UMA1015M

FEATURES

- Two fully programmable RF dividers up to 1.1 GHz
- Fully programmable reference divider up to 35 MHz
- 2 : 1 or 1 : 1 ratio of selectable reference frequencies
- Fast three-line serial bus interface
- Adjustable phase comparator gain
- Programmable out-of-lock indication for both loops
- On-chip voltage doubler
- Low current consumption from 3 V supply
- · Separate power-down mode for each synthesizer
- Up to 4 open-drain output ports.

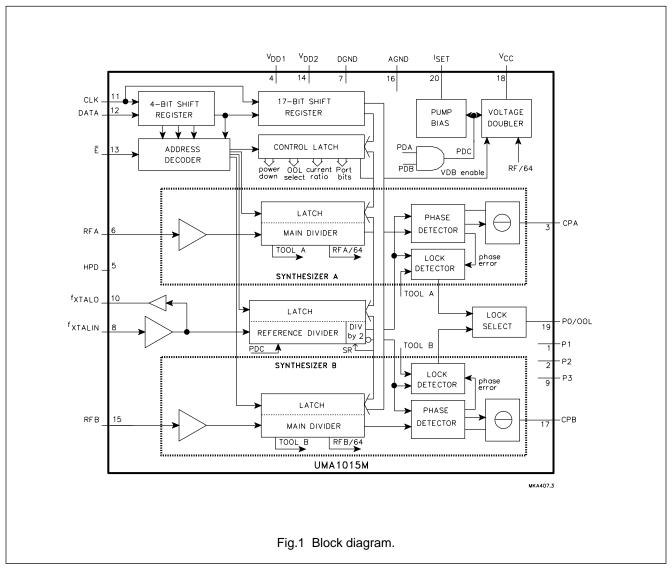
APPLICATIONS

- Cordless telephone
- Hand-held mobile radio.

GENERAL DESCRIPTION

The UMA1015M is a low-power dual frequency synthesizer for radio communications which operates in the 50 to 1100 MHz frequency range. Each synthesizer consists of a fully programmable main divider, a phase and frequency detector and a charge pump. There is a fully programmable reference divider common to both synthesizers which operates up to 35 MHz. The device is programmed via a 3-wire serial bus which operates up to 10 MHz. The charge pump currents (gains) are fixed by an external resistance at pin 20 (ISET). The BiCMOS device is designed to operate from 2.6 V (3 Ni-Cd cells) to 5.5 V at low current. Digital supplies V_{DD1} and V_{DD2} must be at the same potential. The charge pump supply (V_{CC}) can be provided by an external source or on-chip voltage doubler. V_{CC} must be equal to or higher than V_{DD1}. Each synthesizer can be powered-down independently via the serial bus to save current. It is also possible to power-down the device via the HPD input (pin 5).

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD1} , V _{DD2}	digital supply voltage	$V_{DD1} = V_{DD2}$	2.6	-	5.5	V
V _{CC}	charge pump supply voltage	external supply; doubler disabled; $V_{CC} \ge V_{DD}$	2.6	_	6.0	V
V _{CCvd}	charge pump supply from voltage doubler	doubler enabled	-	$2V_{DD1} - 0.6$	6.0	V
I _{DDO1} +I _{DDO2} + I _{CCO}	operating supply current	both synthesizers ON; doubler disabled; $V_{DD1} = V_{DD2} = 5.5 V$	-	9.6	-	mA
I _{DD1pd} + I _{DD2pd} + I _{CCpd}	current in power-down mode per supply	doubler disabled; $V_{DD1} = V_{DD2} = 5.5 V$	-	0.01	-	mA
I _{DD1pd}	current in power-down mode from supply V _{DD}	doubler enabled; $V_{DD1} = V_{DD2} = 3 V$	-	0.15	-	mA
f _{RFA} , f _{RFB}	RF input frequency for each synthesizer		50	-	1100	MHz
f _{XTALIN}	crystal input frequency		3	-	35	MHz
f _{pc(min)}	minimum phase comparator frequency	f _{RF} = 50 to 1100 MHz; f _{XTALIN} = 3 to 35 MHz	-	10	-	kHz
f _{pc(max)}	maximum phase comparator frequency	f _{RF} = 50 to 1100 MHz; f _{XTALIN} = 3 to 35 MHz	-	750	-	kHz
T _{amb}	operating ambient temperature	synthesizer A 2.6 V \leq V _{DD} \leq 5.5 V	-30	-	+85	°C
		synthesizer B 2.6 V \leq V _{DD} \leq 4.5 V	-30	-	+85	°C
		synthesizer B 2.6 V \leq V _{DD} \leq 5.0 V	0	-	+85	°C


