UMA1020M

FEATURES

- Low current from 3 V supply
- Fully programmable RF divider
- · 3-line serial interface bus
- Second synthesizer to control first IF or offset loop frequency
- Independent fully programmable reference dividers for each loop, driven from external crystal oscillator
- Dual phase detector outputs to allow fast frequency switching
- Integrated digital-to-analog converter
- · Dual power-down modes.

APPLICATIONS

- · 2 GHz mobile telephones
- Portable battery-powered radio equipment.

GENERAL DESCRIPTION

The UMA1020M BICMOS device integrates prescalers, programmable dividers, and phase comparators to implement two phase-locked loops. The device is designed to operate from 3 NiCd cells, in pocket phones, with low current and nominal 5 V supplies.

The principal synthesizer operates at RF input frequencies up to 2.4 GHz the auxiliary synthesizer operates at 300 MHz. The auxiliary loop is intended for the first IF or to transmit offset loop-frequency settings. Each synthesizer has a fully programmable reference divider. All divider ratios are supplied via a 3-wire serial programming bus.

Separate power and ground pins are provided to the analog and digital circuits. The ground leads should be externally short-circuited to prevent large currents flowing across the die and thus causing damage. Digital supplies V_{DD1} and V_{DD2} must also be at the same potential. V_{CC} must be equal to or greater than V_{DD} (i.e. $V_{DD} = 3$ V and $V_{CC} = 5$ V for wider tuning range).

The principal synthesizer phase detector uses two charge pumps, one provides normal loop feedback, while the other is only active during fast mode to speed-up switching. The auxiliary loop has a separate phase detector. All charge pump currents (gain) are fixed by an external resistance at pin I_{SET} (pin 14). Only passive loop filters are used; the charge-pumps function within a wide voltage compliance range to improve the overall system performance. An on-chip 7-bit DAC enables adjustment of an external function, such as the temperature compensation of a crystal oscillator.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC} , V _{DD}	supply voltage	$V_{CC} \ge V_{DD}$	2.7	_	5.5	V
I _{CC} + I _{DD}	principal synthesizer supply current	auxiliary synthesizer in power-down mode	_	9.4	_	mA
	principal and auxiliary synthesizer supply current	principal and auxiliary synthesizers ON	_	12.1	_	mA
I _{CCPD} , I _{DDPD}	current in power-down mode per supply		_	12	_	μΑ
f _{VCO}	principal input frequency		1700	_	2400	MHz
f _{AI}	auxiliary input frequency		20	_	300	MHz
f _{XTAL}	crystal reference input frequency		3	_	40	MHz
f _{PPC}	principal phase comparator frequency		_	200	_	kHz
f _{APC}	auxiliary phase comparator frequency		_	200	_	kHz
T _{amb}	operating ambient temperature		-30	_	+85	°C

2

UMA1020M

ORDERING INFORMATION

TYPE NUMBER		PACKAGE	
TIPL NOWBER	NAME	DESCRIPTION	VERSION
UMA1020M	SSOP20	plastic shrink small outline package; 20 leads; body width 4.4 mm	SOT266-1

