5-V Low-Drop Voltage Regulator

TLE 4266

Bipolar IC

Features

- Output voltage tolerance ≤ ± 2 %
- Very low current consumption
- Low-drop voltage
- Overtemperature protection
- Reverse polarity proof
- Wide temperature range
- Suitable for use in automotive electronics
- Inhibit

Туре	Ordering Code	Package	
TLE 4266 G	Q67006-A9152	P-SOT223-4-2	

▼ New type

Functional Description

TLE 4266 G is a 5 V low-drop voltage regulator in a P-SOT223-4-2 SMD package. The IC regulates an input voltage V_i in the range of 5.5 V < V_i < 45 V to $V_{\rm Qrated}$ = 5 V. The maximum output current is more than 120 mA. The IC can be switched off via the inhibit input, which causes the current consumption to drop below 10 μ A. The IC is shortcircuit-proof and incorporates temperature protection that disables the IC an overtemperature.

Dimensioning Information on External Components

The input capacitor C_i is necessary for compensating line influences. Using a resistor of approx. 1 Ω in series with C_i , the oscillating of input inductivity and input capacitance can be clamped. The output capacitor C_Q is necessary for the stability of the regulating circuit. Stability is guaranteed at values $C_Q \ge 10 \, \mu\text{F}$ and an ESR $\le 10 \, \Omega$ within the operating temperature range.

Pin Configuration

(top view)

Pin Definitions and Functions

Pin	Symbol	Function
1	V_{I}	Input voltage ; block to ground directly at the IC with a ceramic capacitor.
2	Inh	Inhibit; low-active input.
3	V_{Q}	5-V output voltage ; block to ground with a \geq 10 μ F capacitor.
4	GND	Ground

Circuit Description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any oversaturation of the power element. The IC also incorporates a number of internal circuits for protection against:

- Overload,
- Overtemperature,
- Reverse polarity.

Block Diagram

Absolute Maximum Ratings $T_{\rm j}$ = -40 to 150 °C

Parameter	Symbol	Lim	it Values	Unit	Notes
		min.	max.		
Input					
Voltage	V_{i}	- 42	45	V	
Current	I_{i}				internally limited
Inhibit					
Voltage	V_{e}	- 42	45	V	
Output					
Voltage	V_{Q}	-1	16	V	
Current	I_{Q}				internally limited
GND	•				
Current	I_{M}	50		mA	
Temperature					
Junction temperature	T_{j}		150	°C	
Storage temperature	$T_{\mathbb{S}}$	- 50	150	°C	
Operating Range					
Input voltage	V_{i}	5.5	45	V	
Junction temperature	$T_{\rm j}$	- 40	150	°C	
Thermal Resistance					
Junction ambient	R_{thjA}		100	K/W	soldered
Junction case	R_{thjC}		25	K/W	

Characteristics

 $V_{\rm I}$ = 13.5 V; - 40 °C $\leq T_{\rm j} \leq$ 125 °C

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Output voltage	V_{Q}	4.9	5	5.1	V	$5 \text{ mA} \le I_{\text{Q}} \le 100 \text{ mA}$ $6 \text{ V} \le V_{\text{i}} \le 28 \text{ V}$
Output-current limitation	I_{Q}	120	150		mA	
Current consumption $I_{q} = I_{i} - I_{Q}$	I_{q}		0	10	μΑ	$V_{\rm e} = 0 \text{ V}; T_{\rm j} \le 100 {}^{\circ}\text{C}$
Current consumption $I_{q} = I_{i} - I_{Q}$	I_{q}			400	μΑ	$I_{\rm Q}$ = 1 mA
Current consumption $I_{q} = I_{i} - I_{Q}$	I_{q}		10	15	mA	$I_{\rm Q}$ = 100 mA
Drop voltage	V_{Dr}		0.25	0.5	V	$I_{\rm Q}$ = 100 mA ¹⁾
Load regulation	ΔV_{Q}			40	mV	$I_{\rm Q}$ = 5 to 100 mA $V_{\rm i}$ = 6 V
Supply-voltage regulation	ΔV_{Q}		15	30	mV	$V_{\rm I}$ = 6 V to 28 V $I_{\rm Q}$ = 5 mA
Supply-voltage rejection	SVR		54		dB	$f_{\rm r}$ = 100 Hz $V_{\rm r}$ = 0.5 $V_{\rm SS}$
Inhibit						
Inhibit on voltage	$V_{e,on}$			3.5	V	
Inhibit off voltage	$V_{e,off}$	0.8			V	
Inhibit current	$I_{ m e}$	5	15	25	μΑ	$V_{\rm e}$ = 5 V

¹⁾ Drop voltage = $V_{\rm i}$ – $V_{\rm Q}$ (measured when the output voltage $V_{\rm Q}$ has dropped 100 mV from the nominal value obtained at $V_{\rm i}$ = 13.5 V).

Measuring Circuit

Application Circuit

Drop Voltage V_{Dr} versus Output Current I_{Q}

Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$

Current Consumption I_{q} versus Input Voltage V_{i}

Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$

Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm j}$

Output Voltage V_{Q} versus

Output Current I_{Q} versus Input Voltage V_{i}

Output Voltage V_{Q} versus Inhibit Voltage V_{e}

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information"

SMD = Surface Mounted Device

Dimensions in mm