UMA1021M

FEATURES

- Low phase noise
- Low current from 3 V supply
- Fully programmable main divider
- 3-line serial interface bus
- Independent fully programmable reference divider, driven from external crystal oscillator
- Dual charge pump outputs
- Hard and soft power-down control.

APPLICATIONS

- 900 MHz and 2 GHz mobile telephones
- Portable battery-powered radio equipment.

GENERAL DESCRIPTION

QUICK REFERENCE DATA

The UMA1021M BICMOS device integrates a prescaler, programmable dividers, and a phase comparator to implement a phase-locked loop.

The device is designed to operate from 3 NiCd cells, in pocket phones, with low current and nominal 5 V supplies.

The synthesizer operates at RF input frequencies up to 2.2 GHz, with a fully programmable reference divider. All divider ratios are supplied via a 3-wire serial programming bus.

Separate power and ground pins are provided to the analog (charge-pump) and digital circuits. The ground leads should be externally short-circuited to prevent large currents flowing across the die and thus causing damage. V_{DD1} and V_{DD2} must also be at the same potential (V_{DD}). V_{CC} must be equal to or greater than V_{DD} (e.g. $V_{DD} = 3 V$ and $V_{CC} = 5 V$ for wider VCO control voltage range).

The phase detector has two charge-pump outputs, CP and CPF, the latter of which is enabled directly at pin FAST. This permits the design of adaptive loops. The charge pump currents (phase detector gain) are fixed by an external resistance at pin I_{SET} and via the serial interface. Only a passive loop filter is necessary; the charge pumps function within a wide voltage compliance range to improve the overall system performance.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD}	digital supply voltage	$V_{DD1} = V_{DD2};$ $V_{CC} \ge V_{DD}$	2.7	_	5.5	V
V _{CC}	charge-pump supply voltage	$V_{CC} \ge V_{DD}$	2.7	_	5.5	V
I _{DD} + I _{CC}	supply current		-	9	_	mA
$I_{CC(pd)} + I_{DD(pd)}$	total supply current in power-down mode		_	5	_	μA
f _{RF}	RF input frequency		300	_	2200	MHz
f _{xtal}	crystal reference input frequency		3	-	35	MHz
f _{PC}	phase comparator frequency		_	200	_	kHz
T _{amb}	operating ambient temperature		-30	_	+85	°C

ORDERING INFORMATION

		PACKAGE				
I TPE NUMBER	NAME	DESCRIPTION	VERSION			
UMA1021M	SSOP20	plastic shrink small outline package; 20 leads; body width 4.4 mm	SOT266-1			

BLOCK DIAGRAM

UMA1021M

PINNING

SYMBOL	PIN	DESCRIPTION
FAST	1	enable input for fast charge-pump output CPF
CPF	2	fast charge-pump output
СР	3	normal charge-pump output
V _{DD2}	4	power supply 2
V _{SS3}	5	ground 3
RFI	6	2 GHz main divider input
V _{SS2}	7	ground 2
POL	8	digital input to select polarity of power-on inputs (PON and sPON): POL = 0 for active low and POL = 1 for active HIGH
PON	9	power-on input
V _{SS1}	10	ground 1
CLK	11	programming bus clock input
DATA	12	programming bus data input
Ē	13	programming bus enable input
V _{DD1}	14	power supply 1
XTALB	15	complementary crystal frequency input from TCXO; if not used should be decoupled to ground
XTALA	16	crystal frequency input from TCXO; if not used should be decoupled to ground
GND(CP)	17	ground for charge-pump
V _{CC}	18	supply for charge-pump
I _{SET}	19	external resistor from this pin to ground sets the charge-pump currents
LOCK	20	out-of-lock detector output

FUNCTIONAL DESCRIPTION

Main divider

The main divider is clocked at pin RFI by the RF signal which is AC-coupled from an external VCO. The divider operates with signal levels from 50 to 225 mV (RMS), and at frequencies from 300 MHz to 2.2 GHz. It consists of a fully programmable bipolar prescaler followed by a CMOS counter. Any divide ratios from 512 to 131071 inclusive can be programmed.

Reference divider

The reference divider is clocked by the differential signal between pins XTALA and XTALB. If only one of these inputs is used, the other should be decoupled to ground. The applied input signal(s) should be AC-coupled. The circuit operates with levels from 50 up to 500 mV (RMS) and at frequencies from 3 to 35 MHz. Any divide ratios from 8 to 2047 inclusive can be programmed.