BLOCK DIAGRAM

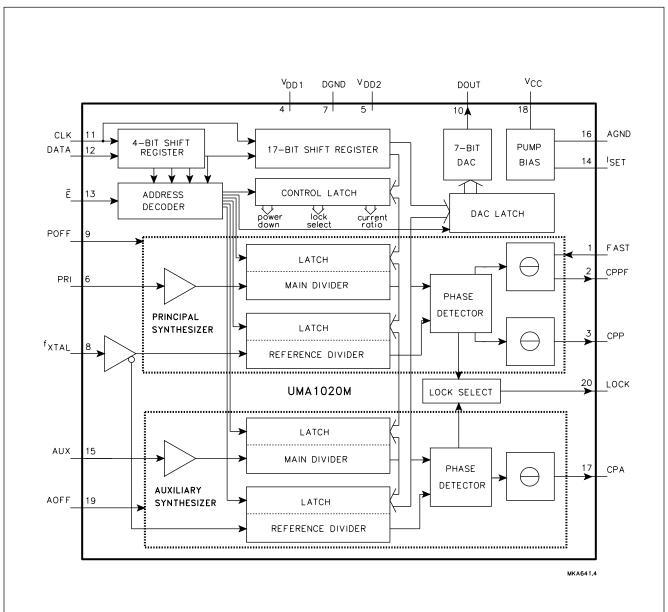
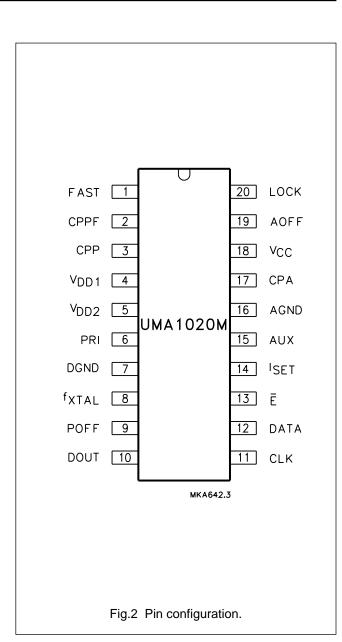



Fig.1 Block diagram.

UMA1020M

PINNING

SYMBOL	PIN	DESCRIPTION
FAST	1	control input to speed-up main synthesizer
CPPF	2	principal synthesizer speed-up charge-pump output
CPP	3	principal synthesizer normal charge-pump output
V_{DD1}	4	digital power supply 1
V_{DD2}	5	digital power supply 2
PRI	6	2 GHz principal synthesizer frequency input
DGND	7	digital ground
f _{XTAL}	8	crystal frequency input from TCXO
POFF	9	principal synthesizer power-down input
DOUT	10	7-bit digital-to-analog output
CLK	11	programming bus clock input
DATA	12	programming bus data input
Ē	13	programming bus enable input (active LOW)
I _{SET}	14	regulator pin to set the charge-pump currents
AUX	15	auxiliary synthesizer frequency input
AGND	16	analog ground
СРА	17	auxiliary synthesizer charge-pump output
V _{CC}	18	supply for charge-pump and DAC circuits
AOFF	19	auxiliary synthesizer power-down input
LOCK	20	in-lock detect output (main PLL); test

FUNCTIONAL DESCRIPTION

Principal synthesizer

Programmable reference and main dividers drive the principal PLL phase detector. Two charge pumps produce phase error current pulses for integration in an external loop filter. A hardwired power-down input POFF (pin 9) ensures that the dividers and phase comparator circuits can be disabled.

mode output

The PRI input (pin 6) drives a preamplifier to provide the clock to the first divider stage. The preamplifier has a high input impedance, dominated by pin and pad capacitance. The circuit operates with signal levels from 60 mV to 180 mV (RMS), and at frequencies up to 2.4 GHz. The high frequency divider circuits use bipolar transistors, slower bits are CMOS. Divide ratios (512 to 131071) allow a 2 MHz phase comparison frequency.

UMA1020M

The reference and main divider outputs are connected to a phase/frequency detector that controls two charge pumps. The two pumps have a common bias setting current that is set by an external resistance. The ratio between currents in fast and normal operating modes can be programmed via the 3-wire serial bus. The low current pump remains active except in power-down. The high current pump is enabled via the control input FAST (pin 1). By appropriate connection to the loop filter, dual bandwidth loops are provided: short time constant during frequency switching (FAST mode) to speed-up channel changes and low bandwidth in the settled state (on-frequency) to reduce noise and breakthrough levels.

The principal synthesizer speed-up charge pump (CPPF) is controlled by the FAST input in synchronization with phase detector operation in such a way that potential disturbances are minimized. The dead zone (caused by finite time taken to switch the current sources on or off) is cancelled by feedback from the normal pump output to the phase detector thereby improving linearity.

