INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC01 March 1991

TEA5594

GENERAL DESCRIPTION

The TEA5594 is a 32-pin integrated radio circuit designed for use in all Electronic Tuned Radio (ETR) sets especially those sets which have to fulfil the immunity requirements of CENELEC.

The AM circuit incorporates:

- A double balanced mixer
- A 'one-pin' oscillator with amplitude control operating in the LW/MW frequency range
- An IF amplifier and AM detector
- · An AGC circuit which controls the IF amplifier and mixer

The FM circuit incorporates:

- A front-end (fulfilling the "out of band" CENELEC requirements)
- Two IF amplifiers (for distributed selectivity)
- · A quadrature demodulator with a ceramic filter

PACKAGE OUTLINE

32-lead shrink DIL; plastic (SOT232); SOT232-1; 1996 September 9.

The TEA5594 also contains:

- Oscillator output buffers for AM and FM
- A combined AM/FM IF counter output buffer with counter "enable" function
- A field strength level detector for AM and FM
- A soft mute circuit at FM, adjustable
- An extra IF amplifier to split up IF filtering

Features

- Low distortion on FM
- AM/FM level/indicator circuit
- A DC AM/FM switch facility
- Supply voltages 2.7 to 15 V
- A local distance switch facility (LOCAL-DX) at FM
- All pins are ESD protected

TEA5594

QUICK REFERENCE DATA

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage (pin 9)		VP	2.7	_	15	V
Total current consumption						
AM part		I _P	-	13	-	mA
FM part		I _P	-	24	-	mA
Operating ambient temperature range		T _{amb}	-40	-	+85	°C
AM performance (pin 22)	note 1					
Sensitivity	$V_o = 10 \text{ mV}$	Vi	-	3.5	-	μV
	(S + N)/N = 26 dB	Vi	-	16	-	μV
Signal-to-noise ratio	$V_i = 1 \text{ mV}$	(S + N)/N	-	48	-	dB
AF output voltage		Vo	-	50	-	mV
Total harmonic distortion		THD	-	0.8	-	%
Signal handling	m = 80%; THD = 8%	Vi	-	100	-	mV
FM performance (pin 30)	note 2					
Limiting sensitivity	–3 dB; note 3	Vi	-	2.5	-	μV
Signal-to-noise ratio	$V_i = 3 \mu V$	(S + N)/N	-	26	-	dB
	$V_i = 1 \text{ mV}$	(S + N)/N	-	60	-	dB
AF output voltage		Vo	-	90	-	mV
Total harmonic distortion		THD	-	0.1	-	%
Maximum signal handling		Vi	-	200	-	mV
AM suppression	100 μV < V _i <					
	100 mV	AMS	-	50	-	dB

Notes to the quick reference data

- 1. All parameters are measured in the application circuit (see Fig.5) at nominal supply voltage $V_p = 8.5$ V; $T_{amb} = 25$ °C; unless otherwise specified. RF conditions: Input frequency 1 MHz; 30% modulated with $f_{mod} = 1$ kHz; unless otherwise specified.
- 2. All parameters are measured in the application circuit (see Fig.5) at nominal supply voltage $V_p = 8.5$ V; $T_{amb} = 25$ °C; unless otherwise specified. RF conditions: Input frequency 100 MHz; frequency deviation $\Delta f = 22.5$ kHz and $f_{mod} = 1$ kHz; unless otherwise specified.
- 3. Soft mute switched off.

TEA5594

AM/FM radio receiver circuit

TEA5594

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

PARAMETER	CONDITIONS	SYMBOL	MIN.	MAX.	UNIT
Supply voltage (pin 9)		V _P	_	18	V
Total power dissipation		P _{tot}	see	Fig.4	
Storage temperature range		T _{stg}	-65	+150	°C
Operating ambient temperature range		T _{amb}	-40	+85	°C
Electrostatic handling ⁽¹⁾		V _{es}	-2000	+2000	V

Note

1. Equivalent to discharging a 200 pF capacitor through a 1.5 k Ω series resistor.

TEA5594

DC CHARACTERISTICS

All voltages are referenced to pin 10, pin 19 and pin 32; all input currents are positive; all parameters are measured in application circuit (see Fig.5) at nominal supply voltage $V_P = 8.5 \text{ V}$; $T_{amb} = 25 \text{ °C}$ unless otherwise specified.