UMA1021M

Phase detector

The phase detector is driven by the output edges of the main and reference dividers. It produces current pulses at pins CP and CPF whose amplitudes are programmed. The pulse duration is equal to the difference in time of arrival of the edges from the two dividers. If the main divider edge arrives first, CP and CPF sink current. If the reference divider edge arrives first, CP and CPF source current.

The currents at CP and CPF are programmed via the serial bus as multiples of a reference current set by an external resistor connected between pin I_{SET} and V_{SS} (see Table 3). CP remains active except in power-down. CPF is enabled via input pin FAST which is synchronized with respect to the phase detector to prevent output current pulses being interrupted. By appropriate connection to the loop filter, dual bandwidth loops can be designed; short time constant during frequency switching (FAST mode) to speed-up channel changes, and low bandwidth in the settled state to improve noise and breakthrough levels.

Additional circuitry is included to ensure that the gain of the phase detector remains linear even for small phase errors.

Out-of-lock detector

The out-of-lock detector is enabled (disabled) via the serial interface by setting bit OOL HIGH (LOW). Pin LOCK is a digital output with CMOS levels corresponding to the supply voltage. When the out-of-lock detector is enabled, LOCK is HIGH if the error at the phase detector input is less than approximately 25 ns, otherwise LOCK is LOW. If the out-of-lock detector is disabled, LOCK remains HIGH.

Serial programming bus

A simple 3-line unidirectional serial bus is used to program the circuit. The 3 lines are DATA, clock (CLK) and enable (\overline{E}). The data sent to the device is loaded in bursts framed by \overline{E} . Programming clock edges and their appropriate data bits are ignored until \overline{E} goes active LOW. The programmed information is loaded into the addressed latch when \overline{E} returns HIGH. During normal operation, \overline{E} should be kept HIGH. Only the last 21 bits serially clocked into the device are retained within the programming register. Additional leading bits are ignored, and no check is made on the number of clock pulses. The fully static CMOS design uses virtually no current when the bus is inactive. It can always capture new programmed data even during power-down.

UMA1021M

When the synthesizer is powered-on, the presence of a signal at the reference divider input is required for correct programming.

Data format

The leading bits (dt16 to dt0) make up the data field, while the trailing four bits (ad3 to ad0) are the address field. The UMA1021M uses 4 of the 16 available addresses. These are chosen for compatibility with other Philips Semiconductors radio telephone ICs. The data format is shown in Table 1. The first bit entered is dt16, the last bit is ad0. For the divider ratios, the first bits entered (PM16 and PR10) are the most significant (MSB).

The trailing address bits are decoded on the rising edge of \overline{E} . This produces an internal load pulse to store the data in the addressed latch. To avoid erroneous divider ratios, the load pulse is not allowed during data reads by the frequency dividers. This condition is guaranteed by respecting a minimum \overline{E} pulse width after data transfer.

The test register (address 0000) does not normally need to be programmed. However if it is programmed, all bits in the data field should be set to logic 0.

Power-down mode

The synthesizer is on when both the input signals PON and the programmed bit sPON are active. The 'active' level for these two signals is chosen at pin POL (see Table 2). When turned on, the dividers and phase detector are synchronized to avoid random phase errors. When turned off, the phase detector is synchronized to avoid interrupting charge-pump pulses. The UMA1021M has a very low current consumption in the power-down mode.

				0	Z		
TER		dt7	_	Х			
EGIS	2	dt8	note .	X	OEF		
Ľ.	ta fie	dt9	BITS;	CR0	DER C		
	DA	dt10	TEST	CR1	IAIN DIVI		
		dt11		×	Σ		
		dt12		00L ⁽²⁾			
		dt13		Х			
		dt14		Х			
		dt15		×			
First in		dt16		×	PM16 ⁽³⁾		
1995 Sep 27							
	Elist in REGISTER	First in REGISTER DATA FIELD DATA FIELD	First in REGISTER Accession DATA FIELD Data Control dt16 dt14 dt12 dt11 dt10 dt8 dt7	First in REGISTEF Add Size DATA FIELD Data FIELD DATA FIELD dt16 dt14 dt12 dt11 dt10 dt8 dt7 TEST BITS; note 1 TEST BITS; note 1 TEST BITS; note 1 TEST BITS; note 1 TEST BITS; note 1	First in REGISTER dt16 dt15 dt14 dt12 dt11 dt10 dt9 dt8 dt7 X X X X CR1 CR1 CR1 CR1 X		

0

PMO PRO

REFERENCE DIVIDER COEFFICIENT

PR10⁽³⁾

 \times

 \times

 \times

 \times

 \times

 \times

Notes

<u>.</u>-

ю. с.