QUICK REFERENCE DATA

UMA1015M

ORDERING INFORMATION

TYPE NUMBER		PAC	AGE	
	PINS	PIN POSITION	MATERIAL	CODE
UMA1015M/C2	20	SSOP20	plastic	SOT266-1

BLOCK DIAGRAM

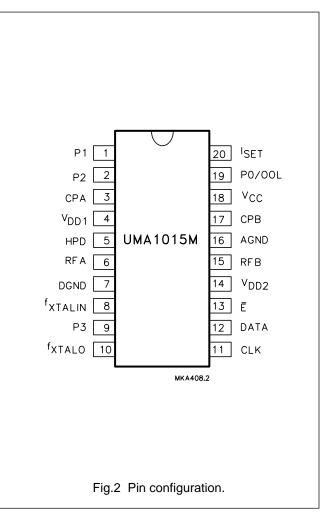
PINNING

SYMBOL	PIN	DESCRIPTION
P1	1	output Port 1
P2	2	output Port 2
CPA	3	charge-pump output synthesizer A
V _{DD1}	4	digital supply voltage 1
HPD	5	hardware power-down (input LOW = power-down)
RFA	6	RF input synthesizer A
DGND	7	digital ground
f _{XTALIN}	8	common crystal frequency input from TCXO
P3	9	output Port 3
f _{XTALO}	10	open-drain output of f _{XTAL} signal
CLK	11	programming bus clock input
DATA	12	programming bus data input
Ē	13	programming bus enable input (active LOW)
V _{DD2}	14	digital supply voltage 2
RFB	15	RF input synthesizer B
AGND	16	analog ground to charge pumps
CPB	17	charge pump output synthesizer B
V _{CC}	18	analog supply to charge pump; external or voltage doubler output
P0/OOL	19	Port output 0/out-of-lock output
I _{SET}	20	regulator pin to set charge-pump currents

FUNCTIONAL DESCRIPTION

Main dividers

Each synthesizer has a fully programmable 17-bit main divider. The RF input drives a pre-amplifier to provide the clock to the first divider bit. The pre-amplifier has a high input impedance, dominated by pin and pad capacitance. The circuit operates with signal levels from below 50 mV (RMS) up to 250 mV (RMS), and at frequencies up to 1.1 GHz. The high frequency sections of the divider are implemented using bipolar transistors, while the slower section uses CMOS technology. The range of division ratios is 512 to 131071.


Reference divider

There is a common fully programmable 12-bit reference divider for the two synthesizers. The input $f_{\text{XTALIN}}\,\text{drives}\,a$

pre-amplifier to provide the clock input for the reference divider. This clock signal is also buffered and output on pin f_{XTALO} (open drain). An extra divide-by-2 block allows a reference comparison frequency for synthesizer B to be half that of synthesizer A. This feature is selectable using the program bit SR. If the programmed reference divider ratio is R then the ratio for each synthesizer is as given in Table 1.

The range for the division ratio R is 8 to 4095. Opposite edges of the divider output are used to drive the phase detectors to ensure that active edges arrive at the phase detectors of each synthesizer at different times. This minimizes the potential for interference between the charge pumps of each loop. The reference divider consists of CMOS devices operating beyond 35 MHz.

UMA1015M

4

Table 1	Synthesizer ratio of reference divider
14610 1	

SR	SYNTHESIZER A	SYNTHESIZER B
0	R	R
1	R	2R

Phase comparators

For each synthesizer, the outputs of the main and reference dividers drive a phase comparator where a charge pump produces phase error current pulses for integration in an external loop filter. The charge pump current is set by an external resistance R_{SET} at pin I_{SET}, where a temperature-independent voltage of 1.2 V is generated. R_{SET} should be between 12 k Ω and 60 k Ω (to give an I_{SET} of 100 μ A and 20 μ A respectively). The charge-pump current, I_{CP}, can be programmed to be either $(12 \times I_{SET})$ or $(24 \times I_{SET})$ with the maximum being 2.4 mA. The dead zone, caused by finite switching of current pulses, is cancelled by an internal delay in the phase detector thus giving improved linearity. The charge pump has a separate supply, V_{CC}, which helps to reduce the interference on the charge pump output from other parts of the circuit. Also, V_{CC} can be higher than V_{DD1} if a wider range on the VCO input is required. V_{CC} must not be less than V_{DD1}.