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage		V _P	2.7	8.5	15	V
Voltages (FM)						
Pin 4		V ₄	_	2.3	_	V
Pin 5		V ₅	_	2.2	_	V
Pin 7		V ₇	-	2.3	_	V
Pin 8		V ₈	-	2.3	-	V
Pin 12		V ₁₂	-	1.15	-	V
Pin 27		V ₂₇	-	1.6	-	V
Pin 29		V ₂₉	-	1.0	-	V
Pin 30		V ₃₀	-	0.9	-	V
Pin 31		V ₃₁	-	1.6	-	V
Voltages (AM)						
Pin 12		V ₁₂	-	0.2	_	V
Pin 14		V ₁₄	_	0.8	_	V
Pin 15		V ₁₅	_	1.54	_	V
Pins 22 and 23		V ₂₂ , V ₂₃	-	1.1	_	V
Pin 24		V ₂₄	-	1.6	-	V
Total current consumption						
AM part		I _P	_	13	(1)	mA
FM part		I _P	_	24	(1)	mA

Note

1. Value to be fixed.

TEA5594

AC CHARACTERISTICS

All parameters are measured in test circuit (see Fig.6) at nominal supply voltage $V_P = 6 \text{ V}$; $T_{amb} = 25 \text{ °C}$ unless otherwise specified.

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
AM SECTION						
AM front end	note 1					
Conversion transconductance	V _i = 10 mV					
	V _{AGC} (pin 15)					
	= V ₂₄ - 0.1 V	S _C	(9)	13.5	(9)	mA/V
	V _{AGC} = V ₂₄ - 0.45 V	Sc	(9)	1.2	(9)	mA/V
IF suppression	note 2	α	20	30	-	dB
Oscillator (pin 25)						
Voltage	f = 1.5 MHz	Vosc	_	160	(9)	mV
Oscillator buffer						
Output voltage						
(peak-to-peak value)		V ₁₈	(9)	140	_	mV
IF and detector part	note 3					
IF sensitivity;						
AF output voltage	no AGC;					
	V _{i(IF)} = 90 μV	Vo	30	40	60	mV
Signal + noise to noise	no AGC;					
ratio for an IF input	$V_{i(IF)} = 90 \ \mu V$	S+N/N	22	24	30	dB
AF output voltage	$V_{i(IF)} = 1 \text{ mV}$	Vo	35	50	70	mV
Total harmonic distortion	$V_{i(IF)} = 10 \text{ mV};$					
	m = 80%	THD	0.75	2	5	%
	$V_{i(IF)} = {}^{(9)}$ to ${}^{(9)}$ mV;					
	m = 30%	THD	-	(9)	-	%
Indicator/level detector						
Output voltage	$V_{i(IF)} = 0 V$	V ₁₃	(9)	560	(9)	mV
	$V_{i(IF)} = 200 \ \mu V$	V ₁₃	(9)	3200	(9)	mV
	V _{i(IF)} = 10 mV	V ₁₃	(9)	6600	(9)	mV
AM IF counter output buffer						
Counter "enable"						
Output voltage						
(peak-to-peak value)		V ₂₀	100	125	_	mV
Counter "disable"						
Suppression of 468 kHz		V ₂₀	-40	_	_	dB
Overall performance	note 4					
Total harmonic distortion	V _{i(RF)} = 50 mV	THD	-	_	8	%
Signal handling	THD = ⁽⁹⁾ %; m = 0.8%		_	(9)	_	

