5-V Low-Drop Fixed Voltage Regulator

TLE 4278 G

Features

- Output voltage tolerance $\leq \pm 2\%$
- Very low current consumption
- · Separated reset and watchdog output
- Low-drop voltage
- Watchdog
- · Adjustable watchdog activating threshold
- Settable reset threshold
- Overtemperature protection
- Reverse polarity protection
- Short-circuit proof
- Suitable for use in automotive electronics
- Wide temperature range

Туре	Ordering Code	Package
TLE 4278 G	Q67006-A9291	P-DSO-14-4 (SMD)

Functional Description

The TLE 4278 is a monolithic integrated low-drop fixed-voltage regulator which can supply loads up to 200 mA. The device is available in the P-DSO-14-4 package. It is designed to supply microprocessor systems under the severe conditions of automotive applications and therefore is equipped with additional protection functions against over load, short circuit and over temperature. Of course the TLE 4278 can also be used in other applications where a stabilized voltage is required.

An input voltage V_1 in the range of 5.5 V $\leq V_1 \leq$ 45 V is regulated to $V_{\text{Qrated}} =$ 5 V within an accuracy of \pm 2%.

The device operates in the wide temperature range of $T_i = -40$ to 150 °C.

Two additional features of the TLE 4278 are a load dependent watchdog function as well as a power on reset and under voltage reset function with an adjustable reset delay time and adjustable reset switching threshold.

The watchdog function monitors whether the microcontroller is functioning appropriately, including time base failures. In the case that there is no positive-going edge within a certain pulse repetition-time the watchdog output is set to LOW. Programming of the max. repetition time is done by the reset delay capacitor so that no additional external components are necessary. To prevent the microcontroller from a automatic reset in case of missing pulses, the watchdog output WO is separated from the reset output RO for the TLE 4278. The watchdog output can be used as an interrupt signal for the microcontroller. Pin WO can be externally connected to pin RO.

When the controller is set to sleep mode or low power mode its current consumption drops and no watchdog pulses are created. In order to prevent the microcontroller from unnecessary wake ups due to missing pulses at pin WI the watchdog feature can be disabled as a function of the load. The switch off threshold is set by an external resistor to pin WADJ. This function can also be used as a timer, which periodically wakes up the controller. Therefore the pin WADJ has to be connected to the output Q.

The power on reset feature is necessary for a defined start of the microprocessor when switching on the application. For a certain delay time after the output voltage of the regulator has surpassed the reset threshold, a reset signal is generated. The delay time is set by an external delay capacitor. The under voltage reset circuit supervises the output voltage. In case VQ falls below the reset threshold the reset output is set LOW after a short reaction time. The reset LOW signal is generated down to an output voltage VQ of 1 V. In addition the reset switching threshold can be adjusted by an external voltage divider. This feature is useful with microprocessors which guarantee a safe operation down to voltages below the internally set reset threshold of 4.65 V typical.

Pin Configuration

(top view)

Figure 1

Pin Definitions and Functions

Pin	Symbol	Function
1	WO	Watchdog Output ; the open collector output is connected to the 5-V output via an integrated resistor of 30 k Ω .
2	WADJ	Watchdog Adjust; an external resistor to GND determine the watchdog activating threshold.
3, 4, 5, 10, 11, 12	GND	Ground
6	D	Reset Delay ; connect a capacitor to ground for delay time adjustment.
7	RADJ	Reset Switching Threshold Adjust ; for setting the switching threshold, connect a voltage divider from output to ground. If this input is connected to ground, the reset is triggered at the internal threshold.
8	WI	Watchdog input; positive-edge-triggered input for monitoring a microcontroller.
9	V _Q	5-V output voltage; block to ground with min. 10 μF capacitor, ESR < 10 Ω at 10 kHz.
13	VI	Input voltage; block to ground directly on the IC with ceramic capacitor.
14	RO	Reset output ; the open collector output is connected to the 5-V output via an integrated resistor of 30 k Ω .

