SIEMENS

Dual Low-Drop Voltage Regulator

TLE 4470

Features

- Stand-by output 180 mA; 5 V \pm 2 %
- Adjustable reset switching threshold
- Main output 350 mA; tracked to the stand-by output
- Low quiescent current consumption in standby mode
- Disable function for main output
- Wide operation range: up to 45 V
- Very low dropout
- Power-On-Reset circuit sensing the stand-by voltage
- Early warning comparator for supply undervoltage
- · Output protected against short circuit
- Wide temperature range: 40 °C to 150 °C
- Over-temperature protection
- Over-load protection

Туре	Ordering Code	Package
TLE 4470 GS	Q67006-A9309	P-DSO-14-4 (SMD)
TLE 4470 G	Q67006-A9308	P-DSO-20-6 (SMD)

Functional Description

The TLE 4470 is a monolithic integrated voltage regulator with two very low-drop outputs, a main output Q2 for loads up to 350 mA and a stand by output Q1 providing a maximum of 180 mA. The device is available in both the P-DSO-14-4 and P-DSO-20-6 packages. It is designed to supply microprocessor systems under the severe conditions of automotive applications and is therefore equipped with additional protection functions against over load, short circuit and over temperature. Of course the TLE 4470 can also be used in other applications where two stabilized voltages are required.

The device operates in the wide temperature range of -40 °C to 150 °C.

The stand by regulator transforms an input voltage V_1 in the range of 5.6 V $\leq V_1 \leq$ 45 V to $V_{Q1rated} = 5$ V within an accuracy of 2%, whereas the main regulator is adjustable. By use of an external voltage divider the main output voltage can be set to $V_{Q2} \geq 5$ V for the

TLE 4470 G type (P-DSO-20-6 package). V_{Q1} is compared to the voltage at pin VA, which is proportional to the output voltage V_{Q2} . A control amplifier drives the base of the series PNP transistor via a buffer.

The main output voltage V_{Q2} is tracked to the accuracy of the stand by output.

For the TLE 4470 GS (P-DSO-14-4 package) the output voltage is fixed to 5 V.

To save energy e.g. in battery powered body electronic applications, the main regulator can be switched off via the disable input, which causes the current consumption to drop to $180 \ \mu A$ typical.

Two additional features of the TLE 4470 are an early warning comparator (can be used e.g. to monitor the supply voltage V_1) and reset generator with an adjustable reset delay time. The TLE 4470 G (P-DSO-20-6 package) has in addition an adjustable reset switching threshold. This feature is useful with microprocessors which guarantee a safe operation down to voltages below the internally set reset threshold of 4.65 V typical.

Two functions are included in the reset generator, a power on reset and an under-voltage reset. The power on reset feature is necessary for a defined start of the microprocessor when switching on the application. The reset LOW signal is generated for a certain delay time after the output voltage V_{Q1} of the regulator has surpassed the reset threshold. An external delay capacitor sets the delay time. The under voltage reset circuit supervises the stand-by output voltage. In case V_{Q1} falls below the reset switching threshold the reset output is set LOW after a short reaction time. The reset LOW signal is generated down to an output voltage V_{Q1} of 1 V.

Pin Configuration

(top view)