An open drain transistor drives the output pin LOCK (pin 20). It is recommended that the pull-up resistor from this pin to V_{DD} is chosen such that the value is high enough to keep the sink current in the LOW state below 400 μA . The circuit can be programmed to output either the phase error in the principal or auxiliary phase detectors or the combination from both detectors (OR function). The resultant output will be a current pulse with the duration of the selected phase error. By appropriate external filtering and threshold comparison, an out-of-lock or an in-lock flag is generated.

Auxiliary synthesizer

The auxiliary synthesizer has a 14-bit main divider and an 11-bit reference divider. A separate power-down input AOFF (pin 19), disables currents in the auxiliary dividers, phase detector, and charge pump. The auxiliary input signal is amplified and fed to the main divider. The input buffer presents a high impedance, dominated by pin and pad capacitance. First divider stages use bipolar technology operating at input frequencies up to 300 MHz; the slower bits are CMOS. The auxiliary loop phase detector and charge pump use similar circuits to the main loop low-current phase comparator, including dead-zone compensation feedback.

The auxiliary reference divider is clocked on the opposite edge of the principal reference divider to ensure that active edges arrive at the auxiliary and principal phase detectors at different times. This minimizes the potential for interference between the charge pumps of each loop.

Serial programming bus

A simple 3-line unidirectional serial bus is used to program the circuit. The 3 lines are DATA, CLK and \overline{E} (enable). The data sent to the device is loaded in bursts framed by \overline{E} . Programming clock edges and their appropriate data bits are ignored until \overline{E} goes active LOW. The programmed information is loaded into the addressed latch when \overline{E} returns inactive HIGH. Only the last 21 bits serially clocked into the device are retained within the programming register. Additional leading bits are ignored, and no check is made on the number of clock pulses. The fully static CMOS design uses virtually no current when the bus is inactive. It can always capture new programmed data even during power-down of main and auxiliary loops.

However when either principal synthesizer or auxiliary synthesizer or both are powered-on, the presence of a TCXO signal is required at pin 8 (f_{XTAL}) for correct programming.

Data format

Data is entered with the most significant bit first. The leading bits make up the data field, while the trailing four bits are an address field. The UMA1020M uses 6 of the 16 available addresses. The data format is shown in Table 1. The first entered bit is p1, the last bit is p21.

The trailing address bits are decoded on the inactive edge of \overline{E} . This produces an internal load pulse to store the data in one of the addressed latches. To ensure that the data is correctly loaded on first power-up, \overline{E} should be held LOW and only taken HIGH after having programmed an appropriate register. To avoid erroneous divider ratios, the pulse is not allowed during data reads by the frequency dividers. This condition is guaranteed by respecting a minimum \overline{E} pulse width after data transfer. The corresponding relationship between data fields and addresses is given in Table 2.