Block Diagram

Figure 2

Absolute Maximum Ratings

$T_i = \cdot$	– 40 to	150 °C
---------------	---------	--------

Parameter	Symbol	Lim	it Values	Unit	Notes
		min.	max.		
Input Voltage V_{I}					
Voltage	V_{I}	- 42	45	V	-
Current	I_{I}	-	_	mA	Internally limited
Output Voltage V	⁷ a				
Voltage	V _Q	- 1	25	V	-
Current	I_{Q}	-	_	mA	Internally limited
Reset Output RO)				
Voltage	$V_{\sf RO}$	- 0.3	25	V	-
Current	I_{RO}	- 5	5	mA	_
Reset Delay D					
Voltage	V _D	- 0.3	7	V	-
Current	I _D	- 2	2	mA	_
Reset Switching	Threshold Adjus	t RADJ			
Voltage	V_{RADJ}	- 0.3	7	V	-
Current	I_{RADJ}	-	-	mA	Internally limited
Watchdog Input	WI				
Voltage	$V_{ m WI}$	- 0.3	7	V	-
Current	$I_{ m WI}$	_	-	mA	Internally limited
Watchdog Outpu	ıt WO				
Voltage	$V_{\sf WO}$	- 0.3	25	V	-
Current	$I_{\sf WO}$	- 5	5	mA	_

Absolute Maximum Ratings (cont'd)

$T_{\rm i} = -40$ to 150 °C

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		

Watchdog Adjust WADJ

Voltage	V_{WADJ}	- 0.3	7	V	_
Current	I_{WADJ}	-	_	mA	Internally limited

Ground GND

Current I _{GND}	- 100	50	mA	-
--------------------------	-------	----	----	---

Temperatures

Junction temperature	Tj	- 50	150	°C	-
Storage temperature	$T_{ m stg}$	- 50	150	°C	_

Note: ESD protection according to MIL Std. 883: $\pm 2 \text{ kV}$. Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

Operating Range

Parameter	Symbol	Limit Values		Unit	Notes
		min.	max.		
Input voltage	V_{I}	5.5	45	V	-
Junction temperature	Tj	- 40	150	°C	_

Thermal Resistance

Junction ambient	$R_{ m thj-a}$	_	70	K/W	Measured to pin 4
Junction pin	$R_{ m thj\text{-}pin}$	_	25	K/W	Measured to pin 4

Note: In the operating range the functions given in the circuit description are fulfilled.

Electrical Characteristics

 $V_{\rm I}$ = 13.5 V; – 40 °C \leq $T_{\rm j} \leq$ 125 °C (unless otherwise specified)

Parameter	Symbol	Symbol Limit Va			Unit	Test Condition
		min.	typ.	max.		
Output voltage	V _Q	4.90	5.00	5.10	V	1 mA $\leq I_Q \leq$ 150 mA; 6 V $\leq V_I \leq$ 28 V
Output voltage	V _Q	4.8	5.0	5.2	V	1 mA $\leq I_Q \leq$ 50 mA; 28 V $\leq V_I \leq$ 45 V
Output current limiting	IQ	200	350	_	mA	$V_{\rm Q} = 4 \ {\rm V}$
Current consumption $I_{q} = I_{I} - I_{Q}$	Iq	-	180	200	μA	$T_{\rm j}$ = 25 °C; $I_{\rm Q}$ = 0 mA
Current consumption $I_{q} = I_{I} - I_{Q}$	Iq	-	180	230	μA	$I_{Q} = 0 \text{ mA};$ $T_{j} = 85 ^{\circ}\text{C}$
Current consumption $I_q = I_I - I_Q$	Iq	-	5	12	mA	<i>I</i> _Q = 150 mA
Drop voltage; $V_{\rm DR} = V_{\rm I} - V_{\rm Q}$	V_{DR}	-	0.25	0.5	V	$I_{\rm Q} = 150 \ {\rm mA^{1)}}$
Load regulation	ΔV_{Q}	- 30	- 5	-	mV	$I_{\rm Q} = 5$ to 150 mA; $V_{\rm I} = 6$ V
Supply voltage regulation	ΔV_{Q}	-	5	20	mV	$V_{\rm I}$ = 6 to 28 V $I_{\rm Q}$ = 5 mA