Figure 1

Semiconductor Group

Pin Definitions and Functions

P-DSO-20-6

Pin No.	Symbol	Function
1	RADJ	Reset switching threshold adjust ; for setting the reset switching threshold connect to a voltage divider from Q1 to GND. If this input is connected to GND, the reset is triggered at the internal threshold.
2	D	Reset delay ; connect a capacitor C_{D} to GND for delay time adjustment
3	DIS	Disable input main regulator; Q2 disabled with high signal
4, 5, 6, 7	GND	Ground
8	RQ	Reset output ; the open collector output is connected to Q1 via an integrated 30 k Ω resistor
9	SQ	Sense output; the open collector output is connected to Q1 via an integrated 30 k Ω resistor
10	Q1	Stand-by regulator output voltage ; block to GND with a capacitor $C_{Q1} \ge 6 \mu$ F, ESR < 10 Ω at 10 kHz
11	ADJ2	Main regulator adjust input; Q2 can be set to higher values by an external divider
12, 13	Q2	Main regulator output voltage ; block to GND with a capacitor $C_{Q2} \ge 10 \ \mu\text{F}$, ESR < 10 Ω at 10 kHz
14, 15, 16, 17	GND	Ground
18	12	Main regulator input voltage; block to GND directly at the IC with a ceramic capacitor
19	11	Stand-by regulator input voltage ; block to GND directly at the IC with a ceramic capacitor
20	SI	Sense comparator input

P-DSO-14-4

Pin No.	Symbol	Function
1	D	Reset delay ; connect a capacitor $C_{\rm D}$ to GND for delay time adjustment
2	DIS	Disable input main regulator; Q2 disabled with high signal
3, 4, 5	GND	Ground
6	RQ	Reset output ; the open collector output is connected to Q1 via an integrated 30 k Ω resistor
7	SQ	Sense output; the open collector output is connected to Q1 via an integrated 30 k Ω resistor
8	Q1	Stand-by regulator output voltage ; block to GND with a capacitor, $C_{Q1} \ge 6 \mu$ F, ESR < 10 Ω at 10 kHz
9	Q2	Main regulator output voltage ; 5 V output tracking to Q1, block to GND with a capacitor $C_{Q2} \ge 10 \ \mu\text{F}$, ESR < 10 Ω at 10 kHz
10, 11, 12	GND	Ground
13	I	Main and stand-by regulator input voltage; block to GND directly at the IC with a ceramic capacitor
14	SI	Sense comparator input

RADJ Reset switching threshold adjust not available in P-DSO-14-4 package. Reset is always triggered at the internal threshold.

ADJ2 Main regulator adjust input is internally connected to V_{Q2}

SIEMENS

Figure 2 Block Diagram

Semiconductor Group

Absolute Maximum Ratings

 $-40 \ ^{\circ}\text{C} < T_{j} < 150 \ ^{\circ}\text{C}$

Parameter	Symbol	Limit Values		es Unit	Remarks
		min.	max.		

Stand-by Regulator Input Voltage V_{I1}

Voltage	$V_{ m I1}$	- 42	45	V	-
Current	I _{I1}	_	_	mA	Internally limited

Main Regulator Input Voltage V_{I2}

Voltage	V_{I2}	- 42	45	V	-
Current	I _{I2}	_	_	mA	Internally limited

Stand-by Output V_{Q1}

Voltage	V_{Q1}	- 1	7	V	_
Current	I_{Q1}	_	—	mA	Internally limited

Main Output V_{Q2}

Voltage	$V_{\rm Q2}$	- 1	36	V	-
Current	I_{Q2}	_		mA	Internally limited

Main Regulator Adjust Input ADJ2

Voltage	V_{ADJ2}	- 0.3	18	V	-
Current	$I_{\rm ADJ2}$	_	_	mA	Internally limited

Sense Output SQ

Voltage	$V_{ m SQ}$	- 0.3	25	V	-
Current	I _{SQ}	- 5	5	mA	-

Reset Output RQ

Voltage	V_{RQ}	- 0.3	25	V	-
Current	I_{RQ}	- 5	5	mA	-

Absolute Maximum Ratings (cont'd)

 $-40 \,^{\circ}\text{C} < T_{i} < 150 \,^{\circ}\text{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Disable Input DIS

Voltage	V_{DIS}	- 42	45	V	-
Current	I_{DIS}	- 2	2	mA	-

Sense Input SI

Voltage	$V_{ m SI}$	- 25	18	V	-
Current	I _{SI}	- 2	2	mA	_

Reset Delay D

Voltage	V_{D}	- 0.3	7	V	-
Current	ID	-2	2	mA	-

Reset Switching Threshold Adjust RADJ

Voltage	V_{RADJ}	- 0.3	7	V	_
Current	I_{RADJ}		_	mA	Internally limited

Temperatures

Junction temperature	Tj	- 50	150	°C	-
Storage temperature	$T_{ m stg}$	- 50	150	°C	_

Note: ESD-Protection according to MIL Std. 883: $\pm 2 kV$.

Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Operating Range

Parameter	Symbol	Limit	Values	Unit	Remarks
		min.	max.		
Stand-by regulator input voltage	V _{I1}	5.6	45	V	-
Main regulator input voltage	V _{I2}	V _{Qnom} + 0.6 V	45	V	-
Stand-by regulator output current	I _{Q1}	0	180	mA	-
Main regulator output current	I _{Q2}	0	350	mA	-
Disable input voltage	$V_{\rm DIS}$	- 0.3	45	V	_
Sense input voltage	$V_{\rm SI}$	- 0.3	17	V	-
Junction temperature	T _j	- 40	150	°C	-

Thermal Resistances

Junction pin	$R_{ m thj-pin}$	_	25	K/W	Measured to pin 4
Junction ambient	$R_{ m thj-a}$	_	65	K/W	-

Note: In the operating range the functions given in the circuit description are fulfilled.

Electrical Characteristics

 $V_{I1} = V_{I2} =$ 14 V; $V_{DIS} < V_{DISL}$; - 40 °C < T_j < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	min. typ. max.			

Stand-by Regulator

Output 1

Output voltage	V_{Q1}	4.90	5.0	5.10	V	1 mA < I _{Q1} < 100 mA
Output current limitation	I _{Q1}	180	280	_	mA	see note 1
Output drop voltage; $V_{\text{DRQ1}} = V_{\text{I1}} - V_{\text{Q1}}$	V_{DRQ1}	_	300	500	mV	I_{Q1} = 100 mA; see note 1

Current Consumption

Quiescent current; stand-by	I _q	_	180	250	μA	$I_{Q1} = 300 \ \mu A; T_j = 25 \ ^{\circ}C$ $V_{DIS} > V_{DISH}$
$I_{\rm q} = I_{\rm I1} - I_{\rm Q1}$		_	180	300	μA	$I_{\text{Q1}} = 300 \ \mu\text{A};$ $V_{\text{DIS}} > V_{\text{DISH}}$
Quiescent current $I_q = I_{I1} - I_{Q1}$	Iq	_	4	6	mA	<i>I</i> _{Q1} = 100 mA

Regulator Performance

$\Delta V_{ extsf{Q1}}$	I	15	50	mV	1 mA < I _{Q1} < 150 mA;
$\Delta V_{\rm Q1}$	-	5	25	mV	1 mA < I _{Q1} < 100 mA;
$\Delta V_{ m Q1}$	_	5	20	mV	$I_{Q1} = 1 \text{ mA};$ 6 V < V_{I1} < 28 V
PSRR	_	60	-	dB	20 Hz < $f_{\rm r}$ < 20 kHz; $V_{\rm r}$ = 5 $V_{\rm SS}$
$\Delta V_{ m Q1}/\Delta T$	_	0.3	-	mV/K	_
V_{Q1}	4.5	_	5.5	V	no reset occurs; note 3
$C_{\rm Q1}$	6	_	_	μF	_
$R_{\rm ESRQ1}$	_	_	10	Ω	at 10 kHz
	ΔV_{Q1} ΔV_{Q1} $PSRR$ $\Delta V_{Q1}/\Delta T$ V_{Q1} C_{Q1}	$\begin{array}{c c} \Delta V_{Q1} & - \\ \hline \Delta V_{Q1} & - \\ \hline PSRR & - \\ \hline \Delta V_{Q1} / \Delta T & - \\ \hline V_{Q1} & 4.5 \\ \hline C_{Q1} & 6 \\ \end{array}$	$\begin{array}{c cccc} \Delta V_{Q1} & - & 5 \\ \Delta V_{Q1} & - & 5 \\ \hline & & \\ PSRR & - & 60 \\ \hline & & \\ \Delta V_{Q1} / \Delta T & - & 0.3 \\ \hline & & \\ V_{Q1} & 4.5 & - \\ \hline & & \\ C_{Q1} & 6 & - \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ΔV_{Q1} - 5 25 mV ΔV_{Q1} - 5 20 mV PSRR - 60 - dB $\Delta V_{Q1}/\Delta T$ - 0.3 - mV/K V_{Q1} 4.5 - 5.5 V C_{Q1} 6 - - μ F

