INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC02 1996 Aug 02

TDA9819

FEATURES

- 5 V supply voltage
- Applicable for IF frequencies of 38.9 MHz and 45.75 MHz
- Two switched VIF inputs, gain controlled wide band VIF-amplifier (AC-coupled)
- True synchronous demodulation with active carrier regeneration (very linear demodulation, good intermodulation figures, reduced harmonics and excellent pulse response)
- VCO frequency switchable between TV (M or BG/L) IF-picture carrier and Digital Video Broadcast (DVB) frequency
- Separate video amplifier for sound trap buffering with high video bandwidth
- VIF AGC detector for gain control, operating as peak sync detector for M and B/G and peak white detector for L; controlled reaction time for L
- Tuner AGC with adjustable takeover point (TOP)
- AFC detector without extra reference circuit
- SIF input for single reference QSS mode (PLL controlled); SIF AGC detector for gain controlled SIF amplifier; single reference QSS mixer able to operate in high performance single reference QSS mode
- AC-coupled limiter amplifier for sound intercarrier signal
- Alignment-free FM-PLL demodulator with high linearity
- · AM demodulator without extra reference circuit
- Stabilizer circuit for ripple rejection and to achieve constant output signals.

ORDERING INFORMATION

TYPE NUMBER PACKAGE NAME DESCRIPTION VERSION TDA9819 SDIP32 plastic shrink dual in-line package; 32 leads (400 mil) SOT232-1

DVB functions

- Gain controlled IF-amplifier
- Mixer for DVB-IF
- VCO for QAM carrier recovery
- External VCO control for DVB
- Internal and external AGC for DVB
- DVB output level adjust via AGC adjust
- High level DVB operational output amplifier.

GENERAL DESCRIPTION

The TDA9819 is an integrated circuit for multistandard vision and sound-IF signal processing with single reference PLL demodulator combined with the signal stages for DVB-IF processing.

TDA9819

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VP	supply voltage		4.5	5.0	5.5	V
I _P	supply current		81	100	121	mA
V _{i VIF(rms)}	vision IF input signal voltage sensitivity (RMS value)	-1 dB video at output	-	60	100	μV
V _{o CVBS(p-p)}	CVBS output signal voltage (peak-to-peak value)		1.7	2.0	2.3	V
B (M, BG/L)	–3 dB video bandwidth on pin 10	M, B/G and L standard; C _L < 20 pF; R _L > 1 k Ω ; AC load	7	8	-	MHz
S/N (W)	weighted signal-to-noise ratio for video		56	60	-	dB
α _{1.1}	intermodulation attenuation at 'blue'	f = 1.1 MHz	58	64	-	dB
α _{3.3}	intermodulation attenuation at 'blue'	f = 3.3 MHz	58	64	-	dB
α _H	suppression of harmonics in video signal		35	40	-	dB
V _{i SIF(rms)}	sound-IF input signal voltage sensitivity (RMS value)	-3 dB at intercarrier output	-	70	100	μV
V _{o(rms)}	audio output signal voltage for FM (RMS value)	M and B/G standard; 25 kHz frequency deviation	_	0.5	-	V
	audio output signal voltage for AM (RMS value)	L standard; 54% modulation	_	0.5	-	V
THD	total harmonic distortion					
	FM	25 kHz frequency deviation	_	0.15	0.5	%
	АМ	54% modulation	_	0.5	1.0	%
S/N (W)	weighted signal-to-noise ratio					
	FM	25 kHz frequency deviation	_	60	_	dB
	АМ	54% modulation	47	53	_	dB

BLOCK DIAGRAM

TDA9819

Multistandard vision and sound-IF PLL with DVB-IF processing

PINNING

SYMBOL	PIN	DESCRIPTION
V _{i VIF1}	1	VIF differential input signal voltage 1
V _{i VIF2}	2	VIF differential input signal voltage 2
C _{BL}	3	black level detector
V _{i VIF3}	4	VIF differential input signal voltage 3
V _{i VIF4}	5	VIF differential input signal voltage 4
TADJ	6	tuner AGC takeover adjust (TOP)
T _{PLL}	7	PLL loop filter
C _{SAGC}	8	SIF AGC capacitor
STD	9	standard switch input
V _{o CVBS}	10	2 V CVBS output signal voltage
VCOADJ	11	VCO adjust BG/L/M
V _{o AF}	12	audio voltage frequency output
V _{AGC(ext)}	13	external AGC voltage (DVB)
C _{AF}	14	AF decoupling capacitor
AGCADJ	15	AGC adjust (DVB)
V _{VCO(ext)}	16	external VCO control voltage (DVB)
V _{i FM}	17	sound intercarrier input
DVB	18	DVB output
TAGC	19	tuner AGC output
$V_{o QSS}$	20	single reference QSS output voltage
V _{o(vid)}	21	composite video output voltage
V _{i(vid)}	22	video buffer input voltage
AFC	23	AFC output
VCO1	24	VCO1 reference circuit for 2f _{PC}
VCO2	25	VCO2 reference circuit for 2f _{PC}
C _{ref}	26	$1/_2V_P$ reference capacitor
GND	27	ground
C _{VAGC}	28	VIF AGC capacitor
V _P	29	supply voltage (+5 V)
INSWI	30	VIF input switch
V _{i SIF1}	31	SIF differential input signal voltage 1
V _{i SIF2}	32	SIF differential input signal voltage 2

FUNCTIONAL DESCRIPTION

Vision IF amplifier and input switch

The vision IF amplifier consists of three AC-coupled differential amplifier stages. Each differential stage comprises a feedback network controlled by emitter degeneration to control the IF gain. The first differential stage is extended by two pairs of emitter followers to provide two IF input channels. The VIF input can be selected by pin 30.

Tuner and VIF AGC

The AGC capacitor voltage is transferred to an internal IF control signal, and is fed to the tuner AGC to generate the tuner AGC output current (open-collector output). The tuner AGC takeover point can be adjusted. This allows the tuner and the SWIF filter to be matched to achieve the optimum IF input level.

