INTEGRATED CIRCUITS

DEVICE SPECIFICATION

TDA 9321H-N2 I²C-bus controlled TV input processor

Final Device Specification

May 28, 1999

Previous version: April 27, 1999

Philips Semiconductors

PHILIPS

TDA 9321H-N2

FEATURES

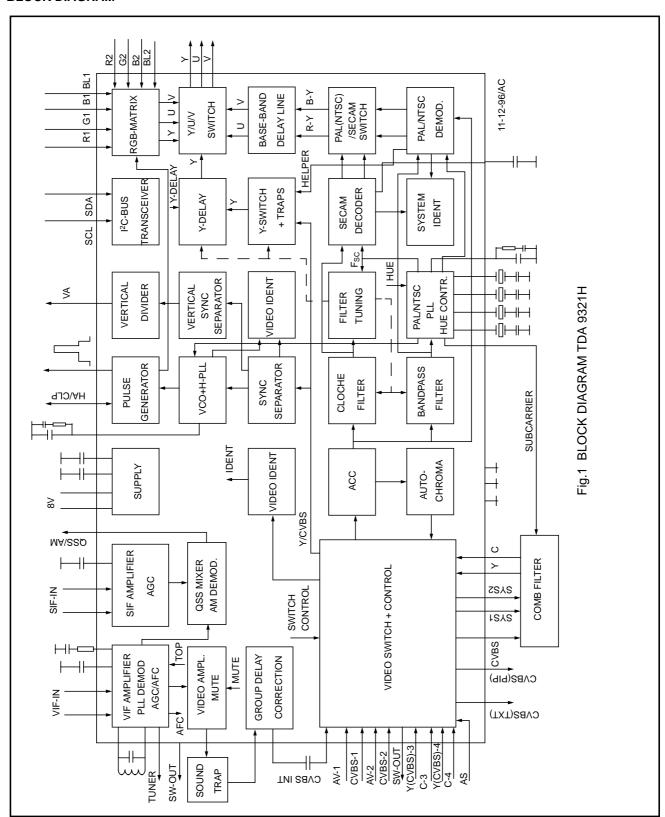
- Multi-standard vision IF circuit with PLL demodulator
- Sound IF amplifier with separate input for single reference QSS mode and separate AGC circuit
- · AM demodulator without extra reference circuit
- Switchable group delay correction circuit which can be used to compensate the group delay pre-correction of the BG-standard in multi-standard TV receivers
- Several (I²C-bus controlled) switch outputs which can be used to switch external circuits like sound traps etc.
- Flexible source selection circuit with 2 external CVBS inputs, 2 Y/C (or additional CVBS) inputs and 2 (independently switchable) outputs
- Comb filter interface with CVBS output and Y/C input
- Integrated chrominance trap circuit
- Integrated luminance delay line with adjustable delay time
- Integrated chroma band-pass filter with switchable centre frequency
- Multi-standard colour decoder with 4 separate X-tal pins and automatic search system
- PAL^{plus} helper demodulator
- Possible blanking of the "helper signals" for PAL^{plus} and EDTV-2
- · Internal base-band delay line
- 2 linear RGB inputs with fast blanking. The RGB signals are converted to YUV before they are supplied to the outputs. One of the RGB inputs can also be used as YUV input.
- Horizontal synchronisation circuit with switchable time-constant for the PLL and Macrovision/subtitle gating
- H_A synchronisation pulse output or clamping pulse input/output
- · Vertical count-down circuit
- V_A synchronisation pulse output
- Two-level sandcastle pulse output
- I2C-bus control of various functions
- Low dissipation

GENERAL DESCRIPTION

The TDA 9321H is an input processor for "High-end" television receivers which contains the following functions:

- Multi-standard IF amplifier with PLL demodulator
- · QSS-IF amplifier and AM sound demodulator
- Flexible CVBS and Y/C switch with various inputs and outputs
- Multi-standard colour decoder which can also decode the PAL^{plus} helper signal
- Integrated base-band delay line (64 μs)
- Sync processor which generates the horizontal and vertical drive pulses for the feature box (100 Hz applications) or Display Processor (50 Hz applications)

The supply voltage of the IC is 8 Volts. It is mounted in a QFP envelope with 64 pins.