Electrical Characteristics (cont'd)

 $V_{I1} = V_{I2} =$ 14 V; $V_{DIS} < V_{DISL}$; - 40 °C < T_j < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	min. typ. max.			

Main-Regulator

Output 2

Output voltage tracking accuracy	$V_{\mathrm{Q2}} - V_{\mathrm{Q1}}$	- 25	5	25	mV	5 mA < I_{Q2} < 100 mA; 6 V < V_{I2} < 40 V
Output voltage tracking accuracy	$V_{\rm Q2} - V_{\rm Q1}$	- 25	5	25	mV	5 mA < I_{Q2} < 250 mA; 7 V < V_{I2} < 28 V see note 2
Adjust input current	I _{ADJ2}	- 1	_	1	μA	-
Output current limitation	I _{Q2}	350	500	-	mA	see note 1
Output drop voltage $V_{\text{DRQ2}} = V_{12} - V_{\text{Q2}}$	V_{DRQ2}	_	300	600	mV	I_{Q2} = 200 mA; see note 1

Current Consumption

Quiescent current; $I_{q} = I_{I} - I_{Q}$	Iq	_	7	15	mA	$I_{\rm Q2}$ = 200 mA $I_{\rm Q1}$ = 300 μ A
Quiescent current; $I_{q} = I_{I} - I_{Q}$	Iq	_	250	500	μA	$I_{Q2} = I_{Q1} = 300 \ \mu\text{A};$ $T_j = 25 \ ^{\circ}\text{C}$

Regulator Performance

Load regulation	$\Delta V_{\rm Q2}$	-	5	25	mV	5 mA < I _{Q2} < 200 mA;
Line regulation	$\Delta V_{\rm Q2}$	_	5	20	mV	$I_{Q2} = 5 \text{ mA};$ 6 V < V_{I2} < 28 V
Power-Supply-Ripple- Rejection	PSRR	_	60	_	dB	20 Hz < $f_{\rm r}$ < 20 kHz; $V_{\rm r}$ = 5 Vss
Temperature output voltage drift	$\Delta V_{\text{Q2}}/\Delta T$	_	0.5	_	mV/K	_
dV_{I2}/dt stability	V_{Q2}	4.5	-	5.5	V	no reset occurs; note 2
Value of output capacitance	C _{Q2}	10	—	_	μF	_

Electrical Characteristics (cont'd)

 $V_{I1} = V_{I2} =$ 14 V; $V_{DIS} < V_{DISL}$; - 40 °C < T_j < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
ESR of output capacitance	R _{ESRQ2}	_	-	10	Ω	at 10 kHz

Disable Input DIS

H-input voltage threshold	V _{DISH}	1.8	2.0	2.3	V	_
L-input voltage threshold	V_{DISL}	1.4	1.7	2.0	V	Output 2 active
H-input current	I _{DISH}	-2	- 1	1	μA	$2.3 V < V_{DIS} < 7 V$
L-input current	I _{DISL}	- 6	-2	- 0.5	μA	$0 V < V_{DIS} < 1.4 V$