Philips Semiconductors

DATA16 MSB

p2 DATA15

DATA1

DATA0 LSB

ADD3

ADD2

p20 ADD1

p21 ADD0 LATCH ADDRESS

DATA COEFFICIENT

p1

FIRST IN

PROGRAMMING REGISTER BIT USAGE

UMA1020M

_
_
(note
Bit allocation
Table 2

								REGI	STER B	REGISTER BIT ALLOCATION	CATION									占
p2	\vdash	p3	р4	b2	9d	p7	8d	6d	p9 p10 p11		p12	p13	p13 p14 p15 p16 p17 p18 p19 p20 p21	515	p16	p17	p18	p19 F	020	221
dt15		dt14	dt13	dt12				DATA FIELD	IELD			dt4	dt3	dt2	dt1 dt0	dtO	`	ADDRESS	ESS	
							É	TEST BITS(2)	\$(2)								0	0	0	0
	<u> </u>	×	×	OLP	OLA	CR1	CR0	CR1 CR0 X X	×	SPOFF	SPOFF SAOFF X X X	×	×		×	×	0	0	0	_
	1				PR	INCIPA	L MAIN	I DIVID	ER COE	PRINCIPAL MAIN DIVIDER COEFFICIENT	<u></u>		-			PM0	0	_	0	0
l	<u> </u>	×	×	×	×	PR10		PRINC	IPAL RE	FFEREN	PRINCIPAL REFERENCE DIVIDER COEFFICIENT	ER CC	DEFFIC	IENT		PR0	0	_	0	_
ı	-	×	AM13				AUXIL	IARY M	AIN DIV	/IDER C	AUXILIARY MAIN DIVIDER COEFFICIENT	뉟				AMO	0	_	_	0
l	-	×	×	×	×	AR10		AUXILI	ARY RE	FFEREN	AUXILIARY REFERENCE DIVIDER COEFFICIENT	ER CC	DEFFIC	IENT		AR0	0	_	_	_
l	<u> </u>	×	×	×	×	×	×	×	0	DA6		7-B	7-BIT DAC			DA0	-	0	0	0

Notes

- FT = first; LT = last; sPOFF = software power-down for principal synthesizer (1 = OFF); sAOFF = software power-down for auxiliary synthesizer (1 = OFF).
- The test register should not be programmed with any other value except all zeros for normal operation.

 Table 3
 Out-of-lock select

OUT-OF-LOCK ON PIN 20
output disabled
auxiliary phase error
principal phase error
both auxiliary and principal
-

LAST IN

 Table 1
 Format of programmed data

UMA1020M

Table 4 Fast and normal charge pumps current ratio (note 1)

CR1	CR0	I _{CPA}	I _{CPP}	I _{CPPF}	I _{CPPF} : I _{CPP}
0	0	4 × I _{SET}	4 × I _{SET}	16 × I _{SET}	4:1
0	1	4 × I _{SET}	4 × I _{SET}	$32 \times I_{SET}$	8:1
1	0	$4 \times I_{SET}$	$2 \times I_{SET}$	$24 \times I_{SET}$	12 : 1
1	1	4 × I _{SET}	$2 \times I_{SET}$	$32 \times I_{SET}$	16 : 1

Note

1. $I_{SET} = \frac{V_{14}}{R_{ext}}$; common bias current for charge pumps and DAC.

Table 5 Power-down modes

AOFF	POFF	FAST	PRINCIPAL DIVIDERS	AUXILIARY DIVIDERS	PUMP CPA	PUMP CPP	PUMP CPPF	DAC AND BIAS
1	1	Х	OFF	OFF	OFF	OFF	OFF	OFF
1	0	0	ON	OFF	OFF	ON	OFF	ON
1	0	1	ON	OFF	OFF	ON	ON	ON
0	1	Х	OFF	ON	ON	OFF	OFF	ON
0	0	0	ON	ON	ON	ON	OFF	ON
0	0	1	ON	ON	ON	ON	ON	ON

Digital-to-analog converter

The 7-bits loaded via the bus into the appropriate latch drive a digital-to-analog converter. The internal current is scaled by the external resistance (R_{ext}) at pin I_{SET}, similar to the charge pumps. The nominal full-scale current is $2\times I_{SET}$. The output current is mirrored to produce a full-scale voltage into a user-defined ground referenced resistance, thereby allowing optimum swing from power supply rails within the 2.7 to 5.5 V limits. The bandgap reference voltage at pin I_{SET} is temperature and supply independent. The DAC signal is monotonic across the full range of digital input codes to enable fine adjustment of other system blocks. The typical settling time for full-scale switching is 400 ns into a 12 k Ω // 20 pF load.

Power-down modes

The action of the control inputs on the state of internal blocks is defined by Table 5.

Note that in Table 5, POFF and AOFF can be either the software or hardware power-down signals. The dividers are ON when both hardware and software power-down signals are at logic 0.