 \times

 \times

×

 \times

 \times

×

sPON⁽²⁾

gramming	
ower-on pro	
Table 2 F	

The test register (address 0000) should not be programmed with any other values except all zeros for normal operation.

PM16 is the MSB of the main divider coefficient; PR10 is the MSB of the reference divider coefficient.

Bit sPON = software power-up for synthesizer (see Table 2); OOL = Out-Of-Lock (1 = enabled).

COMPATIBILITY	UMA1019M/UMA1019AM	UMA1019M/UMA1019AM	UMA1019M/UMA1019AM	UMA1017M	UMA1017M	UMA1017M
SYNTHESIZER STATE	uo	off	off	flo	off	on
sPON	0	×	÷	Х	0	-
PON	0	1	×	0	×	۲
POL	0	0	0	1	1	-

Fast and normal charge pumps current ratio (note 1) Table 3

IcpF : Icp	4:1	8:1	12:1	16:1
Ісрғ	8 × I _{SET}	$16 \times I_{SET}$	12 × I _{SET}	16 × I _{SET}
lcp	2 × I _{SET}	2 × I _{SET}	1 × I _{SET}	1 × I _{SET}
CRO	0	Ļ	0	~
CR1	0	0	Ţ	-

Note

1. $I_{SET} = \frac{V_{SET}}{R_{SET}}$; reference current for charge pumps.

Objective specification

ado 0

ad1 0 0 0 0

ad2 0 0

ad3 0 0 0 0

dto

dt1

dt2

dt3

dt4

dt5

dt6

GISTER BIT ALLOCATION

ADDRESS

Last in

UMA1021M

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DD}	digital supply voltage	-0.3	+5.5	V
V _{CC}	charge-pump supply voltage	-0.3	+5.5	V
$V_{CC} - V_{DD}$	difference in voltage between V_{CC} and V_{DD}	-0.3	+5.5	V
V _n	voltage at pins 1, 6, 8, 9, 11 to 13 and 20	-0.3	V _{DD} + 0.3	V
	voltage at pins 2, 3, 15, 16, 19	-0.3	V _{CC} + 0.3	V
ΔV_{GND}	difference in voltage between any of GND(CP), V_{SS1} , V_{SS2} , and V_{SS3} (these pins should be connected together)	-0.3	+0.3	V
P _{tot}	total power dissipation	_	150	mW
T _{stg}	storage temperature	-55	+125	°C
T _{amb}	operating ambient temperature	-30	+85	°C
T _{j(max)}	maximum junction temperature	_	150	°C

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT	
R _{th j-a}	thermal resistance from junction to ambient in free air	120	K/W	

Objective specification

UMA1021M

CHARACTERISTICS

All values refer to the typical measurement circuit of Fig.5; V _{DD1} = V _{DD2} = 2.7 to 5.5 V; V _{CC} = 2.7 to 5.5 V; T _{amb} = 25 °C
unless otherwise specified. Characteristics for which only a typical value is given are not tested.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply; pins 4	, 14 and 18					-1
V _{DD}	digital supply voltage	$V_{DD1} = V_{DD2}; V_{CC} \ge V_{DD}$	2.7	-	5.5	V
V _{CC}	charge pump supply voltage	$V_{CC} \ge V_{DD}$	2.7	-	5.5	V
I _{DD1} + I _{DD2}	synthesizer digital supply current	V _{DD} = 5.5 V	-	6.5	9.0	mA
I _{CC}	charge pump supply current	V_{CC} = 5.5 V; R _{SET} = 5.6 kΩ	-	2.5	3.5	mA
$I_{CC(pd)} + I_{DD(pd)}$	total supply current in power-down mode	logic levels 0 V or V_{DD}	-	5	50	μA
RF main divide	er input; pin 6					
f _{RF}	RF input frequency		300	-	2200	MHz
V _{RF(rms)}	AC-coupled input signal level (RMS value)	R _s = 50 Ω	50	-	225	mV
R _m	main divider ratio		512	-	131071	
Zi	input impedance (real part)	f _{RF} = 2 GHz	_	tbf	-	kΩ
C _i	typical pin input capacitance		-	tbf	-	pF
Synthesizer re	ference divider input; pins 15 and	116			•	
f _{xtal}	crystal reference input frequency		3	-	35	MHz
V _{xtal(rms)}	sinusoidal input signal level between pins 15 and 16 (RMS value)		50	-	500	mV
R _{ref}	reference division ratio		8		2047	
Zi	input impedance (real part)	f _{xtal} = 30 MHz	-	tbf	-	kΩ
C _i	typical pin input capacitance		-	tbf	-	pF
Phase detecto	r					
f _{PCmax}	maximum loop comparison frequency		_	2000	-	kHz
Charge pump	current setting resistor input; pin	19				
R _{SET}	external resistor connected between pin 19 and ground		5.6	-	12	kΩ
V _{SET}	regulated voltage at pin 19	R _{SET} = 5.6 kΩ	-	1.15	-	V
Charge pump	outputs; pins 2 and 3; R _{SET} = 5.6	kΩ	-			
I _{ocp(err)}	charge pump output current error	note 1	-25	-	+25	%
I _{match}	sink-to-source current matching		-	±5	-	%
I _{LIcp}	charge pump off leakage current	$V_{CP/CPF} = \frac{1}{2}V_{CC}$	-5	±1	+5	nA