Reset Timing D and Output RQ

Reset switching threshold	V_{RT}	4.5	4.65	4.8	V	RADJ connected to GND
Reset adjust threshold	V_{RADJTH}	1.25	1.35	1.45	V	V _{Q1} > 3.5 V
Reset output low voltage	V _{RQL}	_	0.15	0.3	V	$R_{\rm RQ}$ = 10 k Ω external connected to $V_{\rm Q1;}$ $V_{\rm Q1} \ge$ 1 V
Reset high voltage	$V_{\rm RQH}$	4.5	-	-	V	-
Reset pull up resistor	R _{RQ}	20	30	45	kΩ	Internal connected to $V_{\rm Q1}$
Reset charging current	I _d	3	5	9	μA	$V_{\rm D} = 1 \text{ V}$
Upper timing threshold	$V_{\rm DU}$	1.5	1.8	2.2	V	-
Lower timing threshold	$V_{\rm DL}$	0.3	0.4	0.55	V	-
Reset delay time	t _d	12	15	20	ms	$C_{\rm D} = 47 \text{ nF}$
Reset reaction time	t _{RR}	-	0.5	2.0	μs	C _D = 47 nF

Electrical Characteristics (cont'd)

 $V_{I1} = V_{I2} =$ 14 V; $V_{DIS} < V_{DISL}$; – 40 °C < T_j < 150 °C; unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min. typ. max.				

Sense Input SI and Output SQ

Sense threshold voltage	V _{SITH}	1.28	1.35	1.45	V	$V_{\rm SI}$ decreasing
Sense threshold hysteresis	$V_{\rm SIHY}$	25	60	100	mV	-
Sense output low voltage	$V_{\rm SQL}$	_	0.15	0.4	V	$R_{ m SQ}$ = 10 k Ω external connected to $V_{ m Q1}$ $V_{ m SI}$ = 1.1 V; $V_{ m I1}$ > 4.5 V
Sense output high voltage	$V_{\rm SQH}$	4.5	_	-	V	V _{SI} > 1.5 V
Sense pull up resistor	R _{SQ}	20	30	45	kΩ	Internal connected to V_{Q1}

Note 1: Measured when the output voltage V_Q has dropped 100 mV from the nominal value.

Note 2: V_{Q2} connected to ADJ2

Note 3: Square wave at V_1 : 8 V to 18 V; f = 10 kHz; $t_r = t_f \le 100$ ns

Application Information

Application Circuit

Input, Output

The input capacitor C_1 is necessary for compensating line influences. Using a resistor of approx. 1 Ω in series with C_1 , the LC circuit of input inductivity and input capacitance can be damped. To stabilize the regulation circuits of the stand-by and main regulator, output capacitors C_{Q1} and C_{Q2} are necessary. Stability is guaranteed at values $C_{Q1} \ge 6 \ \mu\text{F} \& C_{Q2} \ge 10 \ \mu\text{F}$, both with an ESR $\le 10 \ \Omega$ within the operating temperature range.

For the TLE 4470 G (P-DSO-20-6) the output voltage V_{Q2} of the main regulator can be adjusted to 5 V $\leq V_{Q2rated} \leq 20$ V by connecting an external voltage divider to the voltage adjust pin VA. For V_{Q2} = 5 V the voltage adjust pin has to be connected directly to the main output.

For calculating V_{Q} or $R_{1} \& R_{2}$ respectively the following equations can be used:

$$V_{Q} = V_{ref} \times (R_{1} + R_{2}) / R_{2}$$

or
$$R_{1} = R \times (V_{Q} / V_{ref})$$

$$R_{2} = R \times R_{1} / (R_{1} - R)$$

Definitions:

 $R = R_1 // R_2$; $R \approx 100 \text{ k}\Omega$ $V_{\text{ref}} = \text{Output voltage of stand by regulator, typical 5 V}$

Disable

The main regulator of the TLE 4470 can be switched OFF by a voltage of 2.3 V at pin DIS. Reducing this voltage below 1.4 V will switch ON the main regulator again.

