltage falling edge.

Note 5: Time required to transit from 0V to 3.5V of the flag output voltage

Note 6: R_{EXT} and C_{EXT} dependet

(*) Internally limited

PRINCIPLE OF OPERATION

The VB025 is mainly intended as a high voltage power switch device driven by a logic level input and interfaces directly to a high energy electronic ignition coil.

The input Vin of the VB025 is fed from a low power signal generated by an external controller that determines both dwell time and ignition point. During Vin high (\geq 4V) the VB025 increases current in the coil to the desired, internally set current level.

After reaching this level, the coil current remains constant until the ignition point, that corresponds to the transition of Vin from high to low (typ. 1.9V threshold).

During the coil current switch-off, the primary

Fig. 1 Icc during the ON phase at IouT = 6.5A

voltage HVc is clamped at an internally set value Vcl, typically 380V. The transition from saturation to desaturation, coil

current limiting phase, must have the ability to accomodate an overvoltage. A maximum overshoot of 20V is allowed.

FEEDBACK

When the collector current exceeds 4.5A, the feedback signal is turned high and it remains so, until the input voltage is turned-off.

OVERVOLTAGE

The VB025 can withstand the following transients of the battery line:

 $-100V/2msec(R_{i} = 10 \Omega)$

+100V/0.2msec ($R_i = 10 \Omega$)

+50V/400msec (R_i = 4.2 Ω , with V_{IN} = 3 V)

Fig. 2 Flag Current Versus Temperature

DIM.		mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	3.35		3.65	0.132		0.144		
A1	0.00		0.10	0.000		0.004		
В	0.40		0.60	0.016		0.024		
С	0.35		0.55	0.013		0.022		
D	9.40		9.60	0.370		0.378		
D1	7.40		7.60	0.291		0.300		
E	9.30		9.50	0.366		0.374		
E1	7.20		7.40	0.283		0.291		
E2	7.20		7.60	0.283		0.300		
E3	6.10		6.35	0.240		0.250		
E4	5.90		6.10	0.232		0.240		
е		1.27			0.050			
F	1.25		1.35	0.049		0.053		
Н	13.80		14.40	0.543		0.567		
h		0.50			0.002			
L	1.20		1.80	0.047		0.071		
q		1.70			0.067			

57

6/7

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

 ${\ensuremath{\mathbb C}}$ 1998 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