The AGC detector charges/discharges the AGC capacitor to the required voltage for setting of VIF and tuner gain in order to keep the video signal at a constant level. Therefore for negative video modulation the sync level and for positive video modulation the peak white level of the video signal is detected. In order to reduce the reaction time for positive modulation, where a very large time constant is needed, an additional level detector increases the discharging current of the AGC capacitor (fast mode) in the event of a decreasing VIF amplitude step. The additional level information is given by the black-level detector voltage.

Frequency Phase Locked Loop detector (FPLL)

The VIF-amplifier output signal is fed into a frequency detector and into a phase detector via a limiting amplifier. During acquisition the frequency detector produces a DC current proportional to the frequency difference between the input and the VCO signal. After frequency lock-in the phase detector produces a DC current proportional to the phase difference between the VCO and the input signal. The DC current of either frequency detector or phase detector is converted into a DC voltage via the loop filter, which controls the VCO frequency. In the event of positive modulated signals the phase detector is gated by composite sync in order to avoid signal distortion for overmodulated VIF signals.

VCO, Travelling Wave Divider (TWD) and AFC

The VCO operates with a resonance circuit (with L and C in parallel) at double the PC frequency. The VCO is controlled by two integrated variable capacitors. The control voltage required to tune the VCO from its free-running frequency to actually double the PC frequency is generated by the frequency-phase detector and fed via the loop filter to the first variable capacitor (FPLL). This control voltage is amplified and converted into a current which represents the AFC output signal. The VCO centre frequency can be decreased by activating an additional internal capacitor. With a variable resistor at VCOADJ (pin 11) the frequency for the M, B/G and L mode can be tuned to the picture carrier frequency. At centre frequency the AFC output current is equal to zero.

The oscillator signal is divided-by-two with a TWD which generates two differential output signals with a 90 degree phase difference independent of the frequency.

Video demodulator and amplifier

The video demodulator is realized by a multiplier which is designed for low distortion and large bandwidth. The vision IF input signal is multiplied with the 'in phase' signal of the travelling wave divider output. In the demodulator stage the video signal polarity can be switched in accordance with the TV standard.

The demodulator output signal is fed via an integrated low-pass filter for attenuation of the carrier harmonics to the video amplifier. The video amplifier is realized by an operational amplifier with internal feedback and high bandwidth. A low-pass filter is integrated to achieve an attenuation of the carrier harmonics for M, B/G and L standard. The standard dependent level shift in this stage delivers the same sync level for positive and negative modulation. The video output signal is 1 V (p-p) for nominal vision IF modulation.

Video buffer

For an easy adaption of the sound traps an operational amplifier with internal feedback is used in the event of M, B/G and L standard. This amplifier is featured with a high bandwidth and 7 dB gain. The input impedance is adapted for operating in combination with ceramic sound traps. The output stage delivers a nominal 2 V (p-p) positive video signal. Noise clipping is provided.

TDA9819

SIF amplifier and AGC

The sound IF amplifier consists of two AC-coupled differential amplifier stages. Each differential stage comprises a controlled feedback network provided by emitter degeneration.

The SIF AGC detector is related to the SIF input signals (average level of AM or FM carriers) and controls the SIF amplifier to provide a constant SIF signal to the AM demodulator and single reference QSS mixer. The SIF AGC reaction time is set to 'slow' for nominal video conditions. But with a decreasing VIF amplitude step the SIF AGC is set to 'fast' mode controlled by the VIF AGC detector. In FM mode this reaction time is also set to 'fast' controlled by the standard switch.

Single reference QSS mixer

The single reference QSS mixer is realized by a multiplier. The SIF amplifier output signal is fed to the single reference QSS mixer and converted to intercarrier frequency by the regenerated picture carrier (VCO). The mixer output signal is fed via a high-pass for attenuation of the video signal components to the output pin 20. With this system a high performance hi-fi stereo sound processing can be achieved.

For a simplified application without a sound-IF SAW filter the single reference QSS mixer can be switched to the intercarrier mode by connecting pins 31 and 32 to ground (see note 18 of Chapter "Characteristics").

In this mode the sound-IF passes the VIF SAW filter and the composite IF signal is fed to the single reference QSS mixer. This IF signal is multiplied by the 90° TWD output signal for converting the sound-IF to intercarrier frequency. By using this quadrature detection, the low frequency video signals are removed.

Due to the sound-IF attenuation in the VIF filter (sound shelf), the audio signal-to-noise (S/N) figure decreases.

AM demodulator

The AM demodulator (French L standard) is realized by a multiplier. The modulated SIF amplifier output signal is multiplied in phase with the limited (AM is removed) SIF amplifier output signal. The demodulator output signal is fed via an integrated low-pass filter for attenuation of the carrier harmonics to the AF amplifier.

FM detector

The FM detector consists of a limiter, an FM-PLL and an AF amplifier. The limiter provides the amplification and limitation of the FM sound intercarrier signal before demodulation. The result is high sensitivity and AM suppression. The amplifier consists of 7 stages which are internally AC-coupled in order to minimize the DC offset and to save pins for DC decoupling.

The FM-PLL consists of an integrated relaxation oscillator, an integrated loop filter and a phase detector. The oscillator is locked to the FM intercarrier signal, output from the limiter. As a result of locking, the oscillator frequency tracks with the modulation of the input signal and the oscillator control voltage is superimposed by the AF voltage. The FM-PLL operates as an FM-demodulator.

The AF amplifier consists of two parts:

- The AF preamplifier for FM sound is an operational amplifier with internal feedback, high gain and high common mode rejection. The AF voltage from the PLL demodulator, by principle a small output signal, is amplified by approximately 30 dB. The low-pass characteristic of the amplifier reduces the harmonics of the intercarrier signal at the sound output terminal. An additional DC control circuit is implemented to keep the DC level constant, independent of process spread.
- 2. The AF output amplifier (10 dB) provides the required output level by a rail-to-rail output stage. This amplifier makes use of an input selector for switching to AM/FM or mute state, controlled by the standard switching voltage and the mute switching voltage.