Reset Generator

Reset threshold	V_{RT}	4.5	4.65	4.8	V	RADJ connected to GND
Reset headroom	$\Delta V_{Q,RT}$	180	300	-	mV	$I_{\rm Q} = 10 {\rm mA}$
Reset adjust threshold	V_{RADJTH}	1.28	1.35	1.45	V	$V_{\rm Q} \ge 3.5 \ {\rm V}$
Reset low voltage	V_{ROL}	_	0.20	0.40	V	$R_{\rm ext}$ = 10 k Ω to $V_{\rm Q}$ $V_{\rm Q} \ge$ 1 V
Reset high voltage	V_{ROH}	4.5	_	_	V	-
Reset pull-up	R _{RO}	20	30	45	kΩ	Internal connected to $V_{\rm Q}$
Charging current	I _d	2	5	8	μA	$V_{\rm D} = 1.0 \ {\rm V}$

Electrical Characteristics (cont'd)

$V_{\rm I}$ = 13.5 V; – 40 °C \leq $T_{\rm j} \leq$ 125 °C (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Upper timing threshold	$V_{\rm DU}$	1.5	1.9	2.3	V	-
Lower reset timing threshold	V_{DRL}	0.2	0.3	0.4	V	-
Delay time	t _d	12	20	28	ms	$C_{\rm D} = 47 \; {\rm nF}$
Reset reaction time	t _{RR}	0.4	1.0	2.0	μs	$C_{\rm D} = 47 \; {\rm nF}$

Watchdog

V_{WADJ}	1.28	1.35	1.45	V	Voltage at WADJ
$I_{\rm Q}/I_{\rm WADJ}$	650	720	800	-	$I_{\rm Q} \le 10 \ {\rm mA}$
$V_{ m WI}$	5	-	-	V/µs	From 20% up to 80% $V_{\rm Q}$
V_{WOL}	-	0.2	0.4	V	$R_{\rm ext}$ = 10 k Ω to $V_{\rm Q}$
V_{WOH}	4.5	-	-	V	-
R _{WO}	20	30	45	kΩ	Internal connected to $V_{\rm Q}$
I _d	2	5	8	μA	$V_{\rm D} = 1.0 \ {\rm V}$
$I_{\rm dis}$	0.6	1.3	2.0	μA	$V_{\rm D} = 1.0 \ {\rm V}$
$V_{\rm DU}$	1.5	1.9	2.3	V	-
V_{DWL}	0.5	0.7	0.9	V	_
$T_{\rm WP}$	42	60	80	ms	$C_{\rm d} = 47 \; {\rm nF}$
t _{WR}	7	13	19	ms	$V_{\rm Q}$ > $V_{\rm RT}$
$T_{ m WT}$	35	47	61	ms	<i>C</i> _d = 47 nF
	I_{Q}/I_{WADJ} V_{WI} V_{WOL} V_{WOH} R_{WO} I_{d} I_{dis} V_{DU} V_{DWL} T_{WP} t_{WR}	I_Q/I_{WADJ} 650 V_{WI} 5 V_{WOL} - V_{WOH} 4.5 R_{WO} 20 I_d 2 I_{dis} 0.6 V_{DU} 1.5 V_{DWL} 0.5 T_{WP} 42 t_{WR} 7	I_Q/I_{WADJ} 650 720 V_{WI} 5 - V_{WOL} - 0.2 V_{WOH} 4.5 - R_{WO} 20 30 I_d 2 5 I_{dis} 0.6 1.3 V_{DU} 1.5 1.9 V_{DWL} 0.5 0.7 T_{WP} 42 60 t_{WR} 7 13	I_Q/I_{WADJ} 650 720 800 V_{WI} 5 - - V_{WOL} - 0.2 0.4 V_{WOH} 4.5 - - R_{WO} 20 30 45 I_d 2 5 8 I_d 2 5 8 I_{dis} 0.6 1.3 2.0 V_{DU} 1.5 1.9 2.3 V_{DWL} 0.5 0.7 0.9 T_{WP} 42 60 80 t_{WR} 7 13 19	I_Q/I_{WADJ} 650720800 $ V_{WI}$ 5 $ V/\mu s$ V_{WOL} $-$ 0.20.4 V V_{WOH} 4.5 $ V$ R_{WO} 203045 $k\Omega$ I_d 258 μA I_{dis} 0.61.32.0 μA V_{DU} 1.51.92.3 V V_{DWL} 0.50.70.9 V T_{WP} 426080ms t_{WR} 71319ms

¹⁾ Measured when the output voltage V_{Q} has dropped 100 mV from the nominal value.