When either synthesizer is reactivated after power-down, the main and reference dividers of that synthesizer are synchronized to avoid the possibility of random phase errors on power-up.

UMA1020M

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	digital supply voltage	-0.3	+5.5	V
V _{CC}	analog supply voltage	-0.3	+5.5	V
ΔV_{CC-DD}	difference in voltage between V _{CC} and V _{DD}	-0.3	+5.5	V
V _n	voltage at pins 1, 6, 8 to 15, 19 and 20	-0.3	V _{DD} + 0.3	V
V _{2, 3, 17}	voltage at pins 2, 3 and 17	-0.3	V _{CC} + 0.3	V
ΔV_{GND}	difference in voltage between AGND and DGND (these pins should be connected together)	-0.3	+0.3	V
P _{tot}	total power dissipation	_	150	mW
T _{stg}	storage temperature	-55	+125	°C
T _{amb}	operating ambient temperature	-30	+85	°C
Ti	maximum junction temperature		95	°C

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	120	K/W

UMA1020M

CHARACTERISTICS

 V_{DD1} = V_{DD2} = 2.7 to 5.5 V; V_{CC} = 2.7 to 5.5 V; T_{amb} = 25 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply; p	ins 4, 5 and 18		1			
V _{DD}	digital supply voltage	$V_{DD1} = V_{DD2}$	2.7	_	5.5	V
V _{CC}	analog supply voltage	$V_{CC} \ge V_{DD}$	2.7	 -	5.5	V
I _{DD}	principal synthesizer digital supply current	V _{DD} = 5.5 V	_	9	12.5	mA
	auxiliary synthesizer digital supply current	V _{DD} = 5.5 V	_	2.7	4.0	mA
I _{CC}	charge pumps supply current	$V_{CC} = 5.5 \text{ V}; R_{ext} = 12 \text{ k}\Omega$	_	0.4	1.0	mA
I _{CCPD} , I _{DDPD}	current in power-down mode per supply	logic levels 0 or V _{DD}	_	12	50	μΑ
RF princip	pal main divider input; pin 6					
f _{VCO}	RF input frequency		1700	_	2400	MHz
V _{6(rms)}	AC-coupled input signal level (RMS value)	$R_s = 50 \Omega$; 1.7 GHz < f_{VCO} < 2.0 GHz	60		400	mV
		$R_s = 50 \Omega;$ 2.0 GHz < f_{VCO} < 2.4 GHz	60	_	180	mV
Z _I	input impedance (real part)	f _{VCO} = 2 GHz	_	300	_	Ω
C _I	typical pin input capacitance	indicative, not tested		2		pF
R _{pm}	principal main divider ratio		512	_	131 071	
f _{PPCmax}	maximum principal phase comparator frequency			2000	_	kHz
f _{PPCmin}	minimum principal phase comparator frequency		_	10	_	kHz
Auxiliary r	main divider input; pin 15					
f _{Al}	input frequency		20	_	300	MHz
V _{15(rms)}	AC-coupled input signal level (RMS value)	$R_s = 50 \Omega;$ 2.7 V < V_{DD} < 3.5 V	50	_	500	mV
		$R_s = 50 \Omega;$ 3.5 V < V _{DD} < 5.5 V	100	_	500	mV
Z _I	input impedance (real part)	f _{AI} = 100 MHz	_	1	_	kΩ
C _I	typical pin input capacitance	indicative, not tested	_	2		pF
R _{am}	auxiliary main divider ratio		64	_	16383	
f _{APCmax}	maximum auxiliary phase comparator frequency			2000	<u></u>	kHz
f _{APCmin}	minimum auxiliary phase comparator frequency		_	10	_	kHz
						