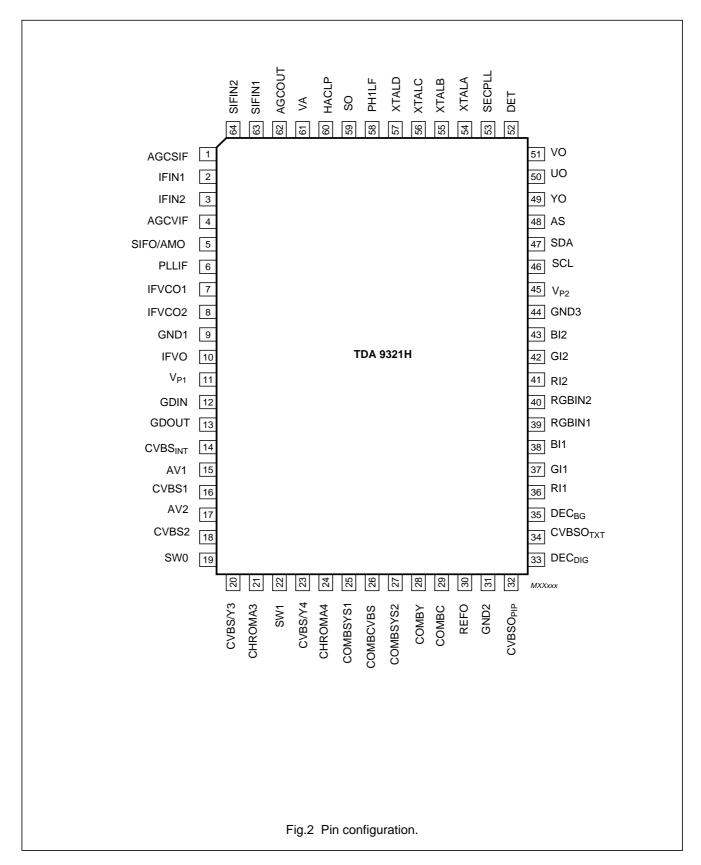

TDA 9321H-N2

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
Supply			•	•	•
V _P	supply voltage	7.2	8.0	8.8	V
I _P	supply current	_	120	-	mA
Input voltages			•	•	•
V _{iVIFrms)}	video IF amplifier sensitivity (RMS value)	_	35	_	μV
V _{iSIF(rms)}	sound IF amplifier sensitivity (RMS value)	_	30	_	μV
V _{iCVBS(p-p)}	external CVBS/Y input (peak-to-peak value)	_	1.0	_	V
V _{iCHROMA(p-p)}	external chroma input voltage (burst amplitude) (peak-to-peak value)	_	0.3	_	V
V _{iRGB(p-p)}	RGB inputs (peak-to-peak value)	_	0.7	-	V
Output signals		•		•	
V _{oCVBS(p-p)}	demodulated CVBS output (peak-to-peak value)	_	2.5	_	V
I _{oTUNER}	tuner AGC output current range	0	_	5	mA
V _{oINT.(rms)}	sound IF intercarrier output (RMS value)	_	100	_	mV
V _{oAM(rms)}	demodulated AM sound output (RMS value)	_	500	_	mV
V _{oVIDSW(p-p)}	CVBS output voltage (peak-to-peak value)	_	1.0/2.0	_	V
V _{oB-Y(p-p)}	-(R-Y) output voltage (peak-to-peak value)	_	1.05	_	V
V _{oR-Y(p-p)}	-(B-Y) output voltage (peak-to-peak value)	_	1.33	_	V
V _{oY(BL-WH)}	Y output voltage (black-to-white value)	_	1.0	_	V
V _{oHorizontal}	H _A output voltage	_	5	_	V
VoVertical	V _A output voltage	_	5	_	V
V _{oSubc.(p-p)}	Subcarrier output amplitude (peak-to-peak value)	_	200	_	mV

TDA 9321H-N2

BLOCK DIAGRAM



TDA 9321H-N2

PINNING

SYMBOL	PIN	DESCRIPTION		
AGC _{SIF}	1	SIF AGC decoupling capacitor		
IFIN1	2	IF input 1		
IFIN2	3	IF input 2		
AGC _{VIF}	4	VIF AGC decoupling capacitor		
SIF _{OUT} /AM _{OUT}	5	combined QSS and AM sound output		
PLLIF	6	IF-PLL loop filter		
IFVCO1	7	IF VCO tuned circuit 1		
IFVCO2	8	IF VCO tuned circuit 2		
GND1	9	main ground		
IFVO	10	IF video output		
V _{P1}	11	main supply voltage 1 (+8 V)		
GDIN	12	group delay correction input		
GDOUT	13	group delay correction output		
CVBS _{INT}	14	internal CVBS input		
AV1	15	AV-1 input		
CVBS1	16	CVBS-1 input		
AV2	17	AV-2 input		
CVBS2	18	CVBS-2 input		
SW0	19	output switch (I ² C)		
CVBS/Y3	20	CVBS/Y-3 input		
CHROMA3	21	chrominance-3 input		
SW1	22	output switch (I ² C)		
CVBS/Y4	23	CVBS/Y-4 input		
CHROMA4	24	chrominance-4 input		
COMBSYS1	25	SYS-1 output for comb filter		
COMBCVBS	26	CVBS output for comb filter		
COMBSYS2	27	SYS-2 output for comb filter		
COMBY	28	luminance input (from comb filter)		
COMBC	29	chrominance input (from comb filter)		
REFO	30	subcarrier output		
GND2	31	digital ground		
CVBSO _{PIP}	32	CVBS (PIP) output		
DEC _{DIG}	33	digital supply decoupling		
CVBSO _{TXT}	34	CVBS (TXT) output		
DEC _{BG}	35	bandgap decoupling		
RI1	36	R-1 input		
GI1	37	G-1 input		
BI1	38	B-1 input		
RGBIN1	39	RGB-1 insertion input		
RGBIN2	40	RGB-2 insertion input		

SYMBOL	PIN	DESCRIPTION			
RI2	41	R-2 input			
GI2	42	G-2 input			
BI2	43	B-2 input			
GND3	44	ground			
V _{P2}	45	positive supply			
SCL	46	serial clock input			
SDA	47	serial data input/output			
AS	48	address select			
YO	49	luminance output			
UO	50	U-output			
VO	51	V-output			
DET	52	loop filter burst phase detector			
SECPLL	53	SECAM PLL decoupling			
XTALA	54	X-tal A (4.433619 MHz)			
XTALB	55	X-tal B (3.582056 MHz, PAL-N)			
XTALC	56	X-tal C (3.575611 MHz, PAL-M)			
XTALD	57	X-tal D (3.579545 MHz, NTSC-M)			
PH1LF	58	phase-1 filter			
SO	59	sandcastle pulse output			
HACLP	60	H _A /CLP output/input			
VA	61	V _A output			
AGCOUT	62	tuner AGC output			
SIFIN1	63	SIF input 1			
SIFIN2	64	SIF input 2			

TDA 9321H-N2

FUNCTIONAL DESCRIPTION

Vision IF amplifier

The IF-amplifier contains 3 AC-coupled control stages with a total gain control range which is higher than 66 dB. The sensitivity of the circuit is comparable with that of modern IF-IC's.

The video signal is demodulated by means of a PLL carrier regenerator. This circuit contains a frequency detector and a phase detector. During acquisition the frequency detector will tune the VCO to the right frequency. The initial adjustment of the oscillator is realised via the I²C-bus. The switching between SECAM L and L' can also be realised via the I²C-bus. After lock-in the phase detector controls the VCO so that a stable phase relation between the VCO and the input signal is achieved. The VCO is running at the double IF frequency. The reference signal for the demodulator is obtained by means of a frequency divider circuit. To get a good performance for phase modulated carrier signals the control speed of the PLL can be increased by means of the FFI bit.

The AFC output is obtained by using the VCO control voltage of the PLL and can be read via the I²C-bus. For fast search tuning systems the window of the AFC can be increased with a factor 3. The setting is realised with the AFW bit.

The AGC-detector operates on top sync and top white-level. The demodulation polarity is switched via the I²C-bus. The AGC detector time-constant capacitor is connected externally. This mainly because of the flexibility of the application. The time-constant of the AGC system during positive modulation is rather long to avoid visible variations of the signal amplitude. To improve the speed of the AGC system a circuit has been included which detects whether the AGC detector is activated every frame period. When during 3 field periods no action is detected the speed of the system is increased. For signals without peak white information the system switches automatically to a gated black level AGC. Because a black level clamp pulse is required for this way of operation the circuit will only switch to black level AGC in the internal mode.