Internal voltage stabilizer and $1/_2 V_P$ reference

The band-gap circuit internally generates a voltage of approximately 1.25 V, independent of supply voltage and temperature. A voltage regulator circuit, connected to this voltage, produces a constant voltage of 3.6 V which is used as an internal reference voltage.

For all audio output signals the constant reference voltage cannot be used because large output signals are required. Therefore these signals refer to half the supply voltage to achieve a symmetrical headroom, especially for the rail-to-rail output stage. For ripple and noise attenuation the $1/_2$ V_P voltage has to be filtered via a low-pass filter by using an external capacitor together with an integrated resistor (f_g = 5 Hz). For a fast setting to $1/_2$ V_P an internal start-up circuit is added.

DVB mixer

The VCO can be controlled by an external DC signal to provide a carrier for the down-conversion of the DVB-IF signal. The VCO frequency as a function of the voltage at pin 16 is given in Figs 10 and 11.

DVB AGC

For the DVB operation a peak AGC detector is activated. The peak value of (digital) QAM signal is detected and controlled to a constant value by the variable VIF amplifier. The detector bandwidth is adapted to the signal frequency (3 to 11 MHz). The external AGC time constant is given by the VIF AGC capacitor at pin 28. The DVB output signal V_{O DVB} can be adjusted in a range of ± 3 dB by a control voltage ΔV_{adj} at pin 15. The internal AGC can be switched off (see Table 2) and the IF gain can be controlled by an external voltage at pin 13. The tuner AGC is active in both instances.

DVB output buffer

The output buffer for the DVB signal has a high bandwidth and 0 dB gain. An inverting configuration was chosen to obtain minimum distortion. For non-DVB standards the buffer is switched to a mute to reduce the output signal level.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _P	supply voltage (pin 29)	maximum chip temperature of 125 °C; note 1	0	7.0	V
V _n	voltage at pins 1 to 9, 11 to 13, 15, 16, 19, 22, 23 and 28 to 32		0	V _P	V
t _{sc(max)}	maximum short-circuit time		-	10	s
V ₁₉	tuner AGC output voltage		0	13.2	V
T _{stg}	storage temperature		-25	+150	°C
T _{amb}	operating ambient temperature		-20	+70	°C
V _{es}	electrostatic handling voltage	note 2	-300	+300	V

Notes

1. $I_P = 125 \text{ mA}; T_{amb} = 70 \text{ °C}; R_{th j-a} = 60 \text{ K/W}.$

2. Machine model class B.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	60	K/W

TDA9819

CHARACTERISTICS

 $V_P = 5 V$; $T_{amb} = 25 °C$; see Table 1 for input frequencies and level; input level $V_{i \ IF1-2, \ 4-5} = 10 \ mV \ RMS$ value (sync-level for M and B/G, peak white level for L); video modulation DSB; residual carrier M and B/G: 10%; L = 3%; video signal in accordance with "*CCIR, line 17*"; measurements taken in Fig.12; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply (pin 2	29)		-		-1	
V _P	supply voltage	note 1	4.5	5.0	5.5	V
lp	supply current	M, B/G and L standard	89	105	121	mA
		DVB	81	96	111	mA
Vision IF am	plifier (pins 1, 2, 4 and 5)	1	-	•	1	-1
V _{i VIF(rms)}	input signal voltage sensitivity (RMS value)	M, B/G and L standard; –1 dB video at output	-	60	90	μV
V _{i max(rms)}	maximum input signal voltage (RMS value)	M, B/G and L standard; +1 dB video at output	140	200	-	mV
$\Delta V_{o(int)}$	internal IF amplitude difference between picture and sound carrier	within AGC range; $\Delta f = 5 \text{ MHz}$	-	0.7	1	dB
G _{IF}	IF gain control range	see Fig.3	65	70	-	dB
R _{i(diff)}	differential input resistance	note 2; input activated	1.7	2.2	2.7	kΩ
C _{i(diff)}	differential input capacitance	note 2; input activated	1.2	1.7	2.5	pF
V _{1, 2, 4, 5}	DC input voltage	note 2; input activated	-	3.3	-	V
R _i	input resistance to ground	note 2; input not activated	_	1.1	_	kΩ
V _{1, 2, 4, 5}	DC input voltage	note 2; input not activated	_	0.2	_	V
α _{i IF}	crosstalk attenuation of IF input switch at pins 1, 2, 4 and 5	notes 2 and 3	55	60	-	dB
True synchro	onous video demodulator; note 4		ī			-
f _{VCO(max)}	maximum oscillator frequency for carrier regeneration	$f = 2f_{PC}$	125	130	-	MHz
$\frac{\Delta f_{osc}}{\Delta T}$	oscillator drift as a function of temperature	free-running oscillator; I _{AFC} = 0; note 5	-	-	±20	ppm/K
V _{0 ref(rms)}	oscillator voltage swing between pins 24 and 25 (RMS value)		-	60	-	mV
f _{PC CR}	vision carrier capture range	M standard	±1.0	±1.25	-	MHz
		B/G and L standard	±1.35	±1.6	_	MHz
$\Delta f_{PC(fr)}$	vision carrier frequency accuracy	M standard	-	±150	±300	kHz
	(free-running)	B/G and L standard	-	±200	±400	kHz
$\Delta f_{PC(alg)}$	frequency alignment range	I _{AFC} = 0; M standard	±300	±400	-	kHz
		I _{AFC} = 0; B/G and L standard	±400	±600	-	kHz
t _{acq}	acquisition time	BL = 70 kHz; note 6	_	-	30	ms
V _{i VIF(rms)}	VIF input signal voltage sensitivity for PLL to be locked (RMS value; pins 1, 2, 4 and 5)	maximum IF gain; note 7	-	60	90	μV
I _{FPLL(offset)}	FPLL offset current at pin 7	note 8	-	-	±4.5	μA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Composite vi	deo amplifier (pin 21; sound carr	ier off)	•		-1	
Vo video(p-p)	output signal voltage (peak-to-peak value)	see Fig.8	0.88	1.0	1.12	V
V _{21(sync)}	sync voltage level		-	1.5	_	V
V _{21(clu)}	upper video clipping voltage level		V _P – 1.1	V _P – 1	_	V
V _{21(cll)}	lower video clipping voltage level		-	0.7	0.9	V
R _{0,21}	output resistance	note 2	-	-	10	Ω
I _{int 21}	internal DC bias current for emitter-follower		1.6	2.0	-	mA
I _{21 max(sink)}	maximum AC and DC output sink current		1.0	-	_	mA
I _{21 max(source)}	maximum AC and DC output source current		2.0	_	-	mA
B ₋₁	-1 dB video bandwidth	$C_L < 50 \text{ pF}; \text{ R}_L > 1 \text{ k}\Omega;$ AC load	5	6	-	MHz
B ₋₃	-3 dB video bandwidth	$C_L < 50 \text{ pF}; \text{ R}_L > 1 \text{ k}\Omega;$ AC load	7	8	-	MHz
α _H	suppression of video signal harmonics	$C_L < 50 \text{ pF}; R_L > 1 \text{ k}\Omega;$ AC load; note 9	35	40	-	dB
PSRR	power supply ripple rejection at pin 21	video signal; grey level; see Fig.9				
		M and B/G standard	32	35	-	dB
		L standard	26	30	_	dB
CVBS buffer a	amplifier (only) and noise clipper	(pins 10 and 22)				
R _{i,22}	input resistance	note 2	2.6	3.3	4.0	kΩ
C _{i,22}	input capacitance	note 2	1.4	2	3.0	pF
V _{I,22}	DC input voltage		1.5	1.8	2.1	V
G _v	voltage gain	M, B/G and L standard; note 10	6.5	7	7.5	dB
V _{10(clu)}	upper video clipping voltage level		3.9	4.0	-	V
V _{10(cll)}	lower video clipping voltage level		-	1.0	1.1	V
R _{0,10}	output resistance	note 2	-	-	10	Ω
I _{int 10}	DC internal bias current for emitter-follower		2.0	2.5	-	mA
I _{o,10} max(sink)	maximum AC and DC output sink current		1.4	-	_	mA
I _{o,10} max(source)	maximum AC and DC output source current		2.4	-	-	mA
B ₋₁	-1 dB video bandwidth	$C_L < 20 \text{ pF}; \text{ R}_L > 1 \text{ k}\Omega;$ AC load	8.4	11	-	MHz
B ₋₃	-3 dB video bandwidth	$C_L < 20 \text{ pF}; R_L > 1 \text{ k}\Omega;$ AC load	11	14	-	MHz