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Counter enable circuit						
IF counter output OFF		V ₂₁	_	_	0.8	V
IF counter output ON		V ₂₁	2	_	VP	V
FM SECTION						
FM front end	note 5					
Conversion transconductance	$V_{i(RF)} = 1 \text{ mV};$					
	$V_{AGC} = 1.1 V$	Sc	16	24	32	mA/V
	$V_{i(RF)} = 1 \text{ mV};$					
	$V_{AGC} = 0.8 V$	Sc	5	10	15	mA/V
Oscillator (pin 26)						
Voltage		V _{osc}	_	250	_	mV
Oscillator buffer						
Output voltage						
(peak-to-peak value)		V ₁₇	(9)	270	_	mV
	note 6	• 17		210		
IF and demodulator part						
IF sensitivity	note 7					
AF output voltage	$V_{i(IF)} = 40 \ \mu V$					
	no mute	Vo	-3	-1	0	dB
	with mute	Vo	-20	-30 (9)	-40	dB
AM suppression	note 8	α	-	(3)	-	dB
Signal + noise-to-noise	no mute;		00	40	50	
ratio for an IF input	$V_{i(IF)} = 40 \mu V$	S+N/N	28	46 (9)	50	dB
	$V_{i(IF)} = 1 \text{ mV}$	S+N/N	— (9)		— (9)	dB
AF output voltage Total harmonic distortion	$V_{i(IF)} = 1 \text{ mV}$	Vo	(0)	85	(0)	mV
Total narmonic distortion	V _{i(IF)} = 50 mV Δf = 75 kHz	THD		1		%
		THD	-	1 (9)	-	
	∆f = 22.5 kHz		-		-	%
Indicator/level detector						
Output voltage	$V_{i(IF)} = 0 V$	V ₁₃	(9)	2600	(9)	mV
	$V_{i(IF)} = 50 \ \mu V$	V ₁₃	(9)	5750	(9)	mV
	$V_{i(IF)} = 1 \text{ mV}$	V ₁₃	(9)	6250	(9)	mV
AM/FM IF counter output buffer						
Counter "enable"	noto 5					
	note 5					
Output voltage				120		m)/
(peak-to-peak value) Counter "disable"		V ₂₀	-	130	-	mV
Suppression of 10.7 MHz		V ₂₀	-40	-		dB

TEA5594

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Counter enable circuit				v		
IF counter output OFF		V ₂₁	-	_	0.8	v
IF counter output ON		V ₂₁	2	-	V _P	V
AM/FM switch						
FM OFF/AM ON		V ₈₋₁₀	-	0	0	v
FM ON/AM OFF		V ₂₄₋₁₀	_	0	0	V

Notes to the characteristics

1. Input frequency = 1 MHz, output frequency = 468 kHz;

 $S_{C} = \frac{V_{o(IF)}}{V_{i(RF)}} \times \frac{N2/N3}{R}$ (see TR2 Component data)

Where R = 1.2 k Ω (total impedance at pin 16).

- 2. $\alpha = 20 \log (V_i \text{ at } f_i = 468 \text{ kHz})/(V_i \text{ at } f_i = 1 \text{ MHz}); V_o = 10 \text{ mV}; \text{ no AGC}.$
- 3. Input frequency = 468 kHz; m = 30% modulated with f_{mod} = 1 kHz; R_{source} = 800 Ω unless otherwise specified.
- 4. Front-end connected to IF plus detector part (see Fig.5). Input frequency = 1 MHz; m = 80% modulated with f_{mod} = 1 kHz.
- 5. Input frequency = 100 MHz, output frequency = 10.7 MHz;

$$S_{c} = \frac{V_{o(IF)}}{V_{i(RF)}} \times \frac{N1/N2}{R}$$
 (see TR3 Component data)

Where $R = 6.6 k\Omega$ (total impedance at pin 2).

- 6. Input frequency = 10.7 MHz; frequency deviation, Δf = 22.5 kHz and f_{mod} =1 kHz; unless otherwise specified.
- 7. Reference: AF output voltage = 0 dB at $V_{i(IF)}$ = 1 mV; No mute: $V_1 = V_8$; With mute: $V_1 = 0$ V.
- 8. AM suppression is measured with AM only: m = 0.8% and f_{mod} = 1 kHz referred to AF output at FM only: Δf = 75 kHz and f_{mod} = 1 kHz.
- 9. Value to be fixed.

TEA5594

APPLICATION AND TEST INFORMATION

TEA5594

Component data

COILS

TEA5594

CERAMIC FILTERS

AM-IF (K1). SFZ468HL3.

FM-IF (K2). SFE10.7MS3.

FM detector (K3). CDA10.7MC1 (MC6).

TEA5594

95-02-04

AM/FM radio receiver circuit

PACKAGE OUTLINE

SDIP32: plastic shrink dual in-line package; 32 leads (400 mil)

SOT232-1

TEA5594

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg\,max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status				
Objective specification	This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.			
Product specification	This data sheet contains final product specifications.			
Limiting values				
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or				

more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.