The circuit contains a video identification circuit which is independent of the synchronisation circuit. Therefore search tuning is possible when the display section of the receiver is used as a monitor. However, this ident circuit cannot be made as sensitive as the slower sync ident circuit (SL) and we recommend to use both ident outputs to obtain a reliable search system. The ident output is supplied to the tuning system via the I²C-bus.

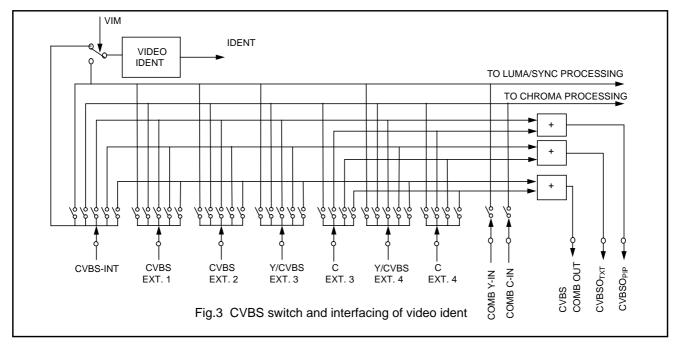
The input of the identification circuit is connected to pin 14, the "internal" CVBS input (see Fig.3). This has the advantage that the ident circuit can also be made operative when a scrambled signal is received (descrambler connected between the IF video output (pin 10) and pin 14). A second advantage is that the ident circuit can be used when the IF amplifier is not used (e.g. with built-in satellite tuners).

The video ident circuit can also be used to identify the selected CBVS or Y/C signal. The switching between the 2 modes can be realised with the VIM bit.

The TDA 9321H contains a group delay correction circuit which can be switched between the BG and a flat group delay response characteristic. This has the advantage that in multi-standard receivers no compromise has to be made for the choice of the SAW filter. Both the input and output of the group delay correction circuit are externally available so that the sound trap can be connected between the IF video output and the group delay correction input. The output signal of the correction circuit can be supplied to the video processing circuit and to the SCART plug.

The IC has several (I²C-bus controlled) output ports which can be used to switch sound traps or other external components.

When the IF amplifier is not used the complete IF amplifier can be switched-off via the I²C-bus by means of the IFO bit.


Sound circuit

The sound IF amplifier is similar to the vision IF amplifier and has a gain control range of about 66 dB. The AGC circuit is related to the SIF carrier levels (average level of AM or FM carriers) and ensures a constant signal amplitude of the AM demodulator and the QSS mixer.

The single reference QSS mixer is realised by a multiplier. In this multiplier the SIF signal is converted to the intercarrier frequency by mixing it with the regenerated picture carrier from the VCO. The mixer output signal is supplied to the output via a high-pass filter for attenuation of the residual video signals. With this system a high performance hi-fi stereo sound processing can be achieved.

The AM sound demodulator is realised by a multiplier. The modulated sound IF signal is multiplied in phase with the limited SIF signal. The demodulator output signal is supplied to the output via a low-pass filter for attenuation of the carrier harmonics.

TDA 9321H-N2

Video switches

The circuit has 3 CVBS inputs (1 internal and 2 external inputs) and 2 Y/C inputs. The Y/C inputs can also be used as additional CVBS inputs. The switch configuration is given in Fig.3. The selection of the various sources is made via the I^2 C-bus.

The circuit can be set in a mode in which it automatically detects whether a CVBS or a Y/C signal is supplied to the Y/C inputs. In this mode the TV-standard identification first takes place on the added Y/CVBS and the C input signal. Then both chroma input signal amplitudes are checked once and the input signal with the highest burst signal amplitude is selected. The result of the detection can be read via the I²C-bus.

The IC has 2 inputs (AV-1 and AV-2) which can be used to read the status levels of pin 8 of the SCART plug. The information is available in the output status byte 02 in the bits D0-D3.

The 3 outputs of the video switch (CVBSO_{TXT}, CVBSO_{PIP} and COMBCVBS) can be independently switched to the various input signals. The names are just arbitrary and it is for instance possible to use the COMBCVBS signal to drive the Comb-filter and the teletext decoder in parallel and to supply the CVBSO_{TXT} signal to the SCART plug (via an emitter follower).

For comb filter interfacing the circuit has the COMBCVBS output, a 3rd Y/C input, a reference signal output (f_{sc}) and 2 control pins which switch the comb filter to the standard of the incoming signal (as detected by the ident circuit of the colour decoder). When the comb filter is enabled by the ECMB-bit and a signal is recognised which can be combed, the Y/C signals coming from the comb filter are automatically selected if the original source is a CVBS signal, indicated via the CMB-bit in output status byte 02 (D5). For signals which cannot be combed (like SECAM or Black-to-White signals) and for Y/C input signals, the Y/C signals coming from the comb filter are not selected.

Chroma and luminance processing

The circuits contain a chroma bandpass, the SECAM cloche filter and chroma trap circuit. The filters are realised by means of gyrator circuits and they are automatically calibrated by comparing the tuning frequency with the X-tal frequency of the decoder. The luminance delay line is also realised by means of gyrator circuits. The centre frequency of the chroma bandpass filter is switchable via the I²C-bus so that the performance can be optimised for "front-end" signals and external CVBS signals.

The luminance output signal which is derived from the incoming CVBS or Y/C signal can be varied in amplitude by means of a separate gain setting control via the I²C-bus control bits GAI1 and GAI0. The gain variation which can be realised with these bits is -1 to +2 dB.

TDA 9321H-N2

Colour decoder

The colour decoder can decode PAL, NTSC and SECAM signals. The PAL/NTSC decoder contains an alignment-free X-tal oscillator with 4 separate X-tal pins, a killer circuit and two colour difference demodulators. The 90° phase shift for the reference signal is made internally.

Because it is possible to connect 4 different X-tals to the colour decoder, all colour standards can be decoded without external switching circuits. Which X-tals are connected to the decoder must be indicated via the I²C-bus. X-tal pins which are not used must be left open.

The horizontal oscillator is calibrated by means of the X-tal frequency of the colour PLL. For a reliable calibration it is very important that the X-tal indication bits (XA to XD) are not corrupted. For this reason the X-tal bits can be read in the output bytes so that the software can check the I²C transmission.

