INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC02 July 1994

FEATURES

- Quasi alignment-free BTSC stereo decoder due to auto adjustment of channel separation via I²C-bus
- High integration level with automatically tuned integrated filters
- Input level adjustment I²C-bus controlled
- Alignment-free SAP processing
- dbx noise reduction circuit
- Audio processor
 - Selector for internal and external signals (line in)
 - Automatic volume level control
 - Subwoofer or surround output with separate volume control
 - Volume control
 - Special loudness characteristic automatically controlled in combination with volume setting

ORDERING INFORMATION

- Bass and treble control
- Audio signal zero crossing detection between any volume step switching
- · Mute control at audio signal zero crossing
- I²C-bus transceiver.

GENERAL DESCRIPTION

The TDA9855 is a bipolar-integrated BTSC stereo / SAP decoder with hi-fi audio processor (I²C-bus controlled) for application in TV sets.

			PACKAGE	
EXTENDED TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE
TDA9855	52	SHDIL	plastic	SOT247AH ⁽¹⁾
TDA9855WP	68	PLCC	plastic	SOT188CG ⁽²⁾

Note

- 1. SOT247-1; 1996 December 5.
- 2. SOT188-2; 1996 December 5.

A license is required for this product. For further information, please contact:

THAT Corporation Licensing Operations 734 Forest St. Marlborough, MA 01752 USA Tel. (508) 229-2500 Fax: (508) 229-2590

THAT Corporation Tokyo Office 405 Palm House, 1-20-2 Honmachi Shibuya-ku, Tokyo 151 Japan Tel: (03) 3378-0915 Fax: (03) 3374-5191

Preliminary specification

I²C-bus controlled BTSC stereo / SAP decoder and audio processor

TDA9855

I²C-bus controlled BTSC stereo / SAP decoder and audio processor

COMPONENT LIST

elco $\pm 20\%$; foil or ceramic \pm 10%; resistors $\pm 5\%$ unless otherwise specified.

COMPONENT	VALUE	TYPE	REMARK
C1	10 μF	elco	63 V
C2	470 nF	foil	
C3	4.7 μF	elco	63 V
C4	220 nF	foil	
C5	10 μF	elco	63 V; I _{leak} < 1.5 μA
C6	2.2 μF	elco	16 V
C7	4.7 μF	elco	16 V
C8	15 nF	foil	±5%
C9	15 nF	foil	±5%
C10	2.2 μF	elco	63 V
C11	8.2 nF	foil or ceramic	±5% SMD 2220/1206
C12	150 nF	foil	±5%
C13	33 nF	foil	±5%
C14	5.6 nF	foil or ceramic	±5% SMD 2220/1206
C15	100 μF	elco	16 V
C16	4.7 μF	elco	63 V
C17	4.7 μF	elco	63 V
C18	100 nF	foil	
C19	10 μF	elco	63 V
C20	4.7 μF	elco	63 V
C21	47 nF	foil	±5%
C22	1 μF	elco	63 V
C23	1 μF	elco	63 V
C24	10 μF	elco	63 V ± 10%
C25	10 μF	elco	63 V ± 10%
C26	2.2 μF	elco	16 V
C27	2.2 μF	elco	63 V
C28	4.7 μF	elco	63 V ± 10%
C29	2.2 μF	elco	16 V
C30	8.2 nF	foil or ceramic	±5% SMD 2220/1206
C31	150 nF	foil	±5%
C32	33 nF	foil	±5%
C33	5.6 nF	foil or ceramic	±5% SMD 2220/1206
C34	100 μF	elco	16 V
C35	150 nF	foil	±5%
C36	4.7 μF	elco	16 V
C37	4.7 μF	elco	16 V
C39	4.7 μF	elco	16 V
C40	4.7 μF	elco	16 V

COMPONENT	VALUE	ТҮРЕ	REMARK
C45	2.2 μF	elco	16 V
C47	220 μF	elco	25 V
C49	100 nF	foil or ceramic	SMD 1206

COMPONENT	VALUE	REMARK
R1	2.2 ΚΩ	
R2	20 ΚΩ	
R3	2.2 ΚΩ	
R4	20 ΚΩ	
R5	2.2 ΚΩ	
R6	8.2 ΚΩ	±2%
R7	160 KΩ	±2%
Q1	503.5 kHz	MURATA CSB503F58

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage		8.0	8.5	9.0	V
I _{CC}	supply current		50	75	95	mA
V _{comp}	input signal (RMS value)	100% modulation L + R;	-	250	-	mV
V _{LOR} , V _{LOL}	output signal (RMS value)	f = 300 Hz	_	500	-	mV
G _{LA}	input level adjustment control range		-3.5	-	+4.0	dB
α_{st}	stereo channel separation	f _L = 300 Hz; f _R = 3 kHz	25	35	-	dB
THD _{L, R}	total harmonic distortion	f = 1 kHz	-	0.2	-	%
V _{I, O}	signal handling (RMS value)	THD < 0.5%	2	_	-	V
AVL	control range		-15	-	+6	dB
G _c	volume control range		-71	-	+16	dB
L _B	maximum loudness boost	f = 40 Hz	_	17	-	dB
G _b	bass control range	f = 40 Hz	-12	-	+16.5	dB
Gt	treble control range	f = 15 kHz	-12	_	+12	dB
Gv	subwoofer control range	f = 40 Hz	-14	-	+14	dB
S/N	signal-to-noise ratio	line out (mono);				
	CCIR noise weighting filter (peak value)	V _O = 0.5 V (RMS)	_	60	_	dB
	DIN noise weighting filter (RMS value)		_	73	_	dBA
S/N	signal-to-noise ratio	audio section;				
	CCIR noise weighting filter (peak value)	$V_0 = 2 V (RMS);$	_	94	_	dB
	DIN noise weighting filter (RMS value)	gain = 0 dB	-	107	-	dBA

PINNING

SYMBOL	SOT188	SOT247	DESCRIPTION
TL	1	1	treble control capacitor, left channel
n.c.	2	_	not connected
B1L	3	2	bass control capacitor, left channel
B2L	4	3	bass control capacitor, left channel
OUTS	5	4	output subwoofer or output surround sound
MAD	6	5	programmable address bit (module address)
OUTL	7	6	output, left channel
n.c.	8 to 10	_	not connected
LDL	11	7	input loudness, left channel
VIL	12	8	input volume control, left channel
EOL	13	9	output effects, left channel
CAV	14	10	automatic volume control capacitor
V _{REF}	15	11	reference voltage 0.5V _{CC}
LIL	16	12	line input, left channel
n.c.	17	_	not connected
AVL	18	13	input automatic volume control, left channel
SOL	19	14	output selector, left channel
LOL	20	15	line output, left channel
TW	21	16	capacitor timing wideband for dbx
TS	22	17	capacitor timing spectral for dbx
CW	23	18	capacitor wideband for dbx
CS	24	19	capacitor spectral for dbx
VEO	25	20	variable emphasis out for dbx
n.c.	26	_	not connected
VEI	27	21	variable emphasis in for dbx
n.c.	28	_	not connected
CNR	29	22	capacitor noise reduction for dbx
СМ	30	23	capacitor mute for SAP
CD	31	24	capacitor DC decoupling for SAP
n.c.	32	—	not connected
GND	33	_	analog ground
GND	34	_	digital ground
GND	-	25	common ground
SDA	35	26	serial data input/output
SCL	36	27	serial clock input
V _{CC}	37	28	supply voltage
COMP	38	29	input composite signal
VCAP	39	30	capacitor for electronic filtering of supply
CP1	40	31	capacitor for pilot detector
CP2	41	32	capacitor for pilot detector