Voltage doubler

If required, there is a voltage doubler on-chip to supply the charge pumps at a higher level than the nominal available supply. The doubler operates from the digital supply V_{DD1}, and is internally limited to a maximum output of 6 V. An external capacitor is required on pin V_{CC} for smoothing, the capacitor required to develop the extra voltage is integrated on-chip. To minimize the noise being introduced to the charge pump output from the voltage doubler, the doubler clock is suppressed (provided both loops are in-lock) for the short time that the charge pumps are active. The doubler clock (RF/64) is derived from whichever main divider is operating (synthesizer A has priority). While both synthesizers are powered down (and the doubler is enabled), the doubler clock is supplied by a low-current internal oscillator. The doubler can be disabled by programming the bit VDON to logic 0, in order to allow an external charge pump supply to be used.

Out-of-lock indication/output ports

There is a lock detector on-chip for each synthesizer. The lock condition of each, or both loops, is output via an open-drain transistor which drives the pin P0/OOL (when out-of-lock, the transistor is turned on and therefore the

output is forced LOW). The lock condition output is software selectable (see Table 4). An out-of-lock condition is flagged when the phase error is greater than T_{00L} , the value of which is approximately equal to 80 cycles of the relevant RF input. The out-of-lock flag is only released after 8 consecutive reference cycles where the phase error is less than T_{00L} . The out-of-lock function can be disabled, via the serial bus, and the pin P0/OOL can be used as an output port. Three other port outputs P1, P2 and P3 (open-drain transistors) are also available.

Serial programming bus

A simple 3-line unidirectional serial bus is used to program the circuit. The 3 lines are DATA, CLK and \overline{E} (enable). The data sent to the device is loaded in bursts framed by \overline{E} . Programming clock edges are ignored until \overline{E} goes active LOW. The programmed information is loaded into the addressed latch when \overline{E} returns inactive HIGH. This is allowed when CLK is in either state without causing any consequences to the register data. Only the last 21 bits serially clocked into the device are retained within the programming register. Additional leading bits are ignored, and no check is made on the number of clock pulses. The fully static CMOS design uses virtually no current when the bus is inactive. It can always capture new programming data even during power-down of both synthesizers.

However when either synthesizer A or synthesizer B or both are powered-on, the presence of a TCXO signal is required at pin 8 (f_{XTALIN}) for correct programming.

Data format

Data is entered with the most significant bit first. The leading bits make up the data field, while the trailing four bits are an address field. The address bits are decoded on the rising edge of \overline{E} . This produces an internal load pulse to store the data in the addressed latch. To ensure that data is correctly loaded on first power-up, \overline{E} should be held LOW and only taken HIGH after having programmed an appropriate register. To avoid erroneous divider ratios, the pulse is inhibited during the period when data is read by the frequency dividers. This condition is guaranteed by respecting a minimum \overline{E} pulse width after data transfer. The data format and register bit allocations are shown in Table 2.

•				_	
				_	_
199	95	Jι	IN	2	2

Table 2	Bit a	Table 2 Bit allocation	ç																
FIRST								RE	GISTE	R BIT A	REGISTER BIT ALLOCATION	TION							
p1	p2	p3	p4	p5	p6 p7		p8	6d	p10	p11	p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20	p13	p14	p15	p16	p17	p18	p19	p20
dt16	dt15	dt15 dt14	dt13 dt12	dt12				DATA FIELD	ELD			dt4	dt4 dt3 dt2	dt2	dt1	dtO		ADD	ADDRESS
×	×	X VDON PO OLA	Ъ	OLA	OLB	OLB CRA CRB X X	CRB	×	×	sPDA	SPDA SPDB P3 P2 P1 X	P3	P2	F		×	0	0	0
MA16					LNYS	THESIZ	ER A N	1AIN D	IVIDER	COEFF	SYNTHESIZER A MAIN DIVIDER COEFFICIENT					MA0	0	-	0
0	0	0	0	SR	R11			REF	ERENC		REFERENCE DIVIDER COEFFICIENT	DEFFIC	CIENT			RO	0	-	0
MB16					LNYS	THESIZ	ER B V	1AIN D	IVIDER	COEFF	SYNTHESIZER B MAIN DIVIDER COEFFICIENT					MB0	0	-	-
						A A	FSFRV	/ED FC	RESERVED FOR TEST ⁽¹⁾	T(1)							С	c	C