The IC's contain an Automatic Colour Limiting (ACL) circuit which is switchable via the I²C-bus and which prevents that oversaturation occurs when signals with a high chroma-to-burst ratio are received. The ACL circuit is designed such that it only reduces the chroma signal and not the burst signal. This has the advantage that the colour sensitivity is not affected by this function. The ACL function is mainly intended for NTSC signals and it can also be used for PAL signals. For SECAM signals the ACL function should be switched-off.

The SECAM decoder contains an auto-calibrating PLL demodulator which has two references, viz: the 4.43 MHz sub-carrier frequency which is obtained from the X-tal oscillator which is used to tune the PLL to the desired free-running frequency and the bandgap reference to obtain the correct absolute value of the output signal. The VCO of the PLL is calibrated during each vertical blanking period, when the IC is in search or SECAM mode.

The circuit can also decode the PAL^{plus} helper signal and can insert the various reference signals, set-ups and timing signals which are required for the PAL^{plus} decoder IC's.

The base-band delay line (TDA 4665 function) is integrated.

RGB switch and matrix

The IC has 2 RGB inputs with fast switching. The switching of the various sourcing is controlled via the I²C-bus and the condition of the switch inputs can be read from the I²C-bus status bytes. If the RGB signals are not synchronous with the selected decoder input signal, an external clamp pulse has to be supplied to the H_A/CLP input. The IC must be set in this mode via the I²C-bus. In that case the V_A pulse is suppressed by switching the V_A output in a high impedance OFF-state.

When an external RGB signal is mixed into the internal YUV signal it is necessary to switch-off the PAL^{plus} demodulation. To detect the presence of a fast blanking a circuit is added which forces the MACP and HD bit to zero if a blanking pulse is detected in 2 consecutive lines. This system is chosen to prevent switching-off at every spike which is detected on the fast blanking input.

The IC has the possibility to use the RGB1 input as YUV input. This function can be enabled by means of the YUV bit in subaddress 0A (D3). When switched to the YUV input the input signals must have the same amplitude and polarity as the YUV output signals. The Y signal has to be supplied to the G1 input, the U signal to the B1 input and the V signal to the R1 input.

Synchronisation circuit

The sync separator is preceded by a controlled amplifier which adjusts the sync pulse amplitude to a fixed level. These pulses are fed to the slicing stage which is operating at 50% of the amplitude. The separated sync pulses are fed to the phase detector and to the coincidence detector. This coincidence detector is used to detect whether the line oscillator is synchronised and can also be used for transmitter identification. This circuit can be made less sensitive by means of the STM bit. This mode can be used during search tuning to avoid that the tuning system stops at very weak input signals. The PLL has a very high statical steepness so that the phase of the picture is independent of the line frequency.

For the horizontal output pulse 2 conditions are possible, viz.:

- An H_A pulse which has a phase and width which is identical to the incoming horizontal sync pulse
- A clamp pulse (CLP) which has a phase and width which is identical to the clamp pulse in the sandcastle pulse

TDA 9321H-N2

The H_A/CLP signal is generated by means of an oscillator which is running at a frequency of 440 x f_H . Its frequency is divided by 440 to lock the first loop to the incoming signal. The time-constant of the loop can be forced by the I^2C -bus (fast or slow). If required the IC can select the time-constant depending on the noise content of the incoming video signal.

The free-running frequency of the oscillator is determined by a digital control circuit which is locked to the reference signal of the colour decoder. When the IC is switched-on the H_A/CLP is suppressed and the oscillator is calibrated as soon as all sub-address bytes have been sent. When the frequency of the oscillator is correct the H_A/CLP signal is switched-on again.

When the coincidence detector indicates an out-of-lock situation the calibration procedure is repeated.

The V_A pulse is obtained via a vertical count down circuit. The countdown circuit has various windows depending on the incoming signal (50 Hz or 60 Hz standard or no standard). The countdown circuit can be forced in various modes by means of the I^2 C-bus. To obtain short switching times of the countdown circuit during a channel change the divider can be forced in the search window by means of the NCIN bit.

I²C-BUS SPECIFICATION

The slave addresses of the IC's is given in the table below. The circuit operates up to clock frequencies of 400 kHz.

Slave addresses

A6	A5	A4	А3	A2	A 1	Α0	R/W
1	0	0	0	1	A1	1	1/0

The bit A1 is controlled via the pin 48 (AS), when the pin is connected to ground it is a 0 and when connected to the positive supply line it is a 1. When this pin is left open it is connected to ground via an internal resistor.

Start-up procedure

Read the status bytes until POR = 0 and send all subaddress bytes. It is advised to check the bus transmission by reading the output status bits SXA to SXD. This ensures a good operation of the calibration system of the horizontal oscillator. The horizontal output signal is switched-on when the oscillator is calibrated.

Each time before the data in the IC is refreshed, the status bytes must be read. If POR = 1, the procedure mentioned above must be carried out to restart the IC. When this procedure is not followed the horizontal frequency may be incorrect after power-up or after a power dip.

Valid subaddresses: 00 to 0E, subaddresses FE and FF are reserved for test purposes. Auto-increment mode available for subaddresses.

TDA 9321H-N2

Inputs

 Table 1
 Input status bits.

FUNCTION	SUBADDRESS	DATA BYTE							
FUNCTION	(HEX)	D7	D6	D5	D4	D3	D2	D1	D0
Colour decoder 0	00	СМЗ	CM2	CM1	CM0	XD	XC	XB	XA
Colour decoder 1	01	MACP	HOB	HBC	HD	FCO	ACL	СВ	BPS
Luminance	02	0	0	GAI1	GAI0	YD3	YD2	YD1	YD0
Hue control	03	0	0	A5	A4	A3	A2	A1	A0
Spare	04	0	0	0	0	0	0	0	0
Synchronisation 0	05	FORF	FORS	FOA	FOB	0	VIM	POC	VID
Synchronisation 1	06	0	0	0	0	BSY	НО	EMG	NCIN
Spare	07	0	0	0	0	0	0	0	0
Video switches 0	08	0	0	0	ECMB	DEC3	DEC2	DEC1	DEC0
Video switches 1	09	0	PIP2	PIP1	PIP0	0	TXT2	TXT1	TXT0
RGB switch	0A	0	0	0	0	YUV	ECL	IE2	IE1
Output switches	0B	0	0	0	0	0	0	OS1	OS0
Vision IF	0C	FFI	IFO	GD	MOD	AFW	IFS	STM	VSW
Tuner take-over	0D	0	0	A5	A4	А3	A2	A1	A0
Adjustment IF PLL	0E	L'FA	A6	A5	A4	A3	A2	A1	A0

Table 2 Output status bits.