Preliminary specification

I²C-bus controlled BTSC stereo / SAP decoder and audio processor

SYMBOL	SOT188	SOT247	DESCRIPTION
n.c.	42	_	not connected
СРН	43	33	capacitor for phase detector
n.c.	44, 45	_	not connected
CA	46	34	capacitor for filter adjust
CER	47	35	ceramic resonator
СМО	48	36	capacitor DC decoupling mono
CSS	49	37	capacitor DC decoupling stereo/SAP
LOR	50	38	line output, right channel
SOR	51	39	output selector, right channel
AVR	52	40	input automatic volume control, right channel
n.c.	53	_	not connected
LIR	54	41	line input, right channel
PS2	55	42	capacitor 2 pseudo function
PS1	56	43	capacitor 1 pseudo function
EOR	57	44	output effects, right channel
VIR	58	45	input volume control, right channel
LDR	59	46	input loudness, right channel
n.c.	60 to 62	_	not connected
OUTR	63	47	output, right channel
n.c.	64	48	not connected
SW	65	49	filter capacitor for subwoofer
B2R	66	50	bass control capacitor, right channel
B1R	67	51	bass control capacitor, right channel
TR	68	52	treble control capacitor

TDA9855

I²C-bus controlled BTSC stereo / SAP decoder and audio processor

TDA9855

I²C-bus controlled BTSC stereo / SAP decoder and audio processor

FUNCTIONAL DESCRIPTION

Decoder Input level adjustment

The composite input signal is fed to the input level adjustment stage. In order to compensate tolerances of the FM demodulator which supplied the composite input signal, the TDA9855 provides an input level adjustment stage. The control range is between –3.5 dB and +4.0 dB in steps of 0.5 dB. The subaddress control 3 of Tables 2 and 3 and the level adjust setting of Table 16 allows an optimal signal adjustment during the set alignment in the production line. This value has to be stored in a none volatile memory. The maximum input signal voltage is 2 V (RMS).

Stereo decoder

The output signal of the level adjustment stage is coupled to a low-pass filter which suppresses the baseband noise above 125 kHz. The composite signal is then fed into a pilot detector/pilot cancellation circuit and into the MPX demodulator. The main L + R signal passes a 75 μ s fixed de-emphasis filter and is fed into the dematrix circuit. The decoded subsignal L – R is sent to the stereo/SAP switch. To generate the pilot signal the stereo demodulator uses a PLL circuit including a ceramic resonator. The stereo channel separation can be adjusted by an automatic procedure or manually. A detailed description of this alignment is provided in the ADJUSTMENT PROCEDURE. The stereo identification can be read by the l²C-bus (see Table 1). Two different pilot thresholds can be selected via l²C-bus (see Table 18).

SAP demodulator

The composite signal is fed from the output of the input level adjustment stage to the SAP demodulator circuit through a 5f_H band-pass filter. The demodulator level is automatically controlled. The SAP demodulator includes internal noise and field strength detectors that mute the SAP output in case of insufficient signal conditions. The SAP identification signal can be read by the l²C-bus (see Table 1).

Switch

The stereo/SAP switch feeds either the L – R signal or the SAP demodulator output signal via the internal dbx noise reduction circuit to the dematrix/line out select circuit. Table 15 shows the different switch modes provided at the output pins LOR and LOL.

dbx decoder

The dbx circuit includes all blocks required for the noise reduction system according to the BTSC system specification. The output signal is fed through a 73 μ s fixed de-emphasis circuit to the dematrix block.

Integrated filters

The filter functions necessary for stereo and SAP demodulation and part of the dbx filter circuits are provided on chip using transconductor circuits. The required filter accuracy is attained by an automatic filter alignment circuit.

Audio processor Selector

The selector allows selecting either the internal line out signals LOR or LOL (dematrix out) or the external line in signals LIR and LIL and combines the left and right signals in several modes (see Table 8). The input signal capability of the line inputs (LIR/LIL) is 2 V (RMS). The output of the selector is AC coupled to the automatic volume level control circuit via pins SOR/SOL and AVR/AVL to avoid offset voltages.

Automatic volume level control

The automatic volume level stage controls its output voltage to a constant level of typically 200 mV (RMS) from an input voltage range between 0.1 and 1.1 V (RMS). The circuit adjusts variations in modulation during broadcasting and due to changes in the programme material. The function can be switched off. To avoid audible 'plops' during the permanent operation of the AVL circuit a soft blending scheme has been applied between the different gain stages. A capacitor at pin CAV determines the attack and decay time constants. In addition the ratio of attack and decay time can be changed via I²C-bus (see notes 3 and 4 of the CHARACTERISTICS).

Effects

The audio processor section offers the following mode selections: linear stereo, pseudo stereo, spatial stereo and forced mono. The spatial mode provides an antiphase crosstalk of 30% or 52% (switchable via I^2 C-bus; see Table 13).

Volume/loudness

The volume control range is between +16 dB and -71 dB in steps of 1 dB and ends with a mute step (see Table 4). Balance control is achieved by the independent volume

control of each channel. The volume control blocks operate in combination with the loudness control. The filter is linear when maximum gain for volume control is selected. The filter characteristic changes automatically over a range of 28 dB down to a setting of –12 dB. At –12 dB volume control the maximum loudness boost is obtained. The filter characteristic is determined by external components.

The proposed application provides a maximum boost of 17 dB for bass and 4.5 dB for treble. The loudness may be switched on or off via the I²C-bus control (see Table 10). The left and right volume control stages include two independent zero crossing detectors. In the zero cross mode a change in volume is automatically activated but not executed. The execution is enabled at the next zero crossing of the signal. If a new volume step is activated before the previous one has been processed, the previous value will be executed first, and then the new value will be activated. If no zero crossing occurs the next volume transmission will enforce the last activated volume setting. The zero crossing mode is realized between adjoining steps and between any steps, but not from any step to mute. In this case the GMU bit is needed to use. In case of need to mute only one channel, two steps are necessary. The first step is a transmission from any steps to -71 dB and the second is -71 dB step to mute. The step of -71 dB to mute has no zero crossing but it is not relevant. This procedure has to be provided by software.

Bass control

A single external 33 nF capacitor for each channel in combination with a linear operational amplifier and internal resistors provides a bass control range of +16.5 dB to -12 dB in steps of 1.5 dB at low frequencies (40 Hz). Internally the basic step width is 3 dB, with intermediate steps are obtained by a toggle function that provides additional an 1.5 dB boost or attenuation (see Table 5). Please note that both loudness and bass control together result in a maximum bass boost of 34.5 dB for low volume steps.

Treble control

The adjustable range of the treble control stage is between -12 dB and +12 B in steps of 3 dB. The filter characteristic is determined by an external 5.6 nF capacitor for each channel. The logic circuitry is arranged in a way that the same data words (HEX 06 to 16) can be used for both tone controls if a bass control range from -12 dB to +12 dB and a treble control range from -12 dB to +12 dB with 3 dB steps are used (see Tables 5 and 6).

TDA9855

Subwoofer; surround sound control

The subwoofer or the surround mode can be activated with the control bit SUR (see Table 3). A low bit provides an output signal (L + R)/2 in subwoofer mode, a high bit selects surround mode and provides an output signal (L - R)/2. The signal is fed through a volume control stage with a range between +14 dB and -14 dB in 2 dB steps on top of the main channel control to the output pin OUTS. The last setting is the mute position (see Table 7). The capacitor C35 at pin SW provides a 230 Hz low-pass filter in subwoofer mode. In surround mode this capacitor should be disconnected. If balance is not in mid position the selected left and right output levels will be combined.