UMA1020M

٧

0.4

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT			
Crystal ref	erence dividers input; pin 8			,		-			
f _{XTAL}	input frequency range from crystal		5	_	40	MHz			
V _{8(rms)}	sinusoidal input signal level	V _{6(rms)} < 224 mV	50	_	500	mV			
	(RMS value)	V _{6(rms)} > 224 mV	100	_	500	mV			
Z _I	input impedance (real part)	$f_{XTAL} = 30 \text{ MHz}$	_	2	_	kΩ			
C _I	typical pin input capacitance	indicative, not tested	_	2	_	pF			
R _{pr}	principal reference division ratio		8	_	2047				
R _{ar}	auxiliary reference division ratio		8	_	2047				
Charge pu	mp current setting resistor input;	pin 14							
R _{ext}	external resistor from pin 14 to ground		12	_	60	kΩ			
V ₁₄	regulated voltage at pin 14	$R_{ext} = 12 \text{ k}\Omega$	_	1.15	_	V			
Charge pu	mp outputs; pins 17, 3 and 2; R _{ex}	$t = 12 \text{ k}\Omega$							
I _{Ocp}	charge pump output current error		-25	_	+25	%			
I _{match}	sink-to-source current matching	V _{cp} in range	_	±5	_	%			
I _{Lcp}	charge pump off leakage current	$V_{cp} = \frac{1}{2}V_{CC}$	- 5	±1	+5	nA			
V _{cp}	charge pump voltage compliance		0.4	_	V _{CC} - 0.4	V			
Interface lo	ogic input signal levels; pins 13, 1	12, 11 and 1							
V _{IH}	HIGH level input voltage		0.7V _{DD}	_	V _{DD} + 0.3	V			
V _{IL}	LOW level input voltage		-0.3	_	0.3V _{DD}	V			
I _{bias}	input bias current	logic 1 or logic 0	- 5	_	+5	μΑ			
C _I									
DAC outpu	ut signal levels; pin 10, R _{ext} = 12 to	o 24 k Ω							
I _{DAC}	DAC full scale output current		1.5 × I _{SET}	$2 \times I_{SET}$	$2.5 \times I_{SET}$	mA			
V ₁₀	output voltage compliance	all codes	0	_	V _{DD} – 0.4	V			
I _{10min}	minimum DAC current	00 code	_	2	5	μΑ			
I _{monot}	worst case monotonicity test:	note 1	0.1	_	1.9				
	$\Delta I \times \frac{128}{2 \times I_{SET}}$								
Lock detec	ct output signal; pin 20 open-drai	n output							

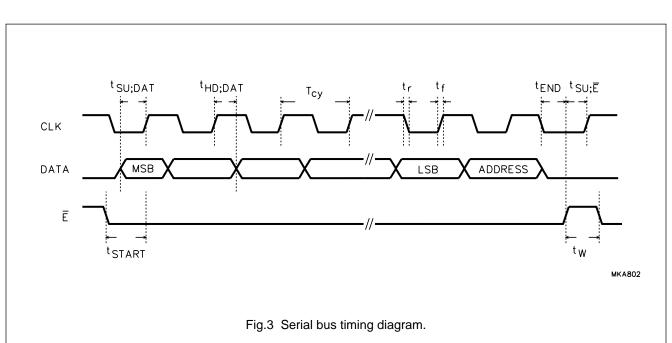
V_{OL} Note

LOW level output voltage

1. ΔI is the change in DAC output current when making the code transitions: 3FH/40H or 1FH/20H.