FUNCTION	SUBADDRESS	DATA BYTE							
FUNCTION	(HEX)	D7	D6	D5	D4	D3	D2	D1	D0
Output status bytes	00	POR	х	х	х	SNR	FSI	SL	IVW
	01	CD3	CD2	CD1	CD0	SXD	SXC	SXB	SXA
	02	IN1	IN2	СМВ	YC	S2A	S2B	S1A	S1B
	03	ID3	ID2	ID1	ID0	IFI	PL	AFA	AFB

TDA 9321H-N2

INPUT CONTROL BITS

Table 3 Colour decoder mode

СМЗ	CM2	CM1	СМО	DECODER MODE	X-TAL
0	0	0	0	PAL/NTSC/SECAM	Α
0	0	0	1	PAL/NTSC	А
0	0	1	0	PAL	А
0	0	1	1	NTSC	А
0	1	0	0	SECAM	А
0	1	0	1	PAL/NTSC	В
0	1	1	0	PAL	В
0	1	1	1	NTSC	В
1	0	0	0	PAL/NTSC/SECAM	ABCD
1	0	0	1	PAL/NTSC	С
1	0	1	0	PAL	С
1	0	1	1	NTSC	С
1	1	0	0	PAL/NTSC	ABCD
1	1	0	1	PAL/NTSC	D
1	1	1	0	PAL	D
1	1	1	1	NTSC	D

Table 4 X-tal indication

XA-XD	CONDITION
0	X-tal not present
1	X-tal present, note1

Note

 When a comb filter is used the various X-tals must be connected to the IC as indicated in the pinning diagram. This is required because the ident system switches automatically to the comb filter when a signal is identified which can be combed (right combination of colour standard and X-tal frequency). For applications without comb filter only XA is important (4.43 MHz), the other pins can then have an arbitrary 3.5 MHz X-tal.

Table 5 Motion Adaptive Colour Plus, note1

MACP	MODE
0	internal 4.43 MHz trap used
1	external MACP chroma filtering used, 4.43 MHz trap bypassed, black set-up 200 mV

Note

 The black set-up will only be present in a norm sync condition.

Table 6 Helper output blanking (PALplus/EDTV-2)

НОВ	нвс	SNR	BLANKING
0	-	-	off
1	0	-	on
1	1	0	off
1	1	1	on

Table 7 PALplus helper demodulation active, note1

HD	CONDITION
0	off
1	on, PAL ^{plus} mode with helper set-up 400 mV and black set-up 200 mV

Note

1. Black and helper set-up will only be present in a norm sync condition.

Table 8 Forced Colour On

FCO	MODE
0	not active
1	active, unkills colour in a forced X-tal mode

Table 9 Automatic colour limiting

ACL	COLOUR LIMITING
0	not active
1	active

Table 10 Chroma bandpass centre frequency

СВ	CENTRE FREQUENCY
0	F _{SC}
1	1.1 x F _{SC}

Table 11 Bypass of chroma base-band delay line

BPS	DELAY LINE MODE
0	active
1	bypassed

TDA 9321H-N2

Table 12 Gain luminance channel

GAI1	GAI0	GAIN SETTING
0	0	-1 dB
0	1	0 dB
1	0	+1 dB
1	1	+2 dB

Table 13 Y-delay adjustment; note 1

YD0 to YD3	Y-DELAY
YD3	YD3 * 160 ns +
YD2	YD2 * 160 ns +
YD1	YD1 * 80 ns +
YD0	YD0 * 40 ns

Note

 For an equal delay of the luminance and chrominance signal the delay must be set at a value of 280 ns (YD3...YD0 = 1011). This is only valid for a CVBS signal without group delay distortions.

Table 14 Forced field frequency

FORF	FORS	FIELD FREQUENCY
0	0	auto (60 Hz when line not synchronized)
0	1	forced 60 Hz; note 1
1	0	keep last detected field frequency
1	1	auto (50 Hz when line not synchronized)

Note

1. When switched to this mode the divider will directly switch to forced 60 Hz only.

Table 15 Phase 1 (ϕ_1) time constant, see also table 56

FOA	FOB	MODE
0	0	normal
0	1	slow
1	0	slow/fast
1	1	fast

Table 16 Video ident mode

VIM	MODE
0	ident coupled to internal CVBS (pin 14)
1	ident coupled to selected CVBS

Table 17 Synchronization mode

POC	MODE
0	active
1	not active

Table 18 Video ident mode

VID	VIDEO IDENT MODE
0	φ ₁ loop switched on and off
1	not active

Table 19 Blanked sync on Yout

BSY	CONDITION
0	unblanked sync, note1
1	blanked sync

Note

1. Except for PALplus with black set-up.

Table 20 Condition of horizontal output

НО	CONDITION
0	clamp pulse available at H _{OUT}
1	H _A pulse available at H _{OUT}

Table 21 Enable "Macrovision/subtitle" gating

EMG	MODE	
0	disable gating	
1	enable gating	

Table 22 Vertical divider mode

NCIN	VERTICAL DIVIDER MODE	
0	normal operation	
1	switched to search window	

TDA 9321H-N2

Table 23 Video switch control

ECMB NOTE 2	DEC3	DEC2	DEC1	DEC0	SELECTED SIGNAL	SIGNAL TO COMB
0	0	0	0	-	INT. CVBS	INT. CVBS
0	0	0	1	0	CVBS1	CVBS1
0	0	0	1	1	CVBS2	CVBS2
0	0	1	0	0	CVBS3	CVBS3
0	0	1	0	1	YC3	Y+C3
0	0	1	1	0	CVBS4	CVBS4
0	0	1	1	1	YC4	Y+C4
0	1	1	0	0	AUTO YC3, note1	CVBS3 or Y+C3
0	1	1	1	0	AUTO YC4, note1	CVBS4 or Y+C4
1	0	0	0	-	YC COMB	INT. CVBS
1	0	0	1	0	YC COMB	CVBS1
1	0	0	1	1	YC COMB	CVBS2
1	0	1	0	0	YC COMB	CVBS3
1	0	1	1	0	YC COMB	CVBS4
1	1	1	0	0	AUTO COMB3, note1	CVBS3 or Y+C3
1	1	1	1	0	AUTO COMB4, note1	CVBS4 or Y+C4

Note

- 1. AUTO YC means the decoder switches between CVBS and YC depending on the presence of the burst signal on these signals. AUTO COMB means the decoder switches to YC mode if the burst is present on the C input and to the comb filter output if the burst is present on the CVBS signal.
- 2. When ECMB = 1 the subcarrier frequency is present at pin 30 (REFO). The Y/C output signals coming from the comb filter are only switched-on when a CVBS input signal is received that can be combed.

