INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC01 February 1990

TEA5591A

GENERAL DESCRIPTION

The TEA5591A is a 24-pin integrated radio circuit, derived from the TEA5591 and is designed for use in AM/FM portable radios and clock radios. The TEA5591A differs from the TEA5591 in that it has:

- Separate IF input pins for AM and FM
- A split-up AM-IF stage (for distributed selectivity)
- An LED driver indicator

The main advantage of the TEA5591A is its ability to operate over a wide range of supply voltages (1.8 to 15 V) without any loss of performance.

The AM circuit incorporates:

- A double balance mixer
- A 'one-pin' oscillator with amplitude control operating in the 0.6 to 30 MHz frequency range
- A split-up IF amplifier
- A detector
- An AGC circuit which controls the IF amplifier and mixer.

The FM circuit incorporates:

- An RF input amplifier
- A double balanced mixer
- A 'one-pin' oscillator
- Two IF amplifiers (for distributed selectivity)
- · A quadrature demodulator for a ceramic filter
- Internal AFC

Features

- LED AM/FM indicator
- A DC AM/FM switch facility
- Three separate stabilizers to enable operation over a wide range of supply voltages (1.8 to 15 V)
- All pins (except pin 10) are ESD protected

PACKAGE OUTLINE

24-lead shrink DIL; plastic (SOT234); SOT234-1; 1996 September 9.

TEA5591A

QUICK REFERENCE DATA

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage (pin 8)		VP	1.8	-	15	V
Total current consumption						
AM part		I _P	-	14	-	mA
FM part		I _P	-	17	-	mA
Operating ambient						
temperature range		T _{amb}	-15	-	+ 60	°C
AM performance (pin 1)	note 1					
Sensitivity	$V_o = 10 \text{ mV}$	Vi	_	3.5	_	μV
	(S + N)/N = 26 dB	Vi	-	17	-	μV
Signal-to-noise ratio	$V_i = 1 \text{ mV}$	(S + N)/N	-	48	-	dB
AF output voltage		Vo	-	45	-	mV
Total harmonic distortion		THD	-	0.7	-	%
Signal handling	m = 80%; THD = 8%	Vi	-	100	-	mV
FM performance (pin 2)	note 2					
Limiting sensitivity	–3 dB	Vi	_	2.3	_	μV
Signal-to-noise ratio	$V_i = 2.5 \mu V$	(S + N)/N	-	26	-	dB
	$V_i = 1 mv$	(S + N)/N	-	60	-	dB
AF output voltage		Vo	-	90	_	mV
Total harmonic distortion		THD	-	0.8	_	%
Signal handling		Vi	-	100	-	mV
AM suppression	$100 \ \mu V < V_i <$					
	100 mV	AMS	-	40	-	dB

Notes to the quick reference data

- All parameters are measured in the application circuit (see Fig.4) at nominal supply voltage V_p = 3 V; T_{amb} = 25 °C; unless otherwise specified. RF conditions: Input frequency 1 MHz; 30% modulated with f_{mod} = 1 kHz; unless otherwise specified.
- 2. All parameters are measured in the application circuit (see Fig.4) at nominal supply voltage $V_P = 3 \text{ V}$; $T_{amb} = 25 \text{ °C}$; unless otherwise specified. RF conditions: Input frequency 100 MHz; frequency deviation $\Delta f = 22.5 \text{ kHz}$ and $f_{mod} = 1 \text{ kHz}$; unless otherwise specified.

TEA5591A

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
Supply voltage (pin 8)	V _P	_	18	V
LED current (pin 7)	I ₇	_	tbf	mA
Total power dissipation	P _{tot}	see Fig.4		
Storage temperature range	T _{stg}	-65	+150	°C
Operating ambient temperature range	T _{amb}	–15	+60	°C
Electrostatic handling ⁽¹⁾	V _{es}	-1000	+1000	V

Note

1. Equivalent to discharging a 100 pF capacitor through a 1500 Ω series resistor.

TEA5591A

DC CHARACTERISTICS

All voltages are referenced to pin 3 and pin 9; all input currents are positive; all parameters are measured in test set-up (see Fig.6) at nominal supply voltage $V_P = 3 V$; $T_{amb} = 25 \degree C$ unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage		VP	1.8	3.0	15	V
Voltages (FM)						
pin 2		V ₂	_	0.90	_	V
pin 4		V ₄	_	0.85	_	V
pin 5		V ₅	_	1.60	_	V
pin 6		V ₆	_	1.48	-	V
pin 10		V ₁₀	_	1.05	_	V
pin 18		V ₁₈	_	1.60	-	V
pin 19		V ₁₉	_	1.58	-	V
pin 21		V ₂₁	_	0.69	_	V
pin 23		V ₂₃	-	1.60	-	V
Voltages (AM)						
pin 14		V ₁₄	_	1.60	_	V
pin 16		V ₁₆	_	1.54	_	V
pin 19		V ₁₉	_	1.10	_	V
Total current consumption	note 1					
AM part		I _P	_	14	19	mA
FM part		I _P	_	17	23	mA