Mute

The mute function can be activated independently with the last step of volume or subwoofer/surround control at the left, right or centre output. By setting the general mute bit GMU via the l²C-bus all audio part outputs are muted. All channels include an independent zero cross detector. The zero crossing mute feature can be selected via bit TZCM:

TZCM 0:

forced mute with direct execution,

TZCM = 1:

execution in time with signal zero crossing. In the zero cross mode a change of the GMU bit is activated but not executed. The execution is enabled at the next zero crossing of the signal. To avoid a large delay of mute switching, when very low frequencies are processed, or the output signal amplitude is lower than the DC offset voltage, the following l²C-bus transmissions are needed:

- a first transmission for mute execution
- a second transmission about 100 ms later, which must switch the zero crossing mode to forced mute (TZCM = 0)
- a third transmission to reactivate the zero crossing mode (TZCM = 1). This transmission can take place immediately, but must follow before the next mute execution.

TDA9855

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		0	9.5	V
T _{amb}	operating ambient temperature		-20	+70	°C
T _{stg}	storage temperature		-65	+150	°C
V _{es}	electrostatic handling	note 1			
V _n	voltage at all other pins to pin GND		0	V _{CC}	V

Note to the limiting values

1. Human body model: C = 100 pF; R = 1.5 k Ω ; V = 2 kV; charge device model: C = 200 pF; R = 0 Ω ; V = 300 V.

THERMAL RESISTANCE

SYMBOL	PARAMETER	THERMAL RESISTANCE
R _{th j-a}	from junction to ambient in free air	
	SOT247AH	43 K/W
	SOT188CG	38 K/W

TDA9855

-						
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
COMP _{L+R}	composite input level for 100% modulation L + R (25 kHz deviation), RMS, f = 300 Hz	measured at COMP	162	250	363	mV
	composite input level spreading under operating conditions	$T_{amb} = -20$ to +70 °C; aging; power supply influence	-0.5	-	+0.5	dB
ZO	output impedance	note 1	-	low-ohmic	5	kΩ
$f_{-2 dB}$	roll-off frequencies (25 kHz	low frequency (-2 dB)	-	-	5	Hz
	deviation L + R)	high frequency (-2 dB)	100	-	-	kHz
THD	total harmonic distortion L + R;	25 kHz deviation	-	-	0.5	%
	f = 1 kHz	125 kHz deviation; note 2	-	-	1.5	%
S/N	signal-to-noise ratio L + R/noise	CCIR 468-2 weighted quasi pe $f = 1 \text{ kHz}$; 75 µs de-emphasis	ak; L +	R; 25 kHz de	viation;	
		critical picture modulation	44	-	-	dB
		with sync only	54	-	_	dB
α _{SB}	side band suppression mono into unmodulated SAP carrier; SAP carrier/side band	mono signal: 25 kHz deviation, f = 1 kHz; side band: SAP carrier frequency ±1 kHz	46	-	-	dB
α _{SP}	spectral spurious attenuation L + R/spurious	50 Hz to 100 kHz; mainly n x f_H ; no de-emphasis; L + R: 25 kHz deviation, f = 1 kHz	40	_	-	dB

Requirements for the composite input signal to ensure proper system performance.

Notes to the requirements

- 1. Low-ohmic preferred, otherwise the signal loss and spreading at COMP, caused by Z_O and the composite input impedance (see input level adjustment control) must be taken into account.
- In order to prevent clipping at overmodulation (maximum deviation in the BTSC system for 100% modulation is 73 kHz).

CHARACTERISTICS

All voltages are measured relative to GND; $V_{CC} = 8.5 \text{ V}$, source resistance $\leq 600 \Omega$, output load $R_L \geq 10 \text{ k}\Omega$, $C_L \leq 2.5 \text{ nf}$, AC coupled; f = 1 kHz; $T_{amb} = +25 \text{ °C}$; volume gain control $G_c = 0 \text{ dB}$; bass linear; treble linear; loudness off; AVL off; effects linear; composite input signal according to BTSC standard; see block diagram unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	
V _{CC}	supply voltage		8.0	8.5	9.0	V
I _{CC}	supply current		50	75	95	mA
V _{DC}	DC voltage at signal handling pins		-	V _{CC} /2	-	V
DECODER	SECTION					
Input leve	adjustment control					
G _{LA}	input level adjustment	maximum gain	_	4.0	_	dB
	control	maximum attenuation	_	-3.5	_	dB
G _{step}	step resolution		_	0.5	_	dB
V _{i(RMS)}	maximum input level		2	_	_	V
Zi	input impedance		29.5	35	40.5	kΩ
Stereo deo	coder			1	1	1
MPX _{L+R}	input level for 100% modulation L + R (25 kHz deviation) (RMS value)	input level adjusted via I ² C-bus (L + R; f = 300 Hz); monitoring LINE OUT	-	250	-	mV
MPX _{L-R}	input level for 100% modulation L – R (50 kHz deviation) (peak value)		-	707	-	mV
MPX _{max}	headroom for L + R, L, R	f_{mod} < 15 kHz; THD < 15% for 75 µs equivalent input modulation	9	-	-	dB
MPX _{pilot}	nominal stereo pilot level (RMS value)		-	50	-	mV
STON	pilot threshold STEREO	data STS = 1	-	-	35	mV
	ON (RMS value)	data STS = 0	-	_	30	mV
STOFF	pilot threshold STEREO	data STS = 1	15	-	_	mV
	OFF (RMS value)	data STS = 0	10	-	_	mV
Hyst	hysteresis		-	2.5	_	dB
Out _{L+R}	output level for 100% modulation L + R at LINE OUT	input level adjusted via l ² C-bus (L + R; f = 300 Hz); monitoring LINE OUT	480	500	520	mV
α _{ST}	stereo channel separation L/R at LINE OUT	aligned with dual tone 14% modulation; alignment at $f_L = 300$ Hz; $f_R = 3.1$ kHz				
		f _L = 300 Hz; f _R = 3 kHz	25	35	_	dB
		f _L = 300 Hz; f _R = 8 kHz	20	30	-	dB
		f _L = 300 Hz; f _R = 10 kHz	15	25	-	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	
L, R _(f)	L, R frequency response	14% modulation; f _{reference} = 300 Hz L or R				
		50 Hz to 11 kHz	-3	_	-	dB
		12 kHz	_	-3	-	dB
THD _{L,R}	total harmonic distortion L, R at LINE OUT	modulation L or R 1% to 100%; f = 1 kHz	-	0.2	1.0	%
S/N	S/N CCIR 468-2 weighted; quasi peak; $V_O = 500 \text{ mV} \text{ (RMS)}$	LINE OUT in position MONO	50	60	-	dB
Stereo de	coder, oscillator (VCXO)					
f _o	nominal VCXO frequency (32f _H)	with nominal ceramic resonator	-	503.5	-	kHz
f _{of}	spread of free running frequency		500.0	-	507.0	kHz
		vork together with MURATA reson he resonator specification must b				nge of
Δf_{H}	capture range (nominal pilot)		±190	±265	_	Hz
SAP demo	odulator					
Remark: T	he internal SAP carrier level	is determined by the composite in	nput level an	d the level a	djust gain.	
SAP _{IN}	nominal SAP carrier input level (RMS value)	15 kHz frequency deviation of intercarrier	-	150	-	mV
SAP _{ON}	pilot threshold SAP ON (RMS value)		-	_	85	mV
SAP _{OFF}	pilot threshold SAP OFF (RMS value)		35	-	-	mV
SAP _{HYS}	hysteresis		_	2	-	dB
SAP _{LEV}	SAP output level at LINE OUT (RMS value)	LINE OUT (LOL, LOR) in position SAP / SAP; f _{mod} = 300 Hz; 100% modulation	-	500	-	mV
F _{res}	frequency response	14% modulation; 50 Hz to 8 kHz; f _{reference} = 300 Hz	-3	_	-	dB
THD	total harmonic distortion	1 kHz	_	0.5	2.0	%
LINE OUT	(at pins LOL, LOR)					
Vo	nominal output voltage (RMS value)	100% modulation	-	500	_	mV
Headr	output headroom		9	-	-	dB
Zo	output impedance		-	80	120	Ω
Out _{DC}	DC output voltage		0.45V _{CC}	0.5V _{CC}	0.55V _{CC}	V
RL	output load resistance (AC)		5	-	-	kΩ