Note

1. The test register should not be programmed with any other values except all zeros for normal operation.

Table 3 Bit allocation description

SYMBOL	DESCRIPTION
sPDA, sPDB	software power-down for synthesizers A and B (0 = power-down)
P3, P2, P1 and P0	P3, P2, P1 and P0 bits output to pins 1, 2, 9 and 19 (1 = high impedance)
VDON	voltage doubler enable (1 = doubler enabled)
OLA, OLB	out-of-lock select; selects signal output to pin 19 (see Table 4)
CRA, CRB	charge pump A/B current to I _{SET} ratio select (see Table 5)
SR	reference frequency ratio select (see Table 6)

6

Table 4 Out-of-lock select

A OLB OUTPUT AT PIN 19	0 P0	1 1 lock status of loop B; OOLB	0 lock status of loop A; OOLA	1 logic OR function of loops A and B
OLA	0	0	-	1

Table 5 Charge pump current ratio

CRA/CRB	CURRENT AT PUMP	SR	SYNTHI
0	I _{CP} = 12 × I _{SET}	0	
~	$I_{CP} = 24 \times I_{SET}$	1	

UMA1015M

SYNTHESIZER B

IESIZER A

22 22

Reference division ratio

Table 6

R | K

p21

for radio communications

0

00

Low-power dual frequency synthesizer

Power-down modes

The device can be powered down either via pin HPD (active LOW = power-down) or via the serial bus (bits SPDA and SPDB, logic 0 = power-down). The synthesizers are powered up when both hardware and software Power-down signals are at logic 1. When only one synthesizer is powered down, the functions common to both will be maintained. When both synthesizers are switched off, only the voltage doubler (if enabled) will remain active drawing a reduced current. An internal oscillator will drive the doubler in this situation. If both synthesizers have been in a power-down condition, then when one or both synthesizers are reactivated, the reference and main dividers restart in such a way as to avoid large random phase errors at the phase comparator.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DD1} , V _{DD2}	DC range of digital power supply voltage with respect to DGND	-0.3	+6.0	V
V _{CC}	DC charge pump supply voltage with respect to AGND	-0.3	+6.0	V
ΔV_{CC-DD}	difference in voltage between V _{CC} and V _{DD1} , V _{DD2}	-0.3	+6.0	V
V _n	DC voltage at pins 1, 2, 5, 6, 8 to 15, 19 and 20 with respect to DGND	-0.3	V _{DD1} + 0.3	V
V _{3, 17}	DC voltage at pins 3 and 17 with respect to AGND	-0.3	V _{CC} + 0.3	V
ΔV _{GND}	difference in voltage between AGND and DGND (these pins should be connected together)	-0.3	+0.3	V
T _{stg}	storage temperature	-55	+125	°C
T _{amb}	operating ambient temperature	-30	+85	°C

