5-V Voltage Regulator

TLE 4287 G

Preliminary Data

Features

- Output voltage tolerance $\leq \pm 2\%$
- Very low standby current consumption
- Input voltage up to 42 V
- Reset function down to 1 V output voltage
- ESD protection up to 2000 V
- Adjustable reset time
- On/Off logic
- Overtemperature protection
- Reverse polarity protection
- Short-circuit proof
- Very wide temperature range
- Very small output capacitor

	Туре	Ordering Code	Package
▼	TLE 4287 G	Q67006-A9286	P-DSO-14-4 (SMD)

New type

Functional Description

The **TLE 4287 G** is a monolithic integrated 5-V voltage regulator in **P-DSO-14-4** package. It supplies an output current $I_Q > 250$ mA. The IC is short circuit proof and incorporates temperature protection that disables it at overtemperature.

The input voltage V_1 is regulated in the range of 7.5 V < V_1 < 40 V to V_{Qrated} = 5 V. Therefore a reference voltage, which is kept highly accurate by resistance adjustment, is compared via a control amplifier to a voltage that is proportional to the output voltage. The control amplifier drives the base of the series transistor by a buffer.

A comparator in the reset-generator block compares a reference voltage that is independent of the input voltage to the scaled-down output voltage. In the case of an output voltage $V_Q < 4.5$ V the reset delay capacitor is discharged and a reset signal is generated by setting the reset output LOW. The reset delay time can be set by an external capacitor within a wide range. When the output voltage rises above $V_Q \ge 4.5$ V the reset delay capacitor solution as the delay capacitor voltage reaches the upper switching threshold the reset output pin is set HIGH again.

The device has two logic inputs, *EN* and *H*. It is turned ON by a voltage > 4 V at *EN*, for example by the ignition and remains active in case *H* is set LOW, even if the voltage at *EN* goes LOW. This makes it possible to implement a self-holding circuit without external components. When the device is turned OFF, the output voltage drops to 0 V and current consumption tends towards 0 μ A. (Please see following truth table).

Design Notes for External Components

The input capacitor C_1 is necessary for compensation line influences. The resonant circuit consisting of lead inductance and input capacitance can be damped by a resistor of approx. 1 Ω in series with C_1 . The output capacitor is necessary for the stability of the regulating circuit. Stability is guaranteed for $C_Q \ge 100$ nF within the operating temperature range.

Table 1Truth Table for Turn-On/Turn-Off Logic

Enable EN	Hold H	V_{Q}	Remarks					
L	Х	0 V	Initial state, pin 9 internally pulled up					
Н	X	5 V	Regulator switched on via pin 6, by ignition for example					
Н	L	5 V	Pin 9 clamped active to GND by controller while pin 6 is still HIGH					
X	L	5 V	Previous state remains, even ignition is shut off: self-holding state					
L	L	5 V	Ignition shut off while regulator is in self-holding state					
L	Н	0 V	Regulator shut down by releasing of pin 9 while pin 6 remains LOW, final state. No active clamping required by external self-holding circuit (μ C) to keep regulator shut off					

Pin Configuration

(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	1	Input; block to ground directly at the IC by a ceramic capacitor
2	N.C.	Not connected
3, 4, 5, 10, 11, 12, 14	GND	Ground
9	Н	Hold and release; active low, see truth table above for function, connected to Q via a pull-up resistor of 50 k Ω
7	R	Reset Output ; open-collector output, internally connected to Q via a pull-up resistor of 30 k Ω
8	RD	Reset Delay ; connect to GND via external delay capacitor for setting delay time
6	EN	Enable ; active high, device is turned ON by HIGH signal at this pin, internally connected to GND via pull-down resistor of 100 k Ω
13	Q	Output ; block to GND with a capacitor $C_Q \ge 100 \text{ nF}$

Figure 1 Block Diagram

Absolute Maximum Ratings

$T_{\rm i} = -40$ to 165 °C

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Input I

Voltage	VI	- 0.5	42	V	-
Current	I	_	_	mA	internally limited

Output Q

Voltage	V_{Q}	- 0.3	7	V	_
Current	I _Q	_	_	_	internally limited

Reset Output R

Voltage	V_{R}	- 0.3	7	V	_
Current	I _R	_	-	-	internally limited

Reset Delay

Voltage	V_{d}	- 0.3	42	V	-
Current	I _d	-		_	_

Enable

Voltage	V_{EN}	- 42	42	V	-
Current	I _{EN}	- 5	5	mA	<i>t</i> ≤ 400 ms

Hold

Voltage	V_{H}	-2	7	V	-
Current	I _H	_	_	-	internally limited

Absolute Maximum Ratings (cont'd)

$T_{\rm i} = -40$ to 165 °C

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Ground GND

Current	I _{GND}	- 0.5	_	А	_
---------	------------------	-------	---	---	---

Temperatures

Junction temperature	Tj	- 40	165	°C	-
Junction temperature	T _j	- 40	175	°C	max. 15 min
Storage temperature	T _{stg}	- 50	150	°C	-

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Operating Range

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Input voltage	VI	7.5	42	V	-
Junction temperature	Tj	- 40	165	°C	-

Thermal Resistances

Junction pin	R _{thjc}	_	30	K/W	-
Junction ambient	$R_{ m thja}$	_	70	K/W	_

Note: ESD-Protection according to MIL Std. 883: $\pm 2 \text{ kV}$.