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Measuremen	ts from IF input to CVBS output (pin 10; 330 Ω between pins	21 and 22	2, sound o	arrier off)
Vo CVBS(p-p)	CVBS output signal voltage on pin 10 (peak-to-peak value)	note 10	1.7	2.0	2.3	V
Vo CVBS(sync)	sync voltage level	M and B/G standard	-	1.35	-	V
		L standard	_	1.35	_	V
ΔVo	deviation of CVBS output signal	50 dB gain control	-	_	0.5	dB
	voltage at M and B/G standard	30 dB gain control	_	-	0.1	dB
$\Delta V_{o(bIBG)}$	black level tilt in M and B/G standard	gain variation; note 11	-	-	1	%
$\Delta V_{o(blL)}$	black level tilt for worst case in L standard	vision carrier modulated by test line (VITS) only; gain variation; note 11	-	-	1.9	%
G _{diff}	differential gain	"CCIR, line 330"	-	2	5	%
φ _{diff}	differential phase	"CCIR, line 330"	-	1	2	deg
B ₋₁	-1 dB video bandwidth	$C_L < 20 \text{ pF}; R_L > 1 \text{ k}\Omega;$ AC load; M, B/G and L standard	5	6	-	MHz
B ₋₃	-3 dB video bandwidth	$C_L < 20 \text{ pF}; R_L > 1 \text{ k}\Omega;$ AC load; M, B/G and L standard	7	8	-	MHz
S/N (W)	weighted signal-to-noise ratio	see Fig.5 and note 12	56	60	-	dB
S/N	unweighted signal-to-noise ratio	see Fig.5 and note 12	49	53	_	dB
$IM\alpha_{1.1}$	intermodulation attenuation at 'blue'	f = 1.1 MHz; see Fig.6 and note 13	58	64	-	dB
	intermodulation attenuation at 'yellow'	f = 1.1 MHz; see Fig.6 and note 13	60	66	-	dB
IMα _{3.3}	intermodulation attenuation at 'blue'	f = 3.3 MHz; see Fig.6 and note 13	58	64	-	dB
	intermodulation attenuation at 'yellow'	f = 3.3 MHz; see Fig.6 and note 13	59	65	-	dB
$\alpha_{c(rms)}$	residual vision carrier (RMS value)	fundamental wave and harmonics; M, B/G and L standard	-	2	10	mV
α _{H(sup)}	suppression of video signal harmonics	note 9	35	40	-	dB
$\alpha_{H(spur)}$	spurious elements	note 14	40	_	_	dB
PSRR	power supply ripple rejection at pin 10	video signal; grey level; see Fig.9				
		M and B/G standard	25	28	_	dB
		L standard	20	23	_	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VIF-AGC det	ector (pin 28)			ł		
I ₂₈	charging current	M, B/G and L standard; note 11	0.75	1	1.25	mA
	additional charging current	L standard in event of missing VITS pulses and no white video content	1.9	2.5	3.1	μA
	discharging current	M and B/G standard	15	20	25	μA
		normal mode L	225	300	375	nA
		fast mode L	30	40	50	μA
t _{resp}	AGC response to an increasing VIF step	M, B/G and L standard; note 15	-	-	0.1	ms/dB
	AGC response to a decreasing	M and B/G standard	_	2.2	3.5	ms/dB
	VIF step	fast mode L	-	1.1	1.8	ms/dB
		normal mode L; note 15	-	150	240	ms/dB
ΔIF	VIF amplitude step for activating fast AGC mode	L standard	-2	-6	-10	dB
V _{3(th)}	threshold voltage level	see Fig.8				
	additional charging current	L standard	-	1.95	_	V
		L standard; fast mode L	-	1.65	_	V
Tuner AGC (pin 19)					
V _{i(rms)}	IF input signal voltage for minimum starting point of tuner takeover (RMS value)	input at pins 1, 2, 4 and 5; $R_{TOP} = 22 \text{ k}\Omega; I_{19} = 0.4 \text{ mA}$	_	2	5	mV
	IF input signal voltage for maximum starting point of tuner takeover (RMS value)	input at pins 1, 2, 4 and 5; $R_{TOP} = 0 \Omega$; $I_{19} = 0.4 \text{ mA}$	50	100	-	mV
V _{0,19}	permissible output voltage	from external source; note 2	-	_	13.2	V
V _{sat,19}	saturation voltage	I ₁₉ = 1.5 mA	-	_	0.2	V
$\frac{\Delta V_{\text{TOP},19}}{\Delta T}$	variation of takeover point by temperature	I ₁₉ = 0.4 mA	-	0.03	0.07	dB/K
I _{19(sink)}	sink current	see Fig.3				
· ·		no tuner gain reduction; $V_{19} = 13.2 V$	-	-	5	μA
		maximum tuner gain reduction	1.5	2	2.6	mA
ΔG_{IF}	IF slip by automatic gain control	tuner gain current from 20 to 80%	-	6	8	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
AFC circuit	pin 23); see Fig.7 and note 16					
S _{USA}	control steepness $\Delta I_{23}/\Delta f$	$f_0 = 45.75$ MHz; see Fig.12 and note 17	0.6	0.91	1.2	μA/kHz
S _{EUR}	_	f ₀ = 38.9 MHz; see Fig.12 and note 17	0.5	0.72	1.0	μA/kHz
$\frac{\Delta f_{IF}}{\Delta T}$	frequency variation by temperature	$I_{AFC} = 0$; note 5	_	_	±20	ppm/K
V _{0,23}	output voltage upper limit	see Fig.7	V _P – 0.6	V _P – 0.3	_	V
-, -	output voltage lower limit	see Fig.7	-	0.3	0.6	V
I _{o,23(source)}	output source current		150	200	250	μA
I _{0,23(sink)}	output sink current		150	200	250	μA
ΔI _{23(p-p)}	residual video modulation current (peak-to-peak value)	M, B/G and L standard	_	20	30	μA
Sound IF am	plifier (pins 31 and 32); note 18					
$V_{i\;\text{SIF}(\text{rms})}$	input signal voltage sensitivity (RMS value)	FM mode; –3 dB at intercarrier output pin 20	_	40	70	μV
		AM mode; –3 dB at AF output pin 12	_	80	110	μV
V _{i max(rms)}	maximum input signal voltage (RMS value)	FM mode; +1 dB at intercarrier output pin 20	40	80	-	mV
		AM mode; +1 dB at AF output pin 12	100	160	-	mV
G _{SIFcr}	SIF gain control range	FM and AM mode; see Fig.4	59	64	-	dB
R _{i(diff)}	differential input resistance	note 2	1.7	2.2	2.7	kΩ
C _{i(diff)}	differential input capacitance	note 2	1.2	1.7	2.5	pF
V _{I(31,32)}	DC input voltage		-	3.4	-	V
α _{SIF,VIF}	crosstalk attenuation between SIF and VIF input	between pins 1, 2, 4 and 5 and pins 31 and 32; notes 2 and 3	50	-	_	dB
SIF-AGC det	ector (pin 8)					
I ₈	charging current	FM mode	8	12	16	μA
		AM mode	0.8	1.2	1.6	μA
	discharging current	FM mode	8	12	16	μA
		normal mode AM	1	1.4	1.8	μA
		fast mode AM	60	85	110	μA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Single refere	nce QSS intercarrier mixer (M and	d B/G standard; pin 20); no	ote 18	-1		1
V _{o(rms)}	IF intercarrier level (RMS value)	SC ₁ ; sound carrier 2 off	75	100	125	mV
B_3	-3 dB intercarrier bandwidth	upper limit	7.5	9	_	MHz
$\alpha_{SC(rms)}$	residual sound carrier (RMS value)	fundamental wave and harmonics	-	2	-	mV
R _{0,20}	output resistance	note 2	-	10	20	Ω
V _{0,20}	DC output voltage		-	2.0	-	V
I _{int 20}	DC internal bias current for emitter-follower		1.5	1.9	-	mA
I _{20 max(sink)}	maximum AC and DC output sink current		1.1	1.5	-	mA
I _{20 max(source)}	maximum AC and DC output source current		3.0	3.5	-	mA
Limiter ampli	ifier (pin 17); note 19	•	ł	•	ł	•
V _{i FM(rms)}	input signal voltage for lock-in (RMS value)		-	-	100	μV
V _{i FM(rms)}	input signal voltage (RMS value)	$\frac{S+N}{N} = 40 \text{ dB}$	-	300	400	μV
	allowed input signal voltage (RMS value)		200	-	-	mV
R ₁₇	input resistance	note 2	480	600	720	Ω
V ₁₇	DC input voltage		-	2.7	-	V
FM-PLL dete	ctor					
f _{i FM(catch)}	catching range of PLL	upper limit	7.0	-	_	MHz
		lower limit	-	-	4.0	MHz
f _{i FM(hold)}	holding range of PLL	upper limit	9.0	-	_	MHz
		lower limit	-	-	3.0	MHz
t _{acqu}	acquisition time		-	-	4	μs