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

Product specification

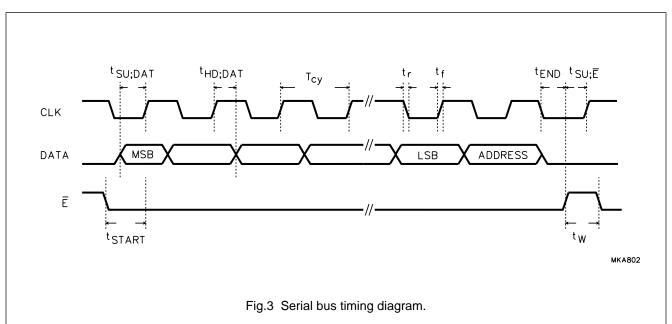
UMA1015M

CHARACTERISTICS

 $V_{DD1} = V_{DD2} = 2.6$ to 5.5 V; $V_{CC} = 2.6$ to 6.0 V; $T_{amb} = 25$ °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply; (V _C	_{DD1} , V _{DD2} and V _{CC}) voltage	doubler disabled, external s	supply on V _C	C		
V _{DD1} , V _{DD2}	digital supply voltage	$V_{DD1} = V_{DD2}$	2.6	_	5.5	V
I _{DD1} + I _{DD2}	total digital supply current from V_{DD1} and V_{DD2}	$f_{XTAL} = 12.8 \text{ MHz};$ both synthesizers on; $V_{DD1} = V_{DD2} = 3 \text{ V}$	-	8.5	_	mA
		$f_{XTAL} = 12.8 \text{ MHz};$ both synthesizers on; $V_{DD1} = V_{DD2} = 5.5 \text{ V}$	-	_	12.5	mA
I _{DDpda} , I _{DDpdb}	total digital supply current from V_{DD1} and V_{DD2} with one synthesizer in	$f_{XTAL} = 12.8 \text{ MHz}$; one synthesizer powered down; $V_{DD1} = V_{DD2} = 3 \text{ V}$	-	5.5	-	mA
	power-down mode	f_{XTAL} = 12.8 MHz; one synthesizer powered down; $V_{DD1} = V_{DD2} = 5.5 V$	-	-	7.5	mA
I _{DDpd}	digital supply current in power-down mode	both synthesizers powered down; V _{HPD} = 0 V	-	-	60	μA
V _{CC}	charge pump supply voltage	$V_{CC} \ge V_{DD}$	2.6	-	6.0	V
I _{CC}	charge pump supply current	both synthesizers on and in lock; f _{ref} = 12.5 kHz	-	-	25	μΑ
I _{CCpd}	charge pump supply current in power-down mode	both synthesizers powered down	-	-	25	μΑ
Voltage dou	ubler enabled					
I _{DD}	total digital supply current from V_{DD1} and V_{DD2}	$\label{eq:transform} \begin{array}{l} f_{XTAL} = 12.8 \mbox{ MHz; both} \\ \mbox{synthesizers on and in lock;} \\ V_{DD1} = 3 \mbox{ V;} \\ f_{doubler} = 16 \mbox{ MHz} \end{array}$	-	8.5	12	mA
I _{DDpd}	total digital supply current in power-down mode from V_{DD1} and V_{DD2}	both synthesizers powered down; $V_{DD1} = 3 V$; $V_{HPD} = 0 V$	-	0.25	0.4	mA
V _{CCvd}	charge pump supply voltage	DC current drawn from $V_{CC} = 50 \ \mu A$	2V _{DD1} - 1.2	2V _{DD1} - 0.6	6.0	V

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	
RF main div	vider input; RFA and RFB			Į	Į	
f _{RF}	RF input frequency		50	_	1100	MHz
V _{RF(rms)}	RF input signal voltage (RMS value; AC coupled)		50	-	250	mV
			100	_	250	mV
		$R_s = 50 \Omega;$ V _{DD1} = V _{DD2} = 2.6 to 5.5 V; f _{RF} = 50 to 400 MHz	150	_	400	mV
ZI	input impedance (real part)	f _{RF} = 1 GHz; indicative, not tested	-	300	-	Ω
CI	input capacitance	indicative, not tested	-	1	-	pF
R _{pm}	principle main divider ratio		512	-	131071	
Reference	divider input; f _{XTALIN}				1	
f _{XTALIN}	reference input frequency from crystal		3	-	35	MHz
V _{XTALIN(rms)}	sinusoidal input voltage (RMS value)		100	-	500	mV
ZI	input impedance (real part)	f _{XTALIN} = 12.8 MHz; indicative, not tested	-	10	-	kΩ
CI	input capacitance	indicative, not tested	_	1	-	pF
R _{rd}	reference divider ratio		8	-	4095	
Charge pur	np current setting resistor	input; I _{SET}			1	
V _{SET}	voltage output on I _{SET}	R_{SET} = 12 to 60 k Ω	_	1.2	-	V
Charge pur	np outputs; CPA and CPB			•		
I _{CP}	charge pump sink or source current		1.4	1.9	2.4	mA
			0.7	0.96	1.2	mA
ILI	charge pump off leakage current	$V_{cp} = 0.5 V_{CC}$	-5	_	+5	nA

