SGS-THOMSON MICROELECTRONICS

TEA2025B TEA2025D

STEREO AUDIO AMPLIFIER

- DUAL OR BRIDGE CONNECTION MODES
- FEW EXTERNAL COMPONENTS
- SUPPLY VOLTAGE DOWN TO 3V
- HIGH CHANNEL SEPARATION
- VERY LOW SWITCH ON/OFF NOISE
- MAX GAIN OF 45dB WITH ADJUST EXTER-NAL RESISTOR
- SOFT CLIPPING
- THERMAL PROTECTION
- 3V < Vcc < 15V</p>
- $P = 2 \bullet 1W, V_{CC} = 6V, R_L = 4\Omega$
- $P = 2 \cdot 2.3W$, $V_{CC} = 9V$, $R_L = 4\Omega$
- $P = 2 \bullet 0.1W$, $V_{CC} = 3V$, $R_L = 4\Omega$

ORDERING NUMBERS: TEA2025B (PDIP) TEA2025D (SO)

DESCRIPTION

The TEA2025B/D is a monolithic integrated circuit in 12+2+2 Powerdip and 12+4+4 SO, intended for use as dual or bridge power audio amplifier portable radio cassette players.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Test Conditions	Unit
Vs	Supply Voltage	15	V
lo	Ouput Peak Current	1.5	A
TJ	Junction Temperature	150	°C
Tsig	Storage Temperature	150	°C

BLOCK DIAGRAM

7929237 0064854 053 🖿

TEA2025B - TEA2025D

POWERDIP 12+2+2 PIN CONNECTION (Top view)

SO 12+4+4 PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Description		SO 12+4+4 (*)	PDIP 12+2+2 (**)	Unit
Rth }-case	Thermal Resistance Junction-case	Max	15	15	°C/W
Rth j-amb	Thermal Resistance Junction-ambient	Max	65	60	°C/W

(*) The Rth jamb is measured with 4sq cm copper area heatsink

(**) The Rth jend is measured on devices bonded on a 10 x 5 x 0.15cm glass-epoxy substrate with a 35µm thick copper surface of 5 cm².

Symbol	Parameter	Test Condition	5		Min.	Тур.	Max.	Unit
Vs	Supply Voltage				3		12	V
lo	Quiescent Current					35	50	mA
Vo	Quiescent Output Voltage					4.5		v
Av	Voltage Gain	Stereo Bridge			43 49	45 51	47 53	dB
ΔAv	Voltage Gain Difference						±1	dB
R _j	Input Impedance					30		KΩ
PO	Output Power (d = 10%)	Stereo 8 (per channel)	9V 9V 6V 6V 6V 3V 3V 12V 9V	4Ω 8Ω 4Ω 8Ω 16Ω 32Ω 4Ω 32Ω 8Ω 8Ω	1.7 0.7	2.3 1.3 1 0.6 0.25 0.13 0.1 0.02 2.4 4.7		w
97.81		Bridge	9V 6V 6V 3V 3V	8Ω 4Ω 8Ω 16Ω 32Ω		4.7 2.8 1.5 0.18 0.06		w
d	Distortion	$Vs = 9V; R_L = 4\Omega$	Stereo Bridge			0.3 0.5	1.5	%
SVR	Supply Voltage Rejection	$f = 100Hz, V_{R} = 0.5V, R_{g} = 0$			40	46		dB
En(in)	Input Noise Voltage	$R_G = 0$ R_G = 10 4 \Omega				1.5 3	3 6	mV
СТ	Cross-Talk	f = 1KHz, R _g = 10KΩ			40	52		dB

ELECTRICAL CHARACTERISTICS (Tamb = 25°C, VCC =	9V, Stereo unless otherwise specified)
--	--

Term. N° (PDIP)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DC VOLT (V)	0.04	4.5	8.9	0	0	0.6	0.04	8.5	0	0.04	0.6	0	0	8.9	4.5	9

Figure 1: Bridge Application (Powerdip)

Figure 3: Supply Current vs. Supply Voltage $(R_L = 4\Omega)$

APPLICATION INFORMATION

Input Capacitor

Input capacitor is PNP type allowing source to be referenced to ground.

In this way no input coupling capacitor is required. However, a series capacitor (0.22 uF)to the input side can be useful in case of noise due to variable resistor contact.

Bootstrap

The bootstrap connection allows to increase the output swing.

The suggested value for the bootstrap capacitors (100uF) avoids a reduction of the output signal also at low frequencies and low supply voltages.

Voltage Gain Adjust

STEREO MODE

The voltage gain is determined by on-chip resistors R1 and R2 together with the external RfC1 series connected between pin 6 (11) and ground.

The frequency response is given approximated by:

$$\frac{V_{OUT}}{V_{IN}} \approx \frac{R1}{Rf + R2 + \frac{1}{IWC1}}$$

With Rf=0, C1=100 uF, the gain results 46 dB with pole at f=32 Hz.

THE purpose of Rf is to reduce the gain. It is recommended to not reduce it under 36 dB.

BRIDGE MODE Figure 7

The bridge configuration is realized very easily thanks to an internal voltage divider which provides (at pin 1) the CH 1 output signal after reduction. It is enough to connect pin 6 (inverting input of CH 2) with a capacitor to pin 1 and to connect to ground the pin 7.

The total gain of the bridge is given by:

$$\frac{V_{OUT}}{V_{IN}} = \frac{R1}{Rf+R2 + \frac{1}{JWC1}} (1 + \frac{R3}{R4} \frac{R1}{R2+R4+ \frac{1}{JWC1}})$$

and with the suggested values (C1 = C2 = 100 µF, Rf= 0) means:

Gv = 52 dB

Figure 8

with first pole at f = 32 Hz

Output Capacitors.

The low cut off frequency due to output capacitor depending on the load is given by:

$$F_{L} = \frac{1}{2 \Pi C_{OUT} \bullet R_{L}}$$

with Court 470 μ F and R_L = 4 ohm it means F_L = 80 Hz.

Pop Noise

Most amplifiers similar to TEA 2025B need external resistors between DC outputs and ground in order to optimize the pop on/off performance and crossover distortion.

Figure 9

The TEA 2025B solution allows to save components because of such resistors (800 ohm)are included into the chip.

Stability

A good layout is recommended in order to avoid oscillations.

Generally the designer must pay attention on the following points:

- Short wires of components and short connections.
- No ground loops.

- Bypass of supply voltage with capacitors as nearest as possible to the supply I.C.pin.The low value(poliester)capacitors must have good temperature and frequency characteristics. - No sockets.

2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature: all that happens is that P_O (and therefore P_{tot}) and Id are reduced.

APPLICATION SUGGESTION

The recommended values of the components are those shown on stereo application circuit of Fig. 2 different values can be used, the following table can help the designer.

COMPONENT	RECOMMENDED VALUE	PURPOSE	LARGER THAN	SMALLER THAN
C1,C2	0.22µF	INPUT DC DECOUPLING IN CASE OF SLIDER CONTACT NOISE OF VARIABLE RESISTOR		
C3	100µF	RIPPLE REJECTON		DEGRADATION OF SVR, INCREASE OF THD AT LOW FREQUENCY AND LOW VOLTAGE
C4,C5	100µF	BOOTSTRAP		
C6,C7	470µF	OUTPUT DC DECOUPLING		INCREASE OF LOW FREQUENCY CUT- OFF
C8,C9	0.15µF	FREQUENCY STABILITY		DANGER OF OSCILLATIONS
C10, C11	100µF	INVERTING INPUT DC DECOUPLING		INCREASE OF LOW FREQUENCY CUT- OFF