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
FM operation	(M and B/G standard) (pin 12); n	ote 19		-	1	
Vo AF12(rms)	AF output signal voltage (RMS value)	without de-emphasis; 25 kHz; see Fig.12 and note 20				
		R _x = 470 Ω	200	250	300	mV
		$R_x = 0 \Omega$	400	500	600	mV
Vo AF12(cl)(rms)	AF output clipping signal voltage level (RMS value)	THD < 1.5%	1.3	1.4	-	V
Δf_{AF}	frequency deviation	THD < 1.5%; note 20	-	-	±53	kHz
ΔV_{o}	temperature drift of AF output signal voltage		-	3	7	10 ⁻³ dB/K
V ₁₄	DC voltage at decoupling capacitor	voltage dependent on VCO frequency; note 21	1.2	_	3.0	V
R ₁₂	output resistance	note 2	-	-	100	Ω
V ₁₂	DC output voltage	tracked with supply voltage	-	¹ ∕ ₂ V _P	_	V
I _{12(max)(sink)}	maximum AC and DC output sink current		-	_	1.1	mA
I _{12(max)(source)}	maximum AC and DC output source current		-	_	1.1	mA
B_3	-3 dB AF bandwidth	without de-emphasis	100	125	-	kHz
THD	total harmonic distortion		-	0.15	0.5	%
S/N (W)	weighted signal-to-noise ratio	FM-PLL only; with 75 μs de-emphasis; 25 kHz; <i>"CCIR 468-4"</i>	55	60	-	dB
$\alpha_{c(rms)}$	residual sound carrier (RMS value)	fundamental wave and harmonics	-	_	75	mV
α _{AM}	AM suppression	75 μs de-emphasis; AM: f = 1 kHz; m = 0.3 referenced to 25 kHz	45	50	-	dB
α ₁₂	mute attenuation of AF signal		68	73	-	dB
I _{17(mute)}	current output from pin 17	AF signal muted	200	300	600	μA
ΔV ₁₂	DC jump voltage of AF output terminal for switching AF output to mute state and vice versa	FM-PLL in lock mode	-	±50	±150	mV
PSRR	power supply ripple rejection at	M standard; see Fig.9	26	30	_	dB
	pin 12	B/G standard; see Fig.9	20	24	_	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
-	ence QSS AF performance for FM		Table 1 a	nd notes 2	20 and 22	to 24;
	ation of VIF SAW filter: minimum 33			1	1	
S/N (W)	weighted signal-to-noise ratio	PC/SC ratio at pins 1 and 2; 25 kHz FM deviation; 75 μs de-emphasis;	40	-	-	dB
		"CCIR 468-4"				
		black picture	51	56	_	dB
		white picture	50	53	_	dB
		colour bar	48	51	_	dB
Single refere	ence QSS AF performance for FM	I operation (B/G standard); se	e Table 1	and note	s 20 and 2	22 to 24;
sound attenu	ation of VIF filter: minimum 27 dB					
S/N (W)	weighted signal-to-noise ratio	PC/SC ratio at pins 1 and 2;	40	-	_	dB
	(SC ₁ /SC ₂)	27 kHz; <i>"CCIR 468-4"</i> ;				
		50 μs de-emphasis	50/40	50/55		
		black picture	53/48	58/55	-	dB
		white picture	52/46	55/53	-	dB
		6 kHz sine wave (black to white modulation)	44/42	48/46	-	dB
AM operatio	n (L standard; pin 12); note 25					
Vo AF 12(rms)	AF output signal voltage (RMS value)	54% modulation	400	500	600	mV
THD	total harmonic distortion	54% modulation	-	0.5	1.0	%
B_3	-3 dB AF bandwidth		100	125	-	kHz
S/N (W)	weighted signal-to-noise ratio	"CCIR 468-4"	47	53	_	dB
V ₁₂	DC potential voltage	tracked with supply voltage	-	¹⁄₂V₽	_	V
PSRR	power supply ripple rejection	see Fig.9	22	25	_	dB
Standard sw	itch (pin 9); see also Table 2					
V ₉	DC potential for settings					
V _{IH}	HIGH level input voltage		1.3	_	VP	V
V _{IL}	LOW level input voltage		0	_	0.8	V
IIL	LOW level input current	V ₉ = 0 V	85	110	135	μA
VIF input/DV	B switch (pin 30); see also Table	2		•	•	
V ₃₀	DC potential for settings					
V _{IH}	HIGH level input voltage		1.3	-	V _P	V
V _{IL}	LOW level input voltage		0	_	0.8	V
I _{IL}	LOW level input current	V ₃₀ = 0 V	180	230	280	μA
VCO adjust ((pin 11)		1	•		
V ₁₁	DC potential for VCO frequency adjust		0	1	2	V