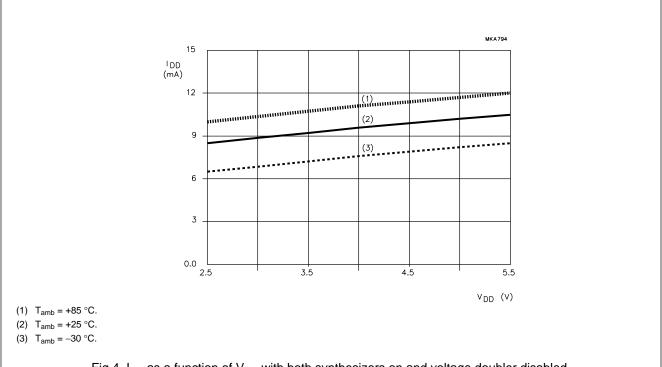

UMA1015M

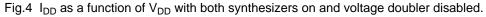
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
Logic input signal levels; DATA, CLK, Ē and HPD								
V _{IH}	HIGH level input voltage	at logic 1	0.7V _{DD1}	-	V _{DD1} + 0.3	V		
V _{IL}	LOW level input voltage	at logic 0	-0.3	-	0.3V _{DD1}	V		
I _{bias}	input bias currents	at logic 1 or logic 0	-5	-	+5	μA		
CI	input capacitance	indicative, not tested	-	1	-	pF		
Port outputs/Out-of-lock; P0/OOL, P1, P2, P3 and f _{XTALO} - open drain outputs								
V _{OL}	LOW level output voltage	I _{sink} = 0.4 mA	_	-	0.4	V		

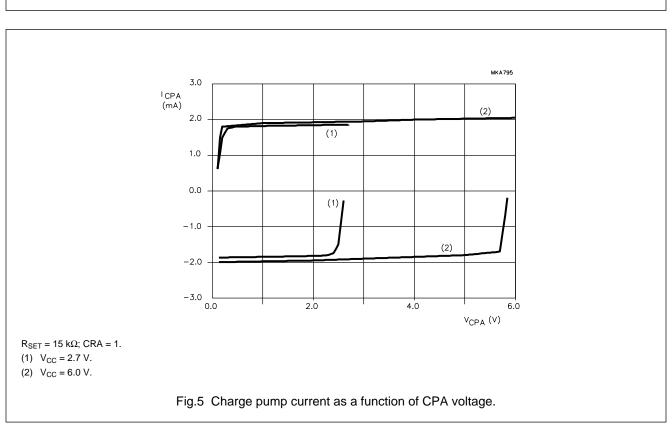
SERIAL TIMING CHARACTERISTICS

 V_{DD1} = 3 V; T_{amb} = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Serial proç	jramming clock; CLK				
t _r , t _f	input rise and fall times	-	10	40	ns
t _{cy}	clock period	100	-	-	ns
Enable pro	ogramming; Ē				_
t _{START}	delay to rising clock edge	40	-	-	ns
t _{END}	delay from last falling clock edge	-20	-	-	ns
t _W	minimum inactive pulse width	4000	_	-	ns
t _{SU;Ē}	enable set-up time to next clock edge	20	-	-	ns
Register so	erial input data; DATA				
t _{SU;DAT}	input data to clock set-up time	20	_	-	ns
t _{HD;DAT}	input data to clock hold time	20	-	-	ns