Table 24 Video switch outputs

TXT2 PIP2	TXT1 PIP1	TXT0 PIP0	OUTPUT SIGNAL TXT OUTPUT SIGNAL PIP
0	0	-	INT. CVBS
0	1	0	CVBS1
0	1	1	CVBS2
1	0	0	CVBS3
1	0	1	Y+C3
1	1	0	CVBS4
1	1	1	Y+C4

ECL	MODE
0	off, internal clamp pulse used
1	on, external clamp pulse has to be supplied to the CLP pin

Table 27 Enable fast blanking RGB-1

Table 26 External RGB clamp mode

IE1	FAST BLANKING
0	not active
1	active

Table 25 Enable YUV input (on the RGB-1 input)

YUV	MODE	
0	RGB-1 input active	
1	YUV input active	

Table 28 Enable fast blanking RGB-2

IE2	FAST BLANKING
0	not active
1	active

TDA 9321H-N2

Table 29 Output switches (OS1, OS0)

OS0-OS1	CONDITION
0	output is "LOW"
1	output is "HIGH"

Table 30 Fast filter IF-PLL Table 35

FFI	CONDITION	
0	normal time-constant	
1	fast time-constant	

Table 31 IF circuit not active

IFO	MODE	
0	normal operation of IF amplifier	
1	IF amplifier switched-off	

Table 32 Group delay correction

GD	GROUP DELAY CHARACTERISTIC
0	flat
1	according to BG standard

Table 33 Modulation standard

MOD	MODULATION
0	negative
1	positive

Table 34 AFC window

AFW	AFC WINDOW
0	normal
1	enlarged

Table 35 IF sensitivity

IFS	IF SENSITIVITY
0	normal
1	reduced

Table 36 Search tuning mode

STM	MODE
0	normal operation
1	reduced sensitivity of video ident circuit

Table 37 Video mute

vsw	STATE
0	normal operation
1	IF-video signal switched off

Table 38 PLL demodulator frequency shift

L'FA	MODE
0	normal IF frequency
1	frequency shift for L' standard

TDA 9321H-N2

OUTPUT CONTROL BITS

Table 39 Power-on-reset

POR	MODE
0	normal
1	power-down

Table 40 Signal-to-noise ratio of sync signal

SNR	SIGNAL-TO-NOISE RATIO
0	S/N > 20 dB
1	S/N < 20 dB

Table 41 Field frequency indication

FSI	FREQUENCY
0	50 Hz
1	60 Hz

Table 42 Phase 1 (ϕ_1) lock indication

SL	INDICATION
0	not locked
1	locked

Table 43 Condition vertical divider

IVW	STANDARD VIDEO SIGNAL
0	no standard video signal
1	standard video signal in "narrow window" or standard TV norm (525 or 625 lines)

Table 44 X-tal indication (SXA-SXD)

SXA-SXD	CONDITION
0	no X-tal connected
1	X-tal connected

Table 45 Colour decoder mode

CD3	CD2	CD1	CD0	STANDARD	X-TAL PIN
0	0	0	0	no colour standard identified	A/B/C/D
0	0	0	1	NTSC	A
0	0	1	0	PAL	A
0	0	1	1	NTSC	В
0	1	0	0	PAL	В
0	1	0	1	NTSC	С
0	1	1	0	PAL	С
0	1	1	1	NTSC	D
1	0	0	0	PAL	D
1	0	0	1	SECAM	A
1	0	1	0	illegal forced mode, note 1	

Note

1. This output is generated when it is tried to force the decoder to a standard with an X-tal which is not connected to the IC.

TDA 9321H-N2

Table 46 Indication RGB-1/RGB-2 insertion

INX	RGB INSERTION
0	no insertion
1	full insertion

Table 47 Condition Y/C input from comb filter; note 1

I	СМВ	CONDITION COMB Y/C INPUT
I	0	not selected
I	1	selected

Note

 CMB =1 indicates that the signal to the comb filter is combed, selection of the COMB Y/C input signal from the comb filter takes place. In this case the primary input signal source is a CVBS signal, regardless of the YC bit indication.

Table 48 Input signal condition; note 1

YC	CONDITION	
0	CVBS signal available	
1	Y/C signal available	

Note

1. During the search mode for the colour system the YC-bit indicates "1".

Table 49 Condition of AV-1 and AV-2 input

S1A S2A	S1B S2B	CONDITION		
0	0	no external source		
0	1	external source with 4:3 input signal		
1	0	external source with 16:9 input signal		

Table 50 Output video identification

IFI	VIDEO SIGNAL	
0	no video signal identified	
1 video signal identified		

Table 51 In-lock indication IF-PLL

PL	CONDITION
0	PLL not locked
1	PLL locked

Table 52 AFC output

AFA	AFB	CONDITION
0	0	outside window; too low
0 1		outside window; too high
1	0	in window; below reference
1 1		in window; above reference

Table 53 IC version indication

ID3	ID2 ID1 ID0 IC TYPE		IC TYPE	
0	0	0	1	TDA 9321H N1
1	0	0	1	TDA 9321H N2

TDA 9321H-N2

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _P	supply voltage		_	9.0	V
T _{stg}	storage temperature		-25	+150	°C
T _{amb}	operating ambient temperature		-25	70	°C
T _{sol}	soldering temperature	for 5 s	_	260	°C
Tj	operating junction temperature		_	150	°C
V _{es}	electrostatic handling	HBM; all pins; notes 1 and 2	-3000	+3000	V
		MM; all pins; notes 1 and 3	-300	+300	V

Notes

- 1. All pins are protected against ESD by means of internal clamping diodes.
- 2. Human Body Model (HBM): $R = 1.5 \text{ k}\Omega$; C = 100 pF.
- 3. Machine Model (MM): $R = 0 \Omega$; C = 200 pF.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient free air	50	K/W

QUALITY SPECIFICATION

In accordance with "SNW-FQ-611E". The number of the quality specification can be found in the "Quality Reference Handbook". The handbook can be ordered using the code 9398 510 63011.