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	
CL	output load capacitance		-	_	2.5	nF
α _{st-sap}	idle crosstalk L, R into SAP	100% modulation; f = 1 kHz; L or R; LINE OUT switched to SAP / SAP	50	-	-	dB
α _{SAP-ST}	idle crosstalk SAP into L, R	100% modulation; f = 1 kHz; SAP; LINE OUT switched to stereo	50	-	-	dB
ΔV_{ST-SAP}	output voltage difference if	250 Hz to 6.3 kHz	-	-	3	dB
	switched from L, R to SAP					
dbx noise	reduction circuit					
t _{adj}	stereo adjust time	see adjustment procedure	-	-	1	s
I _s	nominal timing current for nominal release rate of spectral RMS detector	I_s can be measured at pin 17 (pin 22) via current meter connected to $V_{CC}/2 + 1 V$	_	24	-	μA
ΔI_s	spread of timing current		-	-	15	%
I _{s range}	timing current adjustment range	7 steps via l ² C-bus	-	±30	-	%
lt	timing current for release rate of wideband RMS detector		-	I _s /3	-	μΑ
Rel _{rate}	nominal RMS detector release rate	nominal timing current and external capacitor values				
	wideband		-	125	-	dB/s
	spectral		-	381	_	dB/s
AUDIO PA	RT					•
	tion from pins LIL, LIR to pin o input line control	s OUTL, OUTR, OUTS				
В	roll-off frequencies	$\begin{array}{l} C_{6},C_{7},C_{10},C_{26},C_{27},\\ C_{29}=2.2\;\mu\textrm{F};Z_{i}=Z_{i\;min} \end{array}$				
		low froquency (2 dB)			20	ц ₇

RR	power supply ripple rejection	V _{r(RMS)} < 200 mV; f = 100 Hz	47	50	_	dB
		$V_i = 2 V (RMS); G_c = 0 dB;$ AVL off	-	0.02	-	%
		$V_i = 1 V (RMS); G_c = 0 dB;$ AVL off	-	0.05	_	%
		$V_i = 2 V (RMS); G_c = 0 dB;$ AVL on	_	0.2	0.5	%
THD	total harmonic distortion	V _i = 1 V (RMS); G _c = 0 dB; AVL on	-	0.2	0.5	%
		high frequency (–0.5 dB)	20	-	-	kHz
		low frequency (–3 dB)	-	-	20	Hz
В	roll-off frequencies	$C_6, C_7, C_{10}, C_{26}, C_{27}, C_{29} = 2.2 \ \mu\text{F}; Z_i = Z_i \ \min$				

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
α _B	crosstalk (20 log V _{bus(p-p)} / V _{o(RMS)} between bus inputs and signal outputs	note 1	-	110	_	dB
V _{no}	noise output voltage	CCIR 468-2 weighted; quasi peak	_	40	80	μV
		measured in dBA	-	8	_	μV
α_{CS}	channel separation	V _i = 1 V; f = 1 kHz	75	_	_	dB
		V _i = 1 V; f = 12.5 kHz	75	-	—	dB
Selector (1	from pins LOL, LOR, LIL, LIF	R to pins SOL, SOR)				
Zi	input impedance		16	20	24	kΩ
α _s	input isolation of one selected source to the other input	f = 1 kHz; V _i = 1 V	86	96	-	dB
		f = 12.5 kHz; V _i = 1 V	80	96	_	dB
V _{i(RMS)}	maximum input voltage	THD < 0.5%	2	2.3	-	V
V _{DC OFF}	DC offset voltage at selector out by selection of any inputs		-	-	25	mV
Zo	output impedance		-	80	120	Ω
R _L	output load resistance (AC)		5	-	-	kΩ
CL	output load capacitance		-	-	2.5	nF
G _c	voltage gain, selector		-	0	_	dB
Automatic	volume level control (AVI	-)				•
Zi	input impedance		8.8	11.0	13.2	kΩ
V _{i(RMS)}	maximum input voltage	THD < 0.2%	2	_	_	V
G _v	gain, maximum boost		5	6	7	dB
	maximum attenuation		14	15	16	dB
G _{step}	equivalent step width between the input stages (soft switching system)		_	1.5	-	dB
V _{i(RMS)}	input level at maximum boost	see Fig.4	-	0.1	-	V
	input level at maximum attenuation		-	1.125	-	V
V _{o(RMS)}	output level in AVL operation range		160	200	250	mV

SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT V_{DC OFF} DC offset between note 2; voltage at pin CAV different gain steps 6.50 V to 6.33 V mV 6 _ _ 6.33 V to 6.11 V 6 mV _ _ 6.11 V to 5.33 V 6 mV _ _ 5.33 V to 2.60 V _ _ 6 mV Ratt discharge resistors for note 3: attack time constant AT1 = 0; AT2 = 0340 420 520 Ω AT1 = 1; AT2 = 0 590 730 910 Ω AT1 = 0: AT2 = 1 0.96 1.5 kΩ 1.2 AT1 = 1; AT2 = 1 2.1 kΩ 1.7 2.6 1.6 2.0 2.4 μA Idec charge current for decay note 4 time Effect controls anti-phase crosstalk by 52 % α_{spat1} _ spatial 30 % α_{spat2} effect phase shift by see Fig.5 φ pseudo-stereo Volume tone control part (input pins VIL, VIR to pins OUTX, to pin OUTS) Zi input impedance volume 8.0 10.0 12.0 kΩ input Zo output impedance _ 80 120 Ω R output load resistance 5 kΩ _ (AC) C_L output load capacitance 2.5 nF ____ _ 2.0 2.15 V V_{i(RMS)} maximum input voltage THD < 0.5% _ CCIR 468-2 weighted; V_{no} noise output voltage quasi peak $G_c = 16 \text{ dB}$ 110 220 μV 50 $G_c = 0 dB$ 33 μV mute position 10 μV total continuous control Gc range maximum boost 16 dB maximum attenuation 71 dB step resolution dB G_{step} ____ 1 ____ step error between any dB adjoining step 0.5