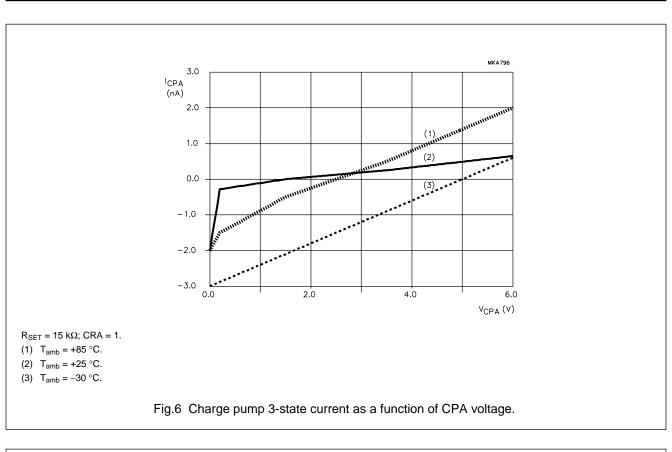


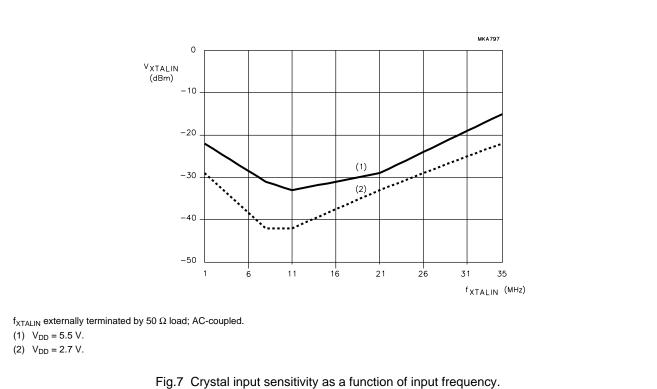

Product specification


Low-power dual frequency synthesizer for radio communications

UMA1015M

TYPICAL PERFORMANCE CHARACTERISTICS





UMA1015M

Low-power dual frequency synthesizer for radio communications

MKA 798 0 VXTALIN (dBm) -10 mmm unnunnun Streen and a state of the state -20 (1) -30 (3) -40 -50 1 6 11 16 21 26 31 35 f_{XTALIN} (MHz) f_{XTALIN} externally terminated by 50 Ω load; AC-coupled. (1) $T_{amb} = -30 \ ^{\circ}C.$ (2) $T_{amb} = +25 \ ^{\circ}C.$ (3) T_{amb} = +85 °C. Fig.8 Crystal input sensitivity as a function of input frequency with $V_{DD} = 5.5$ V.

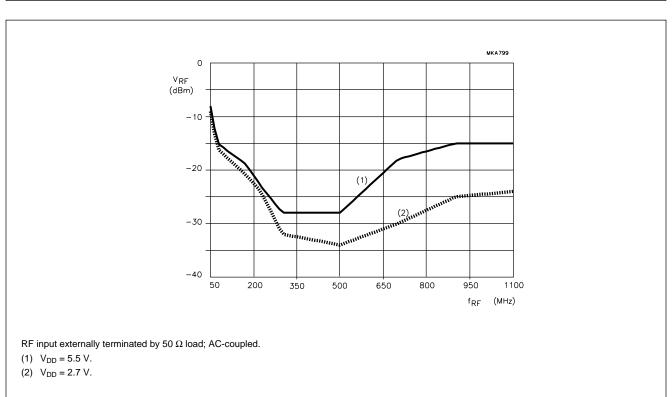


Fig.9 RF input sensitivity as a function of input frequency.

MKA800 0 VRF (dBm) -10 (1) (2)UMITITI IIII -20 IIIIII MIIIIIII MILITIN -30 -40 200 350 500 650 800 900 1100 50 f _{RF} (MHz) RF input externally terminated by 50 Ω load; AC-coupled. (1) $T_{amb} = -30 \ ^{\circ}C.$ (2) $T_{amb} = +25 \ ^{\circ}C.$ (3) $T_{amb} = +85 \ ^{\circ}C.$ Fig.10 RF input sensitivity as a function of input frequency with $V_{DD} = 5.5$ V.