Test Circiut

Figure 3

Application Information

Input, Output

The input capacitors C_{11} and C_{12} are necessary for compensating line influences. Using a resistor of approx. 1 Ω in series with C_{11} , the LC circuit of input inductivity and input capacitance can be damped. To stabilize the regulation circuit the output capacitor C_{Q} is necessary. Stability is guaranteed at values $C_{Q} \ge 10 \ \mu\text{F}$ with an ESR $\le 5 \ \Omega$ within the operating temperature range.

Figure 4 Application Circuit

Reset Timing

The power-on reset delay time is defined by the charging time of an external capacitor C_{d} which can be calculated as follows:

$$C_{\rm d} = (\Delta t_{\rm d} \times I_{\rm d}) / \Delta V$$

Definitions:

 C_{d} = delay capacitor Δt_{d} = delay time I_{d} = charge current, typical 5 mA $\Delta V = V_{DU}$, typical 1.9 V V_{DU} = upper delay switching threshold at C_{d} for reset delay time

The reset reaction time t_{rr} is the time it takes the voltage regulator to set the reset out LOW after the output voltage has dropped below the reset threshold. It is typically 1 µs for delay capacitor of 47 nF. For other values for C_d the reaction time can be estimated using the following equation:

$$t_{\rm rr} \approx 20 \ {\rm s/F} \times C_{\rm d}$$

Figure 5 Reset Timing (Watchdog Disabled)

Reset Switching Threshold

The present default value is 4.65 V. When using the TLE 4278 the reset threshold can be set to 3.5 V < V_{RTH} < 4.6 V by connecting an external voltage divider to pin RADJ. The calculation can be easily done since the reset adjust input current can be neglected. If this feature is unused, the pin can be left open or even better connected to GND.

$$R_1 = R_2 \times (V_{\text{RTH}} - V_{\text{ref}})/V_{\text{ref}}$$

Definitions:

 $V_{\rm RT}$ = Reset threshold

 $V_{\rm ref}$ = comparator reference voltage, typical 1.35 V

(Reset adjust input current ≈ 50 nA)

Figure 6

The reset output pin is internally connected to the 5 V-output Q via a 30 k Ω pull-up resistor. Down to an output voltage V_Q of typical 1 V the reset LOW signal at pin RO in generated.

For the timing of the reset feature please refer to the data sheet, figure 5.

Watchdog Activating

The calculation of the external resistor which adjusts the watchdog switch off threshold can be done by the following equation.

 $R_{\text{WADJ}} = V_{\text{WADJ}} \times (I_{\text{Q}}/I_{\text{WADJ}})/I_{\text{QACT}}$

Definitions:

 $I_{\rm Q}/I_{\rm WADJ}$ = current ratio, typical 720

 V_{WADJ} = switch off threshold, typical 1.35 V

 I_{QACT} = switch off load current

Figure 7

Watchdog Timing

The frequency of the watchdog pulses has to be higher than the minimum pulse sequence which is set by the external reset delay capacitor C_{d} . Calculation can be done according to the formulas given in figure 8.

The watchdog output is internally connected to the output Q via a 30 k Ω pull-up resistor. To generate a watchdog created reset signal for the microcontroller the pin WO can be connected to the reset input of the microcontroller. It is also allowed to parallel the watchdog out to the reset out.

Figure 8 Timing of the Watchdog Function

Hints for Unused Pins

Symbol	Function	Connect to				
RO	Reset output	open				
D	Reset delay	open or to output Q				
RADJ	Reset switching threshold adjust	GND				
WI	Watchdog input	GND				
WO	Watchdog output	open				
WADJ	Watchdog adjust	 to output Q via a 270 kΩ resistor: Watchdog always active to GND: Watchdog disabled 				

Drop Voltage V_{DR} versus Output Current I_{Q}

Current Consumption I_q versus Input Voltage V_I

Current Consumption I_q versus Output Current I_Q

Output Voltage $V_{\rm Q}$ versus Input Voltage $V_{\rm I}$

Charge Current I_d and Discharge Current I_{dis} versus Temperature T_j

Output Voltage V_{Q} versus Temperature T_{i}

Switching Voltage $V_{DU,} V_{DWL}$ and V_{DRL} versus Temperature T_j

Output Current Limit $I_{\rm Q}$ versus Input Voltage $V_{\rm I}$

Package Outlines

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device

Dimensions in mm