Reset Timing

The power-on reset delay time is defined by the charging time of an external capacitor C_d which can be calculated as follows:

$$C_{\rm d} = (\Delta t_{\rm d} \times I_{\rm d}) / \Delta V$$

Definitions: C_{d} = delay capacitor

 $\Delta t_{\rm d}$ = delay time

 $I_{\rm d}$ = charge current, typical 5 μ A

$$\Delta V = V_{dt}$$
, typical 1.8 V

 V_{dt} = upper delay switching threshold at C_{d} for reset delay time

The reset reaction time $t_{\rm rr}$ is the time it takes the voltage regulator to set the reset out LOW after the output voltage has dropped below the reset threshold. It is typically 2 µs for delay capacitor of 100 nF. For other values for $C_{\rm d}$ the reaction time can be estimated using the following equation:

$$t_{\rm rr} \approx 20 \ {\rm s/F} \times C_{\rm d}$$

SIEMENS

Figure 4 Reset Timing

Reset Switching Threshold

The internally set reset threshold is 4.65 V. When using the TLE 4470 G (P-DSO-20-6) this threshold can be adjusted to 3.5 V < $V_{\rm RTH}$ < 4.6 V by connecting an external voltage divider to pin RADJ. If this pin is not needed, it can be left open or even better connected to GND.

 $R_1 = R_2 \times (V_{\rm RT} - V_{\rm ref}) / V_{\rm ref}$

Definitions: V_{RT} = Reset threshold V_{ref} = comparator reference voltage, typical 1.35 V (Reset adjust input current \approx 50 nA)

The reset output pin is internally connected to the stand-by output Q1 via a 30 k Ω pull-up resistor. The reset LOW signal at pin RQ in guaranteed down to an output voltage V_{Q1} of 1 V typical.

Early Warning

The early warning function compares a voltage defined by the user to an internal reference voltage. Therefore the voltage to be supervised has to be scaled down by an external voltage divider in order to compare it to internal sense threshold (reference voltage) which is typically 1.35 V. The sense out pin is set to low when the user defined voltage falls below this threshold.

A typical example where this circuit can be used is to supervise the input voltage V_1 to give the microprocessor a prewarning of a low battery condition.

Calculation of the voltage divider can be easily done since the sense input current can be neglected.

To minimize transient influences the use of a capacitor in parallel to R_2 is recommended.

Like the reset output pin, the sense out pin SQ is internally connected to the stand-by output Q1 via a 30 k Ω pull-up resistor. The sense out LOW signal at pin SQ is generated down to an input voltage V_{I1} of 3 V typical.

Typical Performance Characteristics

Drop Voltage $V_{\rm dr}$ versus Output 1 Current $I_{\rm Q1}$

Drop Voltage V_{dr} versus Output 2 Current I_{Q2}

Output Voltage $V_{\rm Q1}/V_{\rm Q2}$ versus Output Current $I_{\rm Q1}$

Output 1 Voltage V_{Q1} versus Temperature T_i

Output Voltage V_{Q1} , V_{Q2} versus Input Voltage V_{I} ($V_{I1} = V_{I2}$)

Current Consumption I_q versus Input Voltage V_1

Current Consumption I_q versus Output 1 Current I_{Q1} (low load)

Current Consumption I_q versus Output 1 Current I_{Q1} (high load)

Current Consumption I_q versus Output 2 Current I_{Q2} (low load)

Current Consumption I_q versus Output 2 Current I_{Q2} (high load)

Reset Adjust Threshold $V_{\rm RADJTH}$ versus Temperature $T_{\rm j}$

Switching Voltage V_{DU} , V_{DL} versus Temperature T_{i}

Charge Current I_d versus Temperature T_j

Sense Threshold $V_{\rm SITH}$ versus Temperature $T_{\rm j}$

Package Outlines

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device

Dimensions in mm

SIEMENS

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device

Dimensions in mm