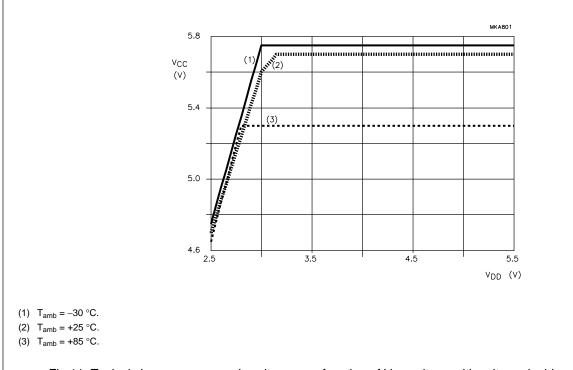
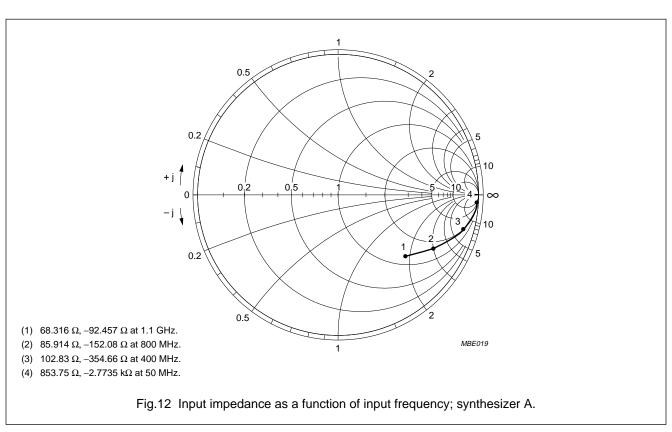
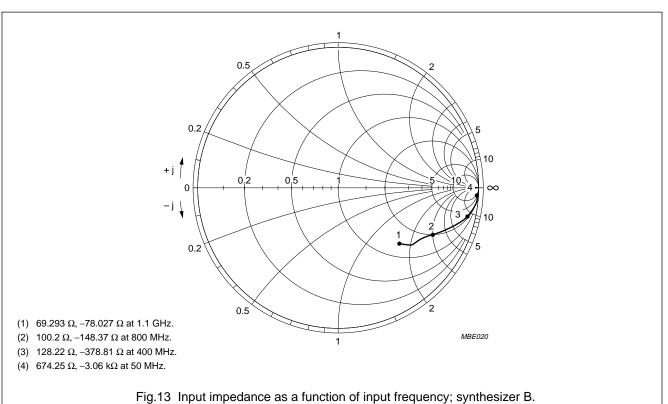
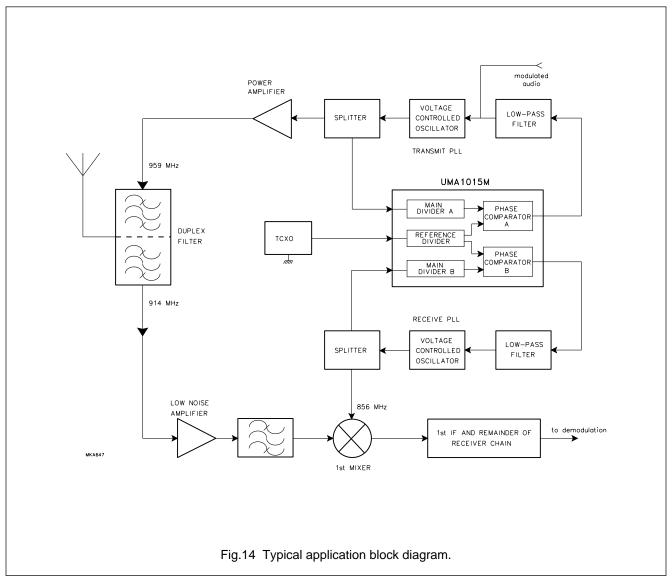
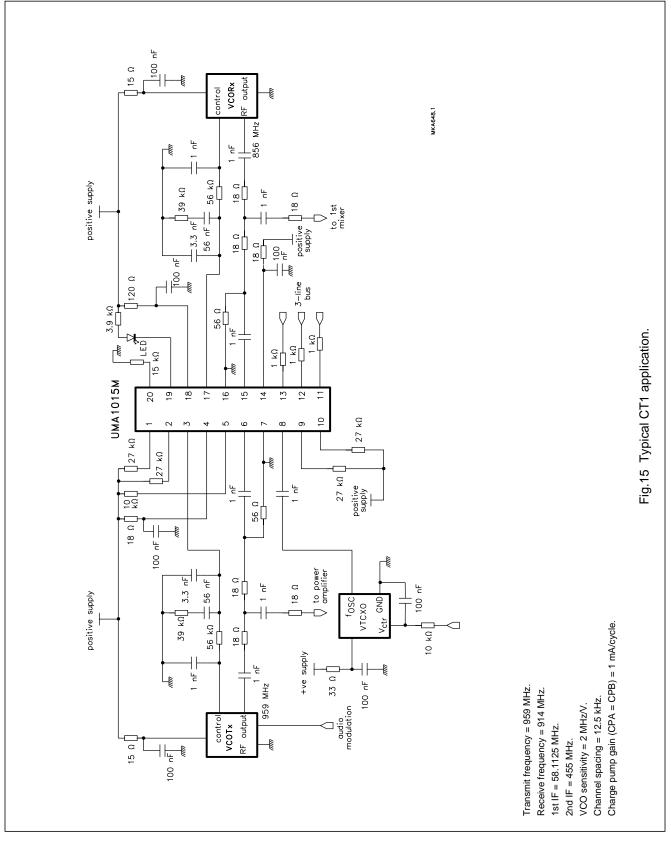




Fig.11 Typical charge pump supply voltage as a function of V_{DD} voltage with voltage doubler enabled.




UMA1015M


Product specification

APPLICATION INFORMATION

Product specification