Latch-up

At an ambient temperature of 70 °C all pins meet the following specification:

- I_{trigger} ≥ 100 mA or ≥1.5V_{DD(max)}
- $I_{trigger} \le -100 \text{ mA or } \le -0.5 V_{DD(max)}$.

TDA 9321H-N2

CHARACTERISTICS

 V_P = 8 V; T_{amb} = 25 °C; unless otherwise specified.

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies	1		ļ.	· ·	.	
SUPPLY (PINS	3 11 AND 45); NOTE 1					
V.1.1	supply voltage		7.2	8.0	8.8	V
V.1.2	supply current		_	120	140	mA
V.1.3	total power dissipation		_	960	-	mW
IF circuit					•	
VISION IF AM	PLIFIER INPUTS (PINS 2 AND 3)					
	input sensitivity (RMS value)	note 2				
M.1.1		f _i = 38.90 MHz	_	35	100	μV
M.1.2		f _i = 45.75 MHz	_	35	100	μV
M.1.3		f _i = 58.75 MHz	_	40	100	μV
M.1.4	input resistance (differential)	note 3	_	2	_	kΩ
M.1.5	input capacitance (differential)	note 3	_	3	_	pF
M.1.6	gain control range		70	75	80	dB
M.1.7	maximum input signal (RMS value)		150	200	_	mV
PLL DEMODU	LATOR (PLL FILTER ON PIN 6); NOTE	4		•	•	
M.2.1	Frequency range PLL		32	_	60	MHz
M.2.2	Catching range PLL		2.0	2.7	3.3	MHz
M.2.3	Acquisition time PLL		_	_	20	ms
M.2.4	VCO frequency variation with temperature (per °C)	notes 5 and 6	-	_	±20x10 ⁻⁶	K ⁻¹
M.2.5	Tuning range of VCO via I ² C-bus		3.0	3.7	4.2	MHz
M.2.6	Frequency variation per step of the DAC (A0-A6)		23	29	33	kHz
M.2.7	Frequency shift with the L'FA bit		_	5.5	_	MHz

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VIDEO AMPLIF	FIER OUTPUT (PIN 10); NOTE 7		'	-1	'	'
M.3.1	zero signal output level	negative modulation; note 8	4.6	4.7	4.8	V
M.3.2		positive modulation; note 8	1.9	2.0	2.1	V
M.3.3	top sync level	negative modulation	1.9	2.0	2.1	V
M.3.4	white level	positive modulation	4.4	4.5	4.6	V
M.3.5	difference in amplitude between negative and positive modulation		_	0	15	%
M.3.6	video output impedance		_	50	_	Ω
M.3.7	internal bias current of NPN emitter follower output transistor		1.0	_	_	mA
M.3.8	maximum source current		_	_	5	mA
M.3.9	bandwidth of demodulated output signal	at −3 dB	6	8	10	MHz
M.3.10	differential gain	note 9	_	_	1.5	%
M.3.11	differential phase	notes 9 and 6	_	_	2.5	deg
M.3.12	video non-linearity	note 10	_	2.5	5	%
M.3.13	white spot clamp level		_	6.0	_	V
M.3.14	noise inverter clamping level	note 11	_	1.5	_	V
M.3.15	noise inverter insertion level (identical to black level)	note 11	_	2.7	_	V
	intermodulation	notes 6 and 12				
M.3.16	blue	$V_0 = 0.92 \text{ or } 1.1 \text{ MHz}$	60	66	_	dB
M.3.17		$V_0 = 2.66 \text{ or } 3.3 \text{ MHz}$	60	66	_	dB
M.3.18	yellow	$V_0 = 0.92 \text{ or } 1.1 \text{ MHz}$	56	62	_	dB
M.3.19		$V_0 = 2.66 \text{ or } 3.3 \text{ MHz}$	60	66	_	dB
	signal-to-noise ratio	notes 6 and 13				
M.3.20		weighted	56	60	65	dB
M.3.21		unweighted	49	53		dB
M.3.22	residual carrier signal	note 6	_	5.5	_	mV
M.3.23	residual 2nd harmonic of carrier signal	note 6	_	2.5	_	mV
M.3.24	supply ripple reduction at the output		_	40	_	dB

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
IF AND TUNES	R AGC; NOTE 14			!		
Timing of IF-	AGC with a 2.2 μF capacitor (pin 4)				
M.4.1	modulated video interference	60% AM for 1 mV to 100 mV; 0 to 200 Hz (system B/G)	_	_	10	%
M.4.2	response time to IF input signal amplitude increase of 52 dB	positive and negative modulation	_	2	_	ms
M.4.3	response to an IF input signal amplitude decrease of 52 dB	negative modulation positive modulation	_	50 100	_	ms ms
M.4.4	allowed leakage current of the AGC capacitor	negative modulation positive modulation	_	-	10 200	μA nA
M.4.5	change in video output signal amplitude over 1 vertical period for peak white AGC at positive modulation	for AGC capacitor with a value of 0.5 μF	_	-	2	%
Tuner take-o	ver adjustment (via l ² C-bus)					
M.5.1	minimum starting level for tuner take-over (RMS value)		_	0.4	0.8	mV
M.5.2	maximum starting level for tuner take-over (RMS value)		100	150	_	mV
M.5.3	Maximum variation of take-over point with temperature (T _{amb} between 0 and 70 °C)		_	6	8	dB
Tuner contro	l output (pin 62)		- 1	'	<u>'</u>	'
M.6.1	maximum tuner AGC output voltage	maximum tuner gain; note 3	_	-	9	V
M.6.2	output saturation voltage	minimum tuner gain; I _O = 2 mA	-	-	300	mV
M.6.3	maximum tuner AGC output swing		5	_	_	mA
M.6.4	leakage current RF AGC		_	_	1	μΑ
M.6.5	input signal variation for complete tuner control		0.5	2	4	dB
AFC OUTPUT	(VIA I ² C-BUS); NOTE 15					
M.7.1	AFC resolution		_	2	_	bits
M.7.2	window sensitivity		65	80	100	kHz
M.7.3	window sensitivity in large window mode		195	240	300	kHz
VIDEO IDENTI	FICATION OUTPUT (VIA I ² C-BUS)					
M.8.1	delay time of identification after the AGC has stabilized on a new transmitter		_	_	10	ms