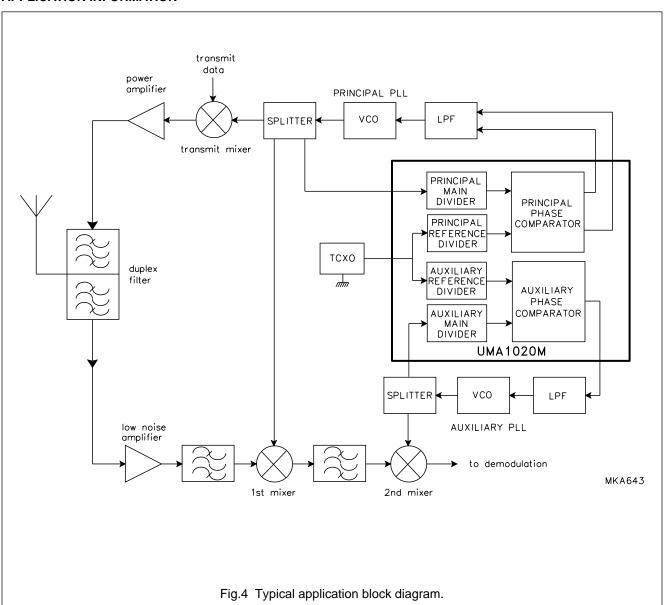
 $I_{sink} = 0.4 \text{ mA}$

UMA1020M

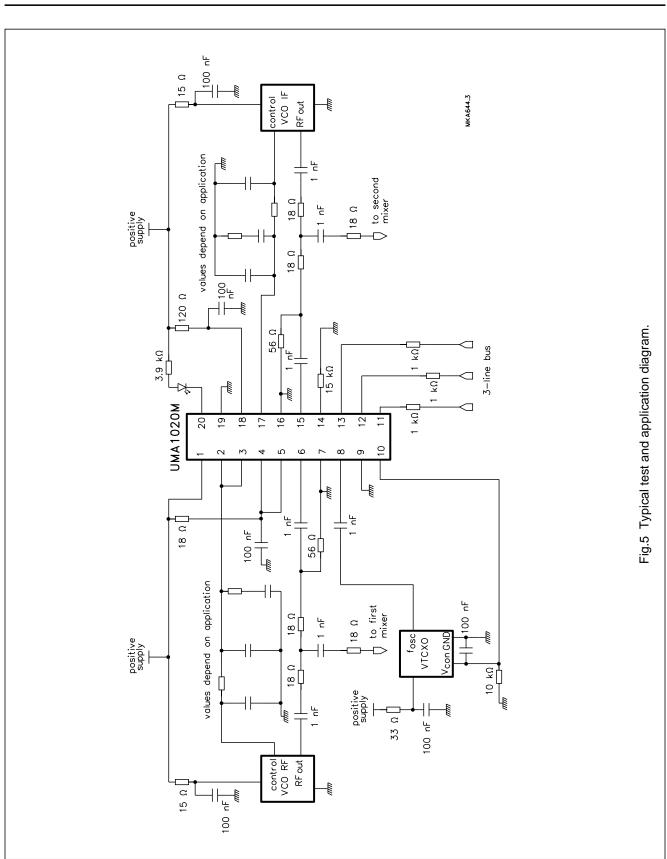

SERIAL BUS TIMING CHARACTERISTICS

 $V_{DD} = V_{CC} = 3 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}$ unless otherwise specified.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Serial programming clock; CLK					
t _r	input rise time	_	10	40	ns
t _f	input fall time	_	10	40	ns
T _{cy}	clock period	100	_	_	ns
Enable programming; E					
t _{START}	delay to rising clock edge	40	_	_	ns
t _{END}	delay from last falling clock edge	-20	_	_	ns
t _W	minimum inactive pulse width	4000 ⁽¹⁾	_	_	ns
t _{SU;Ē}	enable set-up time to next clock edge	20	_	_	ns
Register serial input data; DATA					
t _{SU;DAT}	input data to clock set-up time	20	_	_	ns
t _{HD;DAT}	input data to clock hold time	20	_	_	ns


Note

- 1. The minimum pulse width (t_W) can be smaller than 4 μs provided all the following conditions are satisfied:
 - a) Principal main divider input frequency $f_{VCO} > \frac{512}{t_W}$
 - b) Auxiliary main divider input frequency $f_{AI} > \frac{32}{t_W}$
 - c) Reference dividers input frequency $f_{XTAL} > \frac{3}{t_W}$



UMA1020M

APPLICATION INFORMATION

UMA1020M