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VIF amplifier	(measured at f _{IF} = 43.75 MHz; DV	B mode)	-		-	
V _{4-5(rms)}	input sensitivity (RMS value)	$-1 \text{ dB } \alpha_{AM}$ signal at output	-	200	-	μV
V _{4-5(rms)}	maximum input signal (RMS value)	+1 dB α_{AM} signal at output	-	200	-	mV
ΔG	total gain control IF amplifier		52	58	_	dB
	tilt for $\Delta f \pm 3 \text{ MHz}$	f _s = 6.9 MHz; 40 dB gain	-	0.5	1	dB
R _{4-5(diff)}	input resistance (differential)	note 2	-	2.2	_	kΩ
C _{4-5(diff)}	input capacitance (differential)	note 2	-	1.7	_	pF
DVB mixer a	nd VCO	·	•	·	•	•
f _{VCO}	maximum oscillator frequency	$2(f_{IF} + f_s)$	125	130	-	MHz
V _{0 ref(rms)}	oscillator voltage swing between pins 24 and 25 (RMS value)		-	60	-	mV
$\Delta \phi_{SSB}$	VCO phase noise at f = 100 kHz	free-running	103	107	_	dBc/Hz
V ₁₆	VCO control range	see Figs 10 and 11	0	_	VP	V
R _{i,16}	VCO control input resistance		50	63	76	kΩ
S _{VCO}	control steepness $\Delta f_s / \Delta V_{16}$	see Figs 10 and 11				
		DVB (USA)	_	0.29	_	MHz/V
		DVB (EUROPE)	_	0.40	_	MHz/V
DVB output l	ouffer	•	•			-
V _{O DVB(p-p)}	DVB output signal (QAM) (peak-to-peak value)		1.8	2.1	2.4	V
I _{int 18}	DC internal bias current for emitter-follower		1.9	2.3	2.7	mA
I _{18 max(sink)}	maximum AC and DC output sink current		1.5	-	-	mA
I _{18 max(source)}	maximum AC and DC output source current		2.0	-	-	mA
DVB AGC de	tector		•			•
t _{resp}	response to an increasing amplitude step in the IF input signal		-	0.25	0.1	ms/dB
	response to a decreasing amplitude step in the IF input signal		-	0.25	-	ms/dB
I ₂₈	charging current		-	200	_	μA
	discharging current		-	200	-	μA
V ₁₅	AGC adjust input voltage range		1	2.5	4.5	V
R _{i,15}	AGC adjust input resistance		8	10	12	kΩ
S _{adj}	AGC adjust steepness	2 V < V ₁₅ < 3 V	-	-5	-	dB/V
V ₁₃	external AGC voltage for DVB	see Fig.3	1	-	4.5	V
R _{i,13}	external AGC input resistance		40	_	-	kΩ