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ΔG_a	attenuation set error	$G_c = +16 \text{ to } -50 \text{ dB}$	_	-	2	dB
		$G_c = -51$ to -71 dB	_	_	3	dB
ΔG _t	gain tracking error	$G_c = +16 \text{ to } -50 \text{ dB}$	_	_	2	dB
α _m	mute attenuation		80	_	_	dB
V _{DC OFF}	DC step offset between	$G_{c} = +16 \text{ to } 0 \text{ dB}$	_	0.2	10.0	mV
	any adjacent step	$G_{c} = 0 \text{ to } -71 \text{ dB}$	_	_	5	mV
	DC step offset between	$G_c = +16 \text{ to } +1 \text{ dB}$	_	2	15	mV
	any step to mute	$G_{c} = 0 \text{ to } -71 \text{ dB}$	_	1	10	mV
Loudness	control part			-!	-	-
L _B	maximum loudness boost	loudness on; referred to loudness off; boost is determined by external components; see Fig.6;				
		f = 40 Hz		17	_	dB
		f = 10 kHz	_	4.5	_	dB
Bass cont	rol (see Fig.7)			1.0		
G _b	bass control maximum	f = 40 Hz	15.5	16.5	17.5	dB
Ob	boost	-	10.0		17.5	
	maximum attenuation	f = 40 Hz	11	12	13	dB
G _{step}	step resolution	f = 40 Hz	_	1.5	-	dB
	step error between any adjoining step		_	_	0.5	dB
V _{DC OFF}	DC step offset between any adjacent step		-	-	15	mV
Treble cor	ntrol (see Fig.8)		•			•
G _t	treble control maximum boost	f = 15 kHz	11	12	13	dB
	maximum attenuation	f = 15 kHz	11	12	13	dB
	maximum boost	f > 15 kHz	_	-	15	dB
G _{step}	step resolution	f = 15 kHz	_	3	-	dB
·	step error between any adjoining step		_	-	0.5	dB
V _{DC OFF}	DC step offset between any adjacent step		-	-	10	mV
Subwoofe	r or surround control	1	I	1		-1
G _s	subwoofer control	f = 40 Hz				
-	maximum boost		12	14	16	dB
	maximum attenuation		12	14	16	dB
G _{step}	step resolution		_	2	_	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
α _m	mute attenuation		60	-	-	dB
V _{DC OFF}	DC step offset between	$G_s = 0$ to +14 dB	-	_	10	mV
	any adjacent step	$G_s = 0$ to -14 dB	-	_	5	mV
	DC step offset between any step to mute	$G_s = +2$ to +14 dB without input offset (pin SW connected to V _{REF})	-	-	15	mV
		$G_s = +2$ to +14 dB inclusive offset from OUTR, OUTL	-	-	50	mV
		$G_s = 0$ to -14 dB	-	_	10	mV
R _F	internal resistor for low-pass filter with external capacitor at pin SW		4	5	6	kΩ
L + R _{REJ}	common mode rejection in surround sound at pin OUTS	mono signal at VIL/VIR; F = 1 kHz; V _i = 1 V; balance = 0 dB	26	36	-	dB
Muting at	power supply drop for OU	TL, OUTR, OUTS				
V _{CC-DROP}	supply drop for mute active		-	V _{CAP} -0.7	-	V
Power on	reset					•
When rese is in reset p		eral mute) and the LMU-bit (LINEOU	JT - mute)) is set and the	e l ² C-bus re	eceiver
V _{CC}	start of reset	increasing supply voltage	-	_	2.5	V
	end of reset		5.2	6	6.8	V
	start of reset	decreasing supply voltage	4.2	5	5.8	V
Digital par	t (I ² C-bus pins; note 5)				·	
V _{IH}	HIGH level input voltage		3	_	V _{CC}	V
V _{IL}	LOW level input voltage		-0.3	_	+1.5	V
	HIGH level input current		-10	_	+10	μA
IIL	LOW level input current		-10	_	+10	μΑ
V _{OL}	LOW level output voltage	I _L = 3 mA	_	_	0.4	V

TDA9855

Notes to the characteristics

- 1. The transmission contains:
 - total initialization with MAD and SAD for volume and 11 DATA words, see also definition of characteristics
 - clock frequency = 50 kHz
 - repetition burst rate = 400 Hz
 - maximum bus signal amplitude = 5 V_{p-p} .
- 2. The listed pin voltage corresponds with typical gain steps of +6 dB, +3 dB, 0 dB, -6 dB, -15 dB.
- 3. Attack time constant = $C_{AV} \times R_{att}$.

$$\frac{C_{AV} \times 0.76 V \left(10^{\frac{-G_{v1}}{20}} - 10^{\frac{-G_{v2}}{20}}\right)}{I_{dec}}$$

4. Decay time = -----

Example: C_{AV} = 4.7 μ F; I_{dec} = 2 μ A; G_{v1} = -9 dB; G_{v2} = +6 dB \rightarrow decay time result: 4.14 s.

5. The AC characteristics are in accordance with the I²C-bus specification. Full specification of I²C-bus will be supplied on request. The maximum clock frequency is 100 kHz.

ADJUSTMENT PROCEDURE

Composite input level adjustment. Feed in from FM demodulator the composite signal with 100% modulation (25 kHz deviation) L + R, f = 300 Hz. Set input level control via I²C-bus monitoring line out (500 mV \pm 20 mV). Store the setting in a none volatile memory. Adjustment of spectral and wideband expander via stereo channel separation adjust.

Automatic adjustment procedure

- Capacitors of external inputs EIL, EIR must be grounded
- Composite input signal L = 300 Hz, R = 3.1 kHz, 14% modulation for each channel; volume gain +16 dB via l²C-bus. To avoid annoying sound level set GMU bit to '1' during adjustment procedure
- Effects, AVL, loudness off
- Selector setting SC0, SC1, SC2 = 0, 0, 0 (see Table 8)
- Line out setting bits: STEREO = 1, SAP = 0 (see Table 15)
- Start adjustment by transmission ADJ = 1 in register ALI3. The decoder will align itself
- After 1 s, stop alignment by transmitting ADJ = 0 in register ALI3 read the alignment data by an I²C-bus read operation from ALR1 and ALR2 (see I²C-bus protocol) and store it in a none volatile memory. The alignment procedure overwrites the previous data stored in ALI1 and ALI2
- Disconnect the capacitors of external inputs from ground.

Manual adjust

Manual adjust is necessary when no dual tone generator is available (e.g. for service).

- Spectral and wideband data have to be set to 10000 (middle position for adjustment range)
- Composite input L = 300 Hz, 14% modulation
- · Adjust channel separation by varying wideband data
- Composite input L = 3 kHz, 14% modulation
- Adjust channel separation by varying spectral data
- · Iterative spectral/wideband operation for optimal adjust
- Store data in none volatile memory.

After every POWER ON, the alignment data and the input level adjustment data must be loaded from the none volatile memory.

Timing current for release rate

Due to possible internal and external spreading, the timing current can be adjusted via I²C-bus, see Table 19, as recommended by dbx.

TDA9855

I²C-BUS PROTOCOL

I²C-bus format to read (slave transmits data)

S	SLAVE ADDRESS		R/W	A	DATA	MA	DATA	Р
Where:							-	
S		=		start con	dition, generated by the master			
standard	SLAVE ADDRESS	=		101 101	1 pin MAD not connected			
pin prog	rammable SLAVE ADDRESS	=		101 101	0 pin MAD connected to ground			
R/W		=		1 (read),	generated by the master			
А		=		acknowle	edge, generated by the slave			
DATA		=		slave tra	nsmits an 8-bit data word			
MA		=		acknowle	edge, generated by the master			
Р		=		stop con	dition, generated by the master			

 Table 1
 Definition of the transmitted bytes after read condition.