Electrical Characteristics

7.5 V \leq V_I \leq 40 V; - 40 °C < T_j < 150 °C; V_{EN} > 4 V (unless otherwise specified)

Parameter	Symbol	Lir	Limit Values		Unit	Test Condition
		min.	typ.	max.		
Output voltage	V _Q	4.90	5.0	5.10	V	$5 \text{ mA} < I_{\text{Q}} < 200 \text{ mA}$ 7.5 V < V_{I} < 22 V
Output voltage	V _Q	4.90	5.0	5.10	V	5 mA < $I_{\rm Q}$ < 80 mA 7.5 V < $V_{\rm I}$ < 36 V
Output current limitation	IQ	250	-	-	mA	V _I < 22 V
Drop voltage	V_{DR}	-	1.8	2.5	V	$I_{\rm Q} = 200 \ {\rm mA^{1)}}$
Current consumption $I_{q} = I_{I} - I_{Q}$	Iq	-	_	50	μA	Regulator OFF: $V_{\rm EN} = 0$ V, H = open
Current consumption $I_{q} = I_{I} - I_{Q}$	Iq	_	1.0	10	μA	$T_{\rm j}$ = 25 °C, $V_{\rm EN}$ = 0 V, H = open
Current consumption $I_{q} = I_{I} - I_{Q}$	Iq	_	2.3	5	mA	5 mA < I _Q < 200 mA
Load regulation	ΔV_{Q}	- 25	-	+ 25	mV	$5 \text{ mA} < I_Q < 200 \text{ mA}$
Line regulation	ΔV_{Q}	- 25	-	+ 25	V	7.5 V < V _I < 22 V
						$I_{\rm Q}$ = 20 mA
Power-Supply-Ripple-	PSRR	_	55	-	dB	$f_{\rm r} = 100 \; {\rm Hz};$
Rejection						$V_{\rm r}$ = 0.5 $V_{\rm SS}$
Temperature output voltage drift	$\Delta V_{\rm Q} / \Delta T$	-	0.5	-	mV/K	-
Output capacitance	CQ	100	-	-	nF	-

Reset Generator

Reset switching threshold	V _{rt}	4.50	4.65	4.80	V	_
Reset output low voltage	$V_{R,low}$	_	0.1	0.4	V	$R_{\rm R}$ = 4.7 k Ω to $V_{\rm Q}^{2)}$
Reset output high voltage	$V_{R,high}$	4.5	-	5.05	V	$R_{R} = \infty$
Reset pull up resistor	R _R	20	30	40	kΩ	internally connected to Q
Reset charging current	I _d	10	15	38	μA	V _D = 1.5 V
Delay switching threshold	V_{dt}	2.2	3	3.6	V	-
Delay switching threshold	V _{st}	0.1	0.43	0.8	V	-

Electrical Characteristics (cont'd)

7.5 V \leq V_I \leq 40 V; - 40 °C < T_{j} < 150 °C; V_{EN} > 4 V (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Delay saturation voltage	V _{d,sat}	-	50	-	mV	$V_{\rm Q}$ < $V_{\rm rt}$
Reset delay time, low ' high	t _d	7.5	20	30	ms	C _D = 100 nF
Reset delay time, high ' low	t _t	0.5	2.0	4.0	μs	C _D = 100 nF

Enable EN, Hold H

Enable turn-ON voltage	V_{EN}	2.3	3.0	4.0	V	IC turned-ON
Enable turn-OFF voltage	V_{EN}	2.0	2.5	3.5	V	IC turned-OFF
Enable pull-down resistor	R _{EN}	50	100	200	kΩ	internally connected to GND
Enable hysteresis	ΔV_{EN}	0.2	0.4	0.8	V	-
Enable input current	I _{EN}	_	35	100	μA	$V_{\rm EN} = 4 \ { m V}$
Hold keep on voltage	V _H	30	35	50	%	referred to $V_{\rm Q}$;
						$V_{\rm Q} > 4.5 \ {\rm V}$
Hold release voltage	V_{H}	60	70	80	%	referred to $V_{\rm Q}$;
						$V_{\rm Q} > 4.5 \ {\rm V}$
Hold pull-up resistor	R _H	20	50	100	kΩ	internally connected to Q

¹⁾ Measured when the output voltage $V_{\rm O}$ has dropped 100 mV from the nominal value

 $^{2)}~$ The reset output is LOW between $V_{\rm Q}$ = 1 V and $V_{\rm rt}$

Application Circuit

Time Response

Figure 4 Enable and Hold Behavior

Package Outlines

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device

Dimensions in mm