TDA9819

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
AFC circuit (DVB mode)	•	•		•	
S _{US}	control steepness $\Delta I_{23}/\Delta f$	$f_0 = 48.75 \text{ MHz}$; see Fig.12 and note 17	0.7	0.98	1.3	μA/kHz
S _{EU}	_	$f_0 = 43.0$ MHz; see Fig.12 and note 17	0.45	0.70	0.95	μA/kHz
DVB output	signal (IF input to DVB output)		•	·	ł	
V _{18(p-p)}	output voltage (peak-to-peak value)	$C_L < 15 \text{ pF}; R_L > 5 \text{ k}\Omega;$ with internal AGC	1.8	2.1	2.4	V
V _{18DC}	DC voltage		-	2.5	_	V
В	-1 dB bandwidth	$C_L < 15 \text{ pF}; R_L > 5 \text{ k}\Omega$	11	12	_	MHz
	-3 dB bandwidth		-	17	_	MHz
$\alpha_{C(DVB)}$	fundamental input signal and IF harmonics		35	40	-	dB
α_{H}	suppression of in-band harmonics	2.0 V (p-p) output voltage	30	35	-	dB

Notes to the characteristics

- 1. Values of video and sound parameters are decreased at $V_P = 4.5$ V.
- 2. This parameter is not tested during production and is only given as application information for designing the television receiver.
- 3. Source impedance: 2.3 k Ω in parallel to 12 pF (SAW filter); f_{IF} = 45 MHz.
- 4. Loop filter 330 $\Omega/220$ nF; loop bandwidth for M standard: BL \approx 70 kHz (natural frequency $f_n \approx 12$ kHz; damping factor $d \approx 2.9$; loop bandwidth for B/G and L standard: BL \approx 80 kHz (natural frequency $f_n \approx 13$ kHz; damping factor $d \approx 3.2$; calculated with sync level within gain control range). Resonance circuit of VCO: $Q_0 > 50$; C_{ext} and C_{int} see Fig.12.
- 5. Temperature coefficient of external LC-circuit is equal to zero.
- V_{i IF} = 10 mV RMS; ∆f = 1 MHz (VCO frequency offset related to picture carrier frequency); white picture video modulation.
- 7. V_{i IF} signal for nominal video signal.
- 8. Offset current measured between pin 7 and half of supply voltage (V_P = 2.5 V) under the following conditions: no input signal at VIF input (pins 1, 2, 4 and 5) and VIF amplifier gain at minimum (V₂₈ = V_P). Due to sample-and-hold mode of the FPLL in L standard, the leakage current of the loop filter capacitor (C = 220 nF) should not exceed 500 nA.
- Measurements taken with SAW filter M3951M and M9352M (Siemens, M standard); frequency range = 10 kHz to 5 MHz. Sound carrier ON; PC/SC ratio 7 dB (transmitter); modulation VSB.
- 10. The 7 dB buffer gain accounts for 1 dB loss in the sound trap. Buffer output signal is typical 2 V (p-p), in event of CVBS video amplifier output typical 1 V (p-p). If no sound trap is applied a 330 Ω resistor must be connected from output to input (from pin 21 to pin 22).
- 11. The leakage current of the AGC capacitor should not exceed 1 μA at M and B/G standard respectively 10 nA current at L standard. Larger currents will increase the tilt.
- 12. S/N is the ratio of black-to-white amplitude to the black level noise voltage (RMS value, pin 10). B = 5 MHz weighted in accordance with "CCIR 567".

TDA9819

13. The intermodulation figures are defined:

 $\alpha_{0.92} = 20 \log \left(\frac{V_0 \text{ at } 3.58 \text{ MHz}}{V_0 \text{ at } 0.92 \text{ MHz}} \right) + 3.6 \text{ dB}; \ \alpha_{0.92} \text{ value at } 0.92 \text{ MHz} \text{ referenced to black/white signal;}$ $\alpha_{2.76} = 20 \log \left(\frac{V_0 \text{ at } 3.58 \text{ MHz}}{V_0 \text{ at } 2.76 \text{ MHz}} \right); \ \alpha_{2.76} \text{ value at } 2.76 \text{ MHz} \text{ referenced to colour carrier.}$