FUNCTION		BYTE	MSB D7	D6	D5	D4	D3	D2	D1	LSB D0
Alignment read 1		ALR1	Y	SAPP	STP	A14	A13	A12	A11	A10
Alignment read 2		ALR2	Y	SAPP	STP	A24	A23	A22	A21	A20
Function of the bits:										
STP	stereo pilot ide	entification (stereo rece	eived = 1)						
SAPP	SAP pilot ider	ntification (S/	AP receive	ed = 1)						
A1x to A2x	stereo alignm	ent read dat	а							
A1x	A1x for wideband expander									
A2x	A2x for spectral expander									
Y indefinite										

The master generates an acknowledge when it has received the first data word, ALR1, then the slave transmits the next data word ALR2. The master next generates an acknowledge, then the slave begins transmitting the first data word ALR1, and so on until the master generates no acknowledge and transmits condition P.

Preliminary specification

I²C-bus controlled BTSC stereo / SAP decoder and audio processor

TDA9855

I²C-bus format to write (slave receives data)

S	SLAVE ADDRESS	R/W	Α	SUBADDRESS	Α	DATA	Α	Р		
Whe	re:									
S		=		start condition						
standard SLAVE ADDRESS =				101 101 1 pin MAD not con	nected					
pin p	rogrammable SLAVE ADDRE	SS =		101 101 0 pin MAD connected to ground						
R/W		=		0 (write)	0 (write)					
А		=		acknowledge, generated by	acknowledge, generated by the slave					
SUBADDRESS (SAD) =			see Table 2							
DATA	A	=		see Table 3						
Р		=		stop condition						

If more than 1 byte of DATA is transmitted, then auto-increment is performed, starting from the transmitted subaddress and auto-increment of subaddress according to the order of Table 2 is performed.

Subaddress

Table 2Second byte after slave address.

FUNCTION	REGISTER	MSB							LSB	HEX
I ONOTION	REGISTER	D7	D6	D5	D4	D3	D2	D1	D0	
volume right	VR	0	0	0	0	0	0	0	0	00
volume left	VL	0	0	0	0	0	0	0	1	01
bass	BA	0	0	0	0	0	0	1	0	02
treble	TR	0	0	0	0	0	0	1	1	03
subwoofer	SW	0	0	0	0	0	1	0	0	04
control 1	CON1	0	0	0	0	0	1	0	1	05
control 2	CON2	0	0	0	0	0	1	1	0	06
control 3	CON3	0	0	0	0	0	1	1	1	07
alignment 1	ALI1	0	0	0	0	1	0	0	0	08
alignment 2	ALI2	0	0	0	0	1	0	0	1	09
alignment 3	ALI3	0	0	0	0	1	0	1	0	0A

TDA9855

Definition of third byte

FUNCTION	REGISTER	MSB D7	D6	D5	D4	D3	D2	D1	LSB D0
volume right	VR	0	VR6	VR5	VR4	VR3	VR2	VR1	VR0
volume left	VL	0	VL6	VL5	VL4	VL3	VL2	VL1	VL0
bass	BA	0	0	0	BA4	BA3	BA2	BA1	BA0
treble	TR	0	0	0	TR4	TR3	TR2	TR1	0
subwoofer	SW	0	0	SW5	SW4	SW3	SW2	0	0
control 1	CON1	GMU	AVLON	LOFF	0	SUR	SC2	SC1	SC0
control 2	CON2	SAP	STEREO	TZCM	VZCM	LMU	EF2	EF1	EF0
control 3	CON3	0	0	0	0	L3	L2	L1	L0
alignment 1	ALI1	0	0	0	A14	A13	A12	A11	A10
alignment 2	ALI2	STS	0	0	A24	A23	A22	A21	A20
alignment 3	ALI3	ADJ	AT1	AT2	0	1	TC2	TC1	TC0

Function of the bits:

VR0 to VR6	volume control right
VL0 to VL6	volume control left
BA0 to BA4	bass control
TR1 to TR3	treble control
SW2 to SW5	subwoofer, surround control
GMU	mute control for all outputs (general mute)
AVLON	AVL on/off
LOFF	switch loudness on/off
SUR	surrounds/subwoofer SUR = 1 \rightarrow (L – R)/2; SUR = 0 \rightarrow (L + R)/2
SC0 to SC2	selection between line in and line out
STEREO, SAP	mode selection for line out
TZCM	zero cross mode in mute operation (treble and subwoofer/surround output stage)
VZCM	zero cross mode in volume operation
LMU	mute control for line out
EF0 to EF2	selection between mono, stereo linear, spatial stereo and pseudo mode
L0 to L3	input level adjust
ADJ	stereo adjust on/off
A1X	stereo alignment data for wideband expander
A2X	stereo alignment data for spectral expander
AT1, AT2	attack time at AVL
TC0 to TC2	timing current alignment data
STS	stereo level switch

Table 4Volume setting in register VR and VL.

				D	ATA			
G _c (dB)	D6 V6	D5 V5	D4 V4	D3 V3	D2 V2	D1 V1	D0 V0	HEX
16	1	1	1	1	1	1	1	7F
15	1	1	1	1	1	1	0	7E
14	1	1	1	1	1	0	1	7D
13	1	1	1	1	1	0	0	7C
12	1	1	1	1	0	1	1	7B
11	1	1	1	1	0	1	0	7A
10	1	1	1	1	0	0	1	79
9	1	1	1	1	0	0	0	78
8	1	1	1	0	1	1	1	77
7	1	1	1	0	1	1	0	76
6	1	1	1	0	1	0	1	75
5	1	1	1	0	1	0	0	74
4	1	1	1	0	0	1	1	73
3	1	1	1	0	0	1	0	72
2	1	1	1	0	0	0	1	71
1	1	1	1	0	0	0	0	70
0	1	1	0	1	1	1	1	6F
-1	1	1	0	1	1	1	0	6E
-2	1	1	0	1	1	0	1	6D
-3	1	1	0	1	1	0	0	6C
-4	1	1	0	1	0	1	1	6B
-5	1	1	0	1	0	1	0	6A
-6	1	1	0	1	0	0	1	69
-7	1	1	0	1	0	0	0	68
-8	1	1	0	0	1	1	1	67
-9	1	1	0	0	1	1	0	66
-10	1	1	0	0	1	0	1	65
-11	1	1	0	0	1	0	0	64
-12	1	1	0	0	0	1	1	63
-13	1	1	0	0	0	1	0	62
-14	1	1	0	0	0	0	1	61
-15	1	1	0	0	0	0	0	60

	DATA							
G _c (dB)	D6 V6	D5 V5	D4 V4	D3 V3	D2 V2	D1 V1	D0 V0	HEX
-16	1	0	1	1	1	1	1	5F
-17	1	0	1	1	1	1	0	5E
-18	1	0	1	1	1	0	1	5D
-19	1	0	1	1	1	0	0	5C
-20	1	0	1	1	0	1	1	5B
-21	1	0	1	1	0	1	0	5A
-22	1	0	1	1	0	0	1	59
-23	1	0	1	1	0	0	0	58
-24	1	0	1	0	1	1	1	57
-25	1	0	1	0	1	1	0	56
-26	1	0	1	0	1	0	1	55
-27	1	0	1	0	1	0	0	54
-28	1	0	1	0	0	1	1	53
-29	1	0	1	0	0	1	0	52
-30	1	0	1	0	0	0	1	51
-31	1	0	1	0	0	0	0	50
-32	1	0	0	1	1	1	1	4F
-33	1	0	0	1	1	1	0	4E
-34	1	0	0	1	1	0	1	4D
-35	1	0	0	1	1	0	0	4C
-36	1	0	0	1	0	1	1	4B
-37	1	0	0	1	0	1	0	4A
-38	1	0	0	1	0	0	1	49
-39	1	0	0	1	0	0	0	48
-40	1	0	0	0	1	1	1	47
-41	1	0	0	0	1	1	0	46
-42	1	0	0	0	1	0	1	45
-43	1	0	0	0	1	0	0	44
-44	1	0	0	0	0	1	1	43
-45	1	0	0	0	0	1	0	42
-46	1	0	0	0	0	0	1	41
-47	1	0	0	0	0	0	0	40