Note to the DC characteristics

1. Without LED current.

TEA5591A

AC CHARACTERISTICS

All parameters are measured in test set-up (see Fig.6) at nominal supply voltage $V_P = 3 \text{ V}$; $T_{amb} = 25 \text{ °C}$ unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
AM part						
AM front end						
(pin 1 to 17)	note 1					
Conversion						
transconductance	V _i = 10 mV					
	V_{AGC} (pin 16) = $V_{14} - 0.1 V$	S _C	9.3	12	13.5	mA/V
	$V_i = 10 \text{ mV}$					
	V_{AGC} (pin 16) = $V_{14} - 0.45$ V	S _C	0.75	1.1	1.3	mA/V
IF suppression	note 2 V _i = 10 mV	~	20	26		dB
		α	20	20	-	UD
Oscillator (pin 13)						
Voltage	f = 1.5 MHz	Vosc	110	175	200	mV
	f = 1.5 MHz V _P = 1.5 V	V _{osc}	60	160		mV
	vp = 1.5 v	Vosc	00	100	-	
IF and detector part						
(pin 15 to 11)	note 3					
IF sensitivity;						
AF output voltage	no AGC; $V_i = 45 \mu V$	Vo	12	20	55	mV
Signal + noise to noise				0.5		
ratio for an IF input	no AGC; $V_i = 45 \mu V$	S + N/N	23	25	-	dB
AF output voltage	$V_i = 1 \text{ mV}$	Vo	35	45	60	mV
Total harmonic	$V_i = 10 \text{ mV}$					
distortion	m = 80%	THD	-	1	2.2	%
LED-indicator circuit						
(pin 7)						
Output current	$V_i = 0 V$	l _{ind}	-	(8)	(8)	μA
	$V_i = 1 \text{ mV}$	l _{ind}	(8)	(8)	-	mA
Overall performance						
(pin 1 to 11)	note 4					
Total harmonic						
distortion	V _i = ⁽⁸⁾ mV	THD	-	4.5	8	%
FM part						
FM frond end						
(pin 2 to 20)	note 5					
Conversion						
transconductance	$V_i = 1 \text{ mV}$	S _C	7.5	11	13.5	mA/V

TEA5591A

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Oscillator (pin 22)						
Voltage	V _{AFC} (pin 21)					
	= 0.8 V	Vosc	155	200	245	mV
	V _{AFC} = 0.8 V					
	V _P = 1.5 V	V _{osc}	60	120	_	mV
AFC control; change in						
oscillator frequency	V _{AFC} = 0.8 V	f	-	111.2	-	MHz
	$\Delta V_{AFC} = -0.6 V$	Δf	-	+420	-	kHz
	$\Delta V_{AFC} = +0.6 V$	Δf	-	-620	-	kHz
IF and demodulator part						
(pin 18 to 11)	note 6					
IF sensitivity;	note 7					
AF output voltage	V _i = 100 μV	Vo	-3	_1	0	dB
Signal + noise to noise						
ratio for an IF input	$V_i = 100 \ \mu V;$					
	out of limiting	S + N/N	26	30	-	dB
AF output voltage	$V_i = 1 \text{ mV}$	Vo	75	90	120	mV
Total harmonic	$\Delta f = 75 \text{ kHz}$					
distortion	V _i = 50 mV	THD	-	3	_	%
LED-indicator circuit						
(pin 7)						
Output current	$V_i = 0 V$	l _{ind}	-	_	20	μA
	$V_i = 1 \text{ mV}$	l _{ind}	0.6	1	1.9	mA

Notes to the AC characteristics

1. Input frequency = 1 MHz; output frequency = 468 kHz.

2.
$$\alpha = \frac{(V_o \text{ at } f_i = 1 \text{ MHz})}{(V_o \text{ at } f_i = 468 \text{ kHz})}$$

- 3. Input frequency = 468 kHz; m = 30% modulated with f_{mod} = 1 kHz; unless otherwise specified.
- 4. Front-end connected to IF plus detector part. Input frequency = 1 MHz; m = 80% modulated with f_{mod} = 1 kHz.
- 5. Input frequency = 100 MHz; output frequency = 10.7 MHz.
- 6. Input frequency = 10.7 MHz; frequency deviation, Δf = 22.5 kHz and f_{mod} = 1 kHz; unless otherwise specified.
- 7. Reference: AF output voltage = 0 dB at V_i = 1 mV.
- 8. Value to be fixed.

TEA5591A

APPLICATION AND TEST INFORMATION

TEA5591A

AM/FM radio receiver circuit

PACKAGE OUTLINE

SDIP24: plastic shrink dual in-line package; 24 leads (400 mil)

SOT234-1

TEA5591A

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.