- 14. Sound carrier ON; SIF SAW filter L9453; $f_{video} = 10$ kHz to 10 MHz.
- 15. Response speed valid for a VIF input level range of 200 μV up to 70 mV.
- 16. To match the AFC output signal to different tuning systems a current source output is provided. The test circuit is given in Fig.7. The AFC-steepness can be changed by the resistors at pin 23.
- 17. Depending on the ratio $\Delta C/C_0$ of the LC resonant circuit of VCO (Q₀ > 50; C₀ = C_{int} + C_{ext}; see Fig.12).
- 18. The intercarrier mode can be activated by connecting the SIF input pins 31 and 32 to GND (only for negative modulation standard BG/M). In this event the intercarrier level depends on the sound shelf of VIF SAW filter and the transmitter PC/SC ratio.
- 19. Input level for second IF from an external generator with 50 Ω source impedance. AC-coupled with 10 nF capacitor, f_{mod} = 400 Hz, 25 kHz (50% FM deviation) of audio references. A VIF/SIF input signal is not permitted. Pins 8 and 28 have to be connected to positive supply voltage for minimum IF gain. S/N and THD measurements are taken at 75 μ s de-emphasis. The FM demodulator steepness $\Delta V_{o AF}/\Delta f_{AF}$ is negative.
- 20. Measured with an FM deviation of 25 kHz the typical AF output signal is 500 mV RMS ($R_x = 0 \Omega$; see Fig.12). By using $R_x = 470 \Omega$ the AF output signal is attenuated by 6 dB (250 mV RMS). For handling an FM deviation of more than 53 kHz the AF output signal has to be reduced by using R_x in order to avoid clipping (THD < 1.5%). For an FM deviation up to 100 kHz an attenuation of 6 dB is recommended with $R_x = 470 \Omega$.
- 21. The leakage current of the decoupling capacitor (2.2 μ F) should not exceed 1 μ A.

22. For all S/N measurements the used vision IF modulator has to meet the following specifications: Incidental phase modulation for black-to-white jump less than 0.5 degrees; QSS AF performance, measured with the television-demodulator AMF2 (audio output, weighted S/N ratio) better than 60 dB (deviation 25 kHz) for 6 kHz sine wave black-to-white video modulation.

- 23. The PC/SC ratio at pins 1 and 2 is calculated as the addition of TV transmitter PC/SC ratio and SAW filter PC/SC ratio. This PC/SC ratio is necessary to achieve the S/N(W) values as noted. A different PC/SC ratio will change these values.
- 24. Measurements for M standard with SAW filter M3951M (Siemens) for vision IF (suppressed sound carrier) and M9352M (Siemens) for sound IF (suppressed picture carrier). Input level V_{i SIF} = 10 mV RMS, 25 kHz FM deviation. Measurements for B/G standard with SAW filter G3962 (Siemens) for vision IF (suppressed sound carrier) and G9350 (Siemens) for sound IF (suppressed picture carrier). Input level V_{i SIF} = 10 mV RMS, 27 kHz (54% FM deviation).
- 25. Measurements taken with SAW filter L9453 (Siemens) for AM sound IF (suppressed picture carrier).

TDA9819

Table 1 Input frequencies and carrier ratios

DESCRIPTION	SYMBOL	B/G STANDARD	M STANDARD	L STANDARD	DVB (EU)	DVB (US)	UNIT
Symbol frequency	f _{IF} /f _s	_	_	_	36.15/6.9	43.75/5.0	MHz
Picture carrier	f _{PC}	38.9	45.75	38.9	_	_	MHz
Sound carrier	f _{SC1}	33.4	41.25	32.4	_	_	MHz
	f _{SC2}	33.158	_	_	-	-	MHz
Picture-to-sound	SC1	13	7	10	_	_	dB
carrier ratio	SC ₂	20	_	_	_	_	dB

Table 2 Switch logic

STANDARD	TANDARD INPUT STANDARD MODULATI		MODULATION	AGC	VCO	IF	AF	VIDEO OUTPUT	
STANDARD	SWITCH	SWITCH	MODE	AGC	CONTROL	INPUT	AF	M, B/G, L	DVB
DVB	0	0	digital	external	external	В	mute	off	on
	0	1	digital	internal	external	В	mute	off	on
Standard M,	1	0	positive	internal	PLL	A	AM	on	off
B/G and L	1	1	negative	internal	PLL	A	FM	on	off

TDA9819

Multistandard vision and sound-IF PLL with DVB-IF processing

TDA9819

Multistandard vision and sound-IF PLL with DVB-IF processing

TEST CIRCUIT

TDA9819

Table 3Test circuit values

PARAMETER	EUROPE	USA			
IF frequency	36.15/38.9 MHz	43.75/45.75 MHz			
VCO frequency	86.0/77.8 MHz	97.5/91.5 MHz			
Oscillator circuit	$\begin{array}{c} 24 \\ \hline (1) \\ 25 \\ \hline (2) \\ \hline (3) \\ \hline (3) \\ \hline (4) \\ \hline (4) \\ \hline (2) \\ \hline (3) \\ \hline (3) \\ \hline (2) \\ \hline (3) \\ \hline (2) \\ \hline (3) \\ \hline (2) \\ \hline (3) \hline \hline (3)$	$\begin{array}{c} 24 \\ \hline (1) \\ 25 \\ \hline (2) \\ \hline (3) \\ \hline (3) \\ \hline (4) \\ \hline (4) \\ \hline (5) \\ \hline (6) \\ \hline (7) \hline (7) \\ \hline (7) \\ \hline (7) \hline (7) \\ \hline (7) \hline (7) \\ \hline (7) \hline (7) \hline \hline (7)$			
Toko coil	5KM 369SNS - 2010Z	5KM 369SNS - 1647Z			
Philips ceramic capacitor	2222 632 39478	2222 632 33129			

TDA9819

INTERNAL PIN CONFIGURATIONS

SOT232-1

Multistandard vision and sound-IF PLL with **DVB-IF** processing

PACKAGE OUTLINE

SDIP32: plastic shrink dual in-line package; 32 leads (400 mil)

TDA9819

SOT232-1

] 🔘

95-02-04

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg\,max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors – a worldwide company

Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101. Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 615 800, Fax. +358 615 80920 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. +30 1 4894 339/911, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Middle East: see Italy Tel. +381 11 825 344, Fax.+381 11 635 777

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: UI. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 926 5361, Fax. +7 095 564 8323 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 Spain: Balmes 22 08007 BARCELONA Tel. +34 3 301 6312. Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66 Chung Hsiao West Road, Sec. 1, P.O. Box 22978, TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore

For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

Internet: http://www.semiconductors.philips.com

© Philips Electronics N.V. 1996

SCA51

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

537021/51/01/pp36

Date of release: 1996 Aug 02

Document order number: 9397 750 00997

Let's make things better.