	DATA							
G _c (dB)	D6 V6	D5 V5	D4 V4	D3 V3	D2 V2	D1 V1	D0 V0	HEX
-48	0	1	1	1	1	1	1	3F
-49	0	1	1	1	1	1	0	3E
-50	0	1	1	1	1	0	1	3D
-51	0	1	1	1	1	0	0	3C
-52	0	1	1	1	0	1	1	3B
-53	0	1	1	1	0	1	0	3A
-54	0	1	1	1	0	0	1	39
-55	0	1	1	1	0	0	0	38
-56	0	1	1	0	1	1	1	37
-57	0	1	1	0	1	1	0	36
-58	0	1	1	0	1	0	1	35
-59	0	1	1	0	1	0	0	34
-60	0	1	1	0	0	1	1	33
-61	0	1	1	0	0	1	0	32
-62	0	1	1	0	0	0	1	31
-63	0	1	1	0	0	0	0	30
-64	0	1	0	1	1	1	1	2F
-65	0	1	0	1	1	1	0	2E
-66	0	1	0	1	1	0	1	2D
-67	0	1	0	1	1	0	0	2C
-68	0	1	0	1	0	1	1	2B
-69	0	1	0	1	0	1	0	2A
-70	0	1	0	1	0	0	1	29
-71	0	1	0	1	0	0	0	28
mute	0	1	0	0	1	1	1	27

TDA9855

Table 5Bass setting in register BA.

			DATA			
G _b (dB)	D4 BA4	D3 BA3	D2 BA2	D1 BA1	D0 BA0	HEX
16.5	1	1	0	0	1	19
15	1	1	0	0	0	18
13.5	1	0	1	1	1	17
12	1	0	1	1	0	16
10.5	1	0	1	0	1	15
9	1	0	1	0	0	14
7.5	1	0	0	1	1	13
6	1	0	0	1	0	12
4.5	1	0	0	0	1	11
3	1	0	0	0	0	10
1.5	0	1	1	1	1	0F
0	0	1	1	1	0	0E
-1.5	0	1	1	0	1	0D
-3	0	1	1	0	0	0C
-4.5	0	1	0	1	1	0B
-6	0	1	0	1	0	0A
-7.5	0	1	0	0	1	09
-9	0	1	0	0	0	08
-10.5	0	0	1	1	1	07
-12	0	0	1	1	0	06

		DA	TA		
G _t (dB)	D4 TR4	D3 TR3	D2 TR2	D1 TR1	HEX
12	1	0	1	1	16
9	1	0	1	0	14
6	1	0	0	1	12
3	1	0	0	0	10
0	0	1	1	1	0E
-3	0	1	1	0	0C
-6	0	1	0	1	0A
-9	0	1	0	0	08
-12	0	0	1	1	06

Table 6Treble setting in register TR.

TDA9855

I²C-bus controlled BTSC stereo / SAP decoder and audio processor

DATA						
G _s (dB)	D5	D4	D3	D2	HEX	
	SW5	SW4	SW3	SW2		
14	1	1	1	1	3C	
12	1	1	1	0	38	
10	1	1	0	1	34	
8	1	1	0	0	30	
6	1	0	1	1	2C	
4	1	0	1	0	28	
2	1	0	0	1	24	
0	1	0	0	0	20	
-2	0	1	1	1	1C	
-4	0	1	1	0	18	
-6	0	1	0	1	14	
-8	0	1	0	0	10	
-10	0	0	1	1	0C	
-12	0	0	1	0	08	
-14	0	0	0	1	04	
mute	0	0	0	0	00	

 Table 7
 Subwoofer/surround setting in register SW.

Table 8 Selector setting in register CON1.

FUNCTI	ON: input connected to		DATA	
output	SOR, SOL	D2 SC2	D1 SC1	D0 SC0
input	LOR, LOL	0	0	0
input	LOR, LOR	0	0	1
input	LOL, LOL	0	1	0
input	LOL, LOR	0	1	1
input	LIR, LIL	1	0	0
input	LIR, LIR	1	0	1
input	LIL, LIL	1	1	0
input	LIL, LIR	1	1	1

 Table 9
 SUR bit setting in register CON1.

FUNCTION	DATA D3
surround sound	1
subwoofer	0

Table 10 LOFF bit setting in register CON1.

CHARACTERISTIC	DATA D5
with loudness	0
linear	1

Table 11 AVLON bit setting in register CON1.

FUNCTION	DATA D6
automatic volume control off	0
automatic volume control on	1

Table 12 Mute setting.

REGISTER CO	N1	REGISTER CON2		
FUNCTION	DATA D7 GMU	FUNCTION	DATA D3 LMU	
forced mute at OUTR, OUTL, OUTS	1	forced mute at LOR, LOL	1	
audio processor controlled outputs	0	stereo processor controlled outputs	0	

Table 13 Effects setting in register CON2.

	DATA				
FUNCTION	D2 EF2	D1 EF1	D0 EF0		
stereo linear on	0	0	0		
pseudo on	0	0	1		
spatial stereo, 30% anti-phase crosstalk	0	1	0		
spatial stereo, 50% anti-phase crosstalk	0	1	1		
forced mono	1	1	1		

 Table 14
 Zero cross detection setting in register CON2.

FUNCTION	DATA D5 TZCM	FUNCTION	DATA D4 VZCM
direct mute control	0	direct volume control	0
mute control delayed until the next zero crossing	1	volume control delayed until the next zero crossing	1

TDA9855

 Table 15
 Switch setting at line out.

FUI	NCTION	DATA		D	DATA	
line out signals	at	transmission status	ssion status setting bits in register CC		egister CON2	
		internal switch reada register ALR1, ALR2		D7	D6	
LOL	LOR	D6 D5 SAPP STP		SAP	STEREO	
SAP	SAP	SAP received		1	1	
mute	mute	no SAP received		1	1	
left	right	stereo received		0	1	
mono	mono	no stereo received		0	1	
mono	SAP	SAP received		1	0	
mono	mute	no SAP received		1	0	
mono	mono			0	0	

 Table 16
 Level adjust setting in register CON3.

	DATA				DATA			
G _l (dB)	D3 L3	D2 L2	D1 L1	D0 L0	HEX			
+4	1	1	1	1	0F			
+3.5	1	1	1	0	0E			
+3	1	1	0	1	0D			
+2.5	1	1	0	0	0C			
+2	1	0	1	1	0B			
+1.5	1	0	1	0	0A			
+1	1	0	0	1	09			
+0.5	1	0	0	0	08			
0	0	1	1	1	07			
-0.5	0	1	1	0	06			
-1	0	1	0	1	05			
-1.5	0	1	0	0	04			
-2	0	0	1	1	03			
-2.5	0	0	1	0	02			
-3	0	0	0	1	01			
-3.5	0	0	0	0	00			

TDA9855

I²C-bus controlled BTSC stereo / SAP decoder and audio processor

Table 17	Alignment data for expander in read register
	ALR1 and ALR2 and in write register ALI1 and
	ALI2.