UMA1021M

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
Phase noise		1	-	1				
N ₉₀₀	synthesizer's contribution to close-in phase noise of 900 MHz RF signal at 1 kHz offset	$f_{xtal} = 13 \text{ MHz};$ $V_{xtal} = 0 \text{ dBm};$ $f_{PC} = 200 \text{ kHz}$	-	-83	-	dBc/Hz		
N ₁₈₀₀	synthesizer's contribution to close-in phase noise of 1.8 GHz RF signal at 1 kHz offset	$f_{xtal} = 13 \text{ MHz};$ $V_{xtal} = 0 \text{ dBm};$ $f_{PC} = 200 \text{ kHz}$	-	-77	-	dBc/Hz		
Interface logic	Interface logic input signal levels; pins 1, 8, 9, 11, 12 and 13							
VIH	HIGH level input voltage		0.7V _{DD}	-	V _{DD} + 0.3	V		
V _{IL}	LOW level input voltage		-0.3	_	0.3V _{DD}	V		
I _{bias}	input bias current	logic 1 or logic 0	-5	-	+5	μA		
Ci	input capacitance		-	2	_	pF		
Lock detect ou	ıtput signal; pin 20							
V _{OH}	High level output voltage		0.7V _{DD}	-	-	V		
V _{OL}	Low level output voltage		-	-	0.3V _{DD}	V		
t _{OOL}	phase error threshold for out-of-lock detector		-	25	-	ns		

Note

1. Condition: $0.4 < V_{CP/CPF} < (V_{CC} - 0.4)$.

UMA1021M

Objective specification

SERIAL BUS TIMING CHARACTERISTICS

 $V_{DD} = V_{CC} = 3 \text{ V}; \text{ T}_{amb} = 25 \text{ °C}; \text{ unless otherwise specified.}$

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Serial programming clock; CLK					
t _r	input rise time	-	10	40	ns
t _f	input fall time	-	10	40	ns
T _{cy}	clock period	100	-	_	ns
Enable programming; E					
t _{START}	delay to rising clock edge	40	-	_	ns
t _{END}	delay from last falling clock edge	-20	-	_	ns
t _W	minimum inactive pulse width	4000 ⁽¹⁾	-	_	ns
t _{SU;Ē}	enable set-up time to next clock edge	20	-	-	ns
Register serial input data; DATA					
t _{SU;DAT}	input data to clock set-up time	20	-	_	ns
t _{HD;DAT}	input data to clock hold time	20	-	_	ns

Note

1. The minimum pulse width (t_W) can be smaller than 4 µs provided all the following conditions are satisfied:

- a) Main divider input frequency $f_{RF} > \frac{447}{t_W}$
- b) Reference divider input frequency $f_{XTAL} > \frac{3}{t_w}$

APPLICATION INFORMATION

UMA1021M

UMA1021M

Low-voltage frequency synthesizer for radio telephones

positive supply positive supply 20 1 12 Ω (1) 5.6 kΩ 12 Ω 12 Ω 12 Ω 2 19 100 nF (1) 3 (1) 18 (1) 12 Ω 100 nF 100 nF (1) 4 17 1 nF 100 nF 7/7 control 7/7 Vcc fosc VTCXO 5 16 ╢ RF VCO 1 nF 18 Ω 1 nF UMA1021M 18 Ω out 6 15 GND Vcont ╢ łŀ 56 Ω ╈ 1 nF 7 14 7/7 100 nF 8 **18** Ω positive supply 13 $\overline{}$ 9 12 to 1st mixer 10 11 ____ 1 kΩ $1 \ k\Omega$ 1 kΩ MBG367 3-wire bus (1) Values depend on application. Fig.5 Typical test and application diagram.