	DATA				
FUNCTION	D4 AX4	D3 AX3	D2 AX2	D1 AX1	D0 AX0
gain increase	1	1	1	1	1
	1	1	1	1	0
	1	1	1	0	1
	1	1	1	0	0
	1	1	0	1	1
	1	1	0	1	0
	1	1	0	0	1
	1	1	0	0	0
	1	0	1	1	1
	1	0	1	1	0
	1	0	1	0	1
	1	0	1	0	0
	1	0	0	1	1
	1	0	0	1	0
	1	0	0	0	1
nominal gain	1	0	0	0	0
	0	1	1	1	1
gain decrease	0	1	1	1	0
	0	1	1	0	1
	0	1	1	0	0
	0	1	0	1	1
	0	1	0	1	0
	0	1	0	0	1
	0	1	0	0	0
	0	0	1	1	1
	0	0	1	1	0
	0	0	1	0	1
	0	0	1	0	0
	0	0	0	1	1
	0	0	0	1	0
	0	0	0	0	1
	0	0	0	0	0

 Table 18 STS bit setting in register ALI2 (pilot threshold stereo on).

FUNCTION	DATA D7
$STON \le 35 \text{ mV}$	1
$STON \le 30 \text{ mV}$	0

 Table 19 Timing current setting in register ALI3.

	DATA			
I _{s range}	D2 TC2	D1 TC1	D0 TC0	
+30%	1	0	0	
+20%	1	0	1	
+10%	1	1	0	
nominal	0	1	1	
-10%	0	1	0	
-20%	0	0	1	
-30%	0	0	0	

 Table 20
 AVL attack time setting in register ALI3.

	DA	ТА
R_{att} (Ω)	D6 AT1	D5 AT2
420	0	0
730	1	0
1200	0	1
2100	1	1

 Table 21
 ADJ bit setting in register ALI3.

FUNCTION	DATA D7
stereo decoder operation mode	0
auto adjustment of channel separation	1

TDA9855

I²C-bus controlled BTSC stereo / SAP decoder and audio processor

CURVE	CAPACITANCE AT PIN 43 (56) (nF)	CAPACITANCE AT PIN 42 (55) (nF)	EFFECT
1	15	15	normal
2	5.6	47	intensified
3	5.6	68	more intensified

APPLICATION HINTS

Selection of input signals by using the zero crossing mute mode

A selection between the internal signal path and the external input LIL/LIR produces a modulation click depending on the difference of the signal values at the time of switching. At t₁ the maximum possible difference between signals is 7 V_(p-p) and gives a large click. Using the zero cross detector no modulation click is audible. For example: The selection is enabled at t₁, the microcontroller sets the zero cross bit (TZCM = 1) and

TDA9855

then the mute bit (GMU = 1) via the l²C-bus. The output signal follows the input A signal, until the next zero crossing occurs and then activates mute. After a fixed delay time before t_2 , the microcontroller has to

send the forced mute mode (TZCM = 0) and the return to the zero crossing mode (TZCM = 1) to be sure that mute is enabled.

The output signal remains muted until the next signal zero crossing of input B occurs, and then follows that signal. The delay time $t_2 - t_1$ is e.g. 40 ms. The zero cross function is working at the lowest frequency of 40 Hz.

Preliminary specification

TDA9855

Loudness filter calculation example

Fig.12 shows the basic loudness circuit with an external low-pass filter application. R_1 allows an attenuation range of

21 dB while the boost is determined by the gain stage V₁. Both result in a loudness control range of +16 dB to -12 dB.

Defining $f_{reference}$ as the frequency where the level does not change while switching loudness on/off. The external resistor R_3 for $f_{reference} \rightarrow \infty$ can be calculated as

$$R_3 = R_1 \frac{10^{G_v/20}}{1 - 10^{G_v/20}}$$

with $G_v = -21$ dB and $R_1 = 33$ k Ω results in $R_3 = 3.2$ k Ω .

For the low-pass filter characteristic the value of the external capacitor C_1 can be determined by setting a specific boost for a defined frequency and referring the gain to G_v at $f_{reference}$ as indicated above.

$$\left|\frac{1}{j\omega C_{1}}\right| = \frac{(R_{1} + R_{3}) \times 10^{G_{v}/20} - R_{3}}{1 - 10^{G_{v}/20}}$$

For example: 3 dB boost at f = 1 kHz $G_v = G_{v \text{ reference}} + 3 dB = -18 dB$; f = 1 kHz and $C_1 = 100 \text{ nF}$ If a loudness characteristic with additional high frequency boost is desired, an additional high-pass section has to be included in the external filter circuit as indicated in the block diagram. A filter configuration that provides AC coupling avoids offset voltage problems.

Fig.13 shows an example of the loudness circuit with bass and treble boost.

TDA9855

INTERNAL PIN CONFIGURATIONS (pin numbers for SHRDIL-version)

Pin 1: Treble control capacitor, left Pin 52: Treble control capacitor, right

Pin 3: Bass control capacitor output, left Pin 50: Bass control capacitor output, right

Pin 4: Output subwoofer Pin 6: Output, left channel

Pin 14: Output selector, left channel Pin 39: Output selector, right channel

Pin 47: Output, right channel

Pin 5: MAD (I²C-bus address switch)

Pin 7: Input loudnes, left Pin 46: Input loudness, right

4.25 V -0

[]15 []κΩ

[]6.8 | kΩ

I²C-bus controlled BTSC stereo / SAP decoder and audio processor

Pin 12: Line input, left Pin 41: Line input, right

Fig.17 Internal circuits (continued from Fig.16).

TDA9855

I²C-bus controlled BTSC stereo / SAP decoder and audio processor

Pin 23: Capacitor mute for SAP

Pin 24: Capacitor DC decoupling for SAP

5 V 27 1.8 kΩ

Pin 26: SDA (1²C-bus DATA input/output) Pin 27: SCL (1²C-bus CLOCK)

Pin 30: Smoothing capacitor for supply

Pin 32: Capacitor for pilot detector

Pin 33: Capacitor for phase cetector

Pin 34: Capacitor for filter adjust

Fig.20 Internal circuits (continued from Fig.19).

TDA9855

90-01-22

95-03-11

I²C-bus controlled BTSC stereo / SAP decoder and audio processor

PACKAGE OUTLINES

SDIP52: plastic shrink dual in-line package; 52 leads (600 mil)

SOT247-1

SOT247-1

TDA9855

SOT188-2

PLCC68: plastic leaded chip carrier; 68 leads

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT188-2	112E10	MO-047AC			$\blacksquare $	-92-11-17 95-03-11

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

SDIP

SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg\,max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300 \,^{\circ}$ C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

PLCC

REFLOW SOLDERING

Reflow soldering techniques are suitable for all PLCC packages.

The choice of heating method may be influenced by larger PLCC packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our *"Quality Reference Handbook"* (order code 9397 750 00192).

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 $^{\circ}$ C.

WAVE SOLDERING

Wave soldering techniques can be used for all PLCC packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

DEFINITIONS

Data sheet status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
Limiting values					
more of the limiting values of the device at these or at	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification limiting values for extended periods may affect device reliability.				
Application information					

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.