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Sound IF cir	cuit		•	!		
SOUND IF AM	PLIFIER (PINS 63 AND 64)					
	input sensitivity (RMS value)					
Q.1.1		FM mode (-3 dB)	_	30	70	μV
Q.1.2		AM mode (-3 dB)	_	70	100	μV
	maximum input signal					
Q.1.3	(RMS value)	FM mode	50	70	_	mV
Q.1.4	, i	AM mode	80	140	_	mV
Q.1.5	input resistance (differential)	note 3	_	2	_	kΩ
Q.1.6	input capacitance (differential)	note 3	_	3	_	pF
Q.1.7	gain control range		64	_	_	dB
Q.1.8	crosstalk between SIF and VIF input		50	_	_	dB
QSS AND AM	SOUND OUTPUT (PIN 5)					
General						
Q.2.1	output resistance		_	_	250	Ω
Q.2.2	DC output voltage		_	3.3	_	V
Q.2.3	internal bias current of emitter follower		0.7	1.0	-	mA
Q.2.4	maximum AC and DC sink current		_	0.7	_	mA
Q.2.5	maximum AC and DC source current		_	2.0	_	mA
QSS output s	signal					
Q.3.1	output signal amplitude (RMS value)	SC-1; sound carrier 2 off	75	100	125	mV
Q.3.2	bandwidth (-3 dB)		7.5	9	1_	MHz
Q.3.3	residual IF sound carrier (RMS value)		_	2	_	mV
Q.3.4	weighted S/N ratio (SC1/SC2).	black picture	53/48	58/55	_	dB
Q.3.5	Ratio of PC/SC1 at vision IF	white picture	52/47	55/53	_	dB
Q.3.6	input of 40 dB or higher, note 16	6 kHz sinewave (black-to-white modulation)	44/42	48/46	_	dB
Q.3.7		250 kHz sine wave (black-to-white modulation)	44/25	48/30	-	dB
Q.3.8		sound carrier subharmonics (f=2.75 MHz ± 3 kHz)	45/44	51/50	_	dB
Q.3.9		sound carrier subharmonics (f=2.87 MHz 3 kHz)	46/45	52/51	-	dB

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
AM output signal								
Q.4.1	AF output signal amplitude (RMS value)	54% modulation	400	500	600	mV		
Q.4.2	total harmonic distortion		_	0.5	1.0	%		
Q.4.3	AF bandwidth	-3 dB	100	125	_	kHz		
Q.4.4	weighted signal-to-noise ratio		47	53	_	dB		

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CVBS AND	Y/C INPUTS/OUTPUTS AND COM	IB FILTER INTERFACE	<u>'</u>	•	•	•
CVBS-Y/C s	WITCH					
S.1.1	CVBS or Y input voltage (peak-to-peak value)	note 17	_	1.0	1.43	V
S.1.2	CVBS or Y input current		_	4	_	μΑ
S.1.21	maximum source impedance		_	_	1.0	kΩ
S.1.3	suppression of non-selected CVBS input signal	f = 0 to 5 MHz, note 6	50	_	_	dB
S.1.4	chrominance input voltage (burst amplitude)	note 3 and 18	_	0.3	1.0	V
S.1.5	chrominance input impedance		_	50	_	kΩ
S.1.6	output signal amplitude (CVBS _{TXT}) (peak-to-peak value)		1.6	2.0	2.4	V
S.1.7	black level of CVBS _{TXT}		_	2.6	_	V
S.1.71	temperature dependence of black level of CVBS _{TXT}		_	+4	_	mV/K
S.1.8	output signal amplitude (CVBS _{PIP}) (peak-to-peak value)		0.8	1.0	1.2	V
S.1.9	black level of CVBS _{PIP}		_	3.6	_	V
S.1.91	temperature dependence of black level of CVBS _{PIP}		_	+9	_	mV/K
S.1.10	output impedance		_	_	250	Ω
COMB FILTER	INTERFACE, NOTE19					
S.2.1	CVBS output signal amplitude (peak-to-peak value)		0.8	1.0	1.2	V
S.2.2	output impedance		_	_	250	Ω
S.2.3	black level at output		_	3.6	_	V
S.2.31	temperature dependence of black level		-	+9	_	mV/K
S.2.4	Y input voltage (peak-to-peak value)		_	1.0	1.43	V
S.2.5	Y input current		_	4	_	μΑ
S.2.6	chrominance input voltage (burst amplitude)		-	0.3	1.0	V
S.2.7	chrominance input impedance		_	50	_	kΩ
Reference si	ignal output, note 20					
S.3.1	output signal amplitude (C _{LOAD} =15 pF) (peak-to-peak value)		0.2	0.25	0.3	V
S.3.2	output level to enable comb filter		4.0	4.2	4.6	V
S.3.3	output level to disable comb filter		-	0.1	1.4	V

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Switching lev	rels of SYS1/SYS2 outputs, note 2	1		·!		_
S.4.1	output level HIGH		4.0	5.0	5.5	V
S.4.2	output level LOW		_	0.1	0.4	V
S.4.3	sink current		2	_	_	mA
S.4.4	source current		2	_	_	mA
DETECTION O	F STATUS LEVELS OF PIN 8 OF SCAR	T PLUG, NOTE 22			•	•
S.5.1	detection between "internal" and "external(16:9)" source		2.0	2.2	2.4	V
S.5.2	detection between "external (16:9)" and "external (4:3)" source		5.3	5.5	5.7	V
S.5.3	input resistance		60	100	_	kΩ
Chrominano	e/Luminance filters and delay lir	nes	1	-		
CHROMINANC	E TRAP CIRCUIT; NOTE 23					
F.1.1	trap frequency			f _{osc} ± 1%)	MHz
F.1.2	trap frequency during SECAM reception		4.3 ± 1.5%			MHz
F.1.3	Bandwidth at fSC = 3.58 MHz	-3 dB	2.6	2.8	3.0	MHz
F.1.4	Bandwidth at fSC = 4.43 MHz	−3 dB	3.2	3.4	3.6	MHz
F.1.5	Bandwidth during SECAM reception	-3 dB	2.9	3.1	3.3	MHz
F.1.6	colour subcarrier rejection		26	_	Ī-	dB
CHROMINANC	E BANDPASS CIRCUIT	•			•	•
F.2.1	centre frequency (CB = 0)		_	f _{osc}	<u> </u>	MHz
F.2.2	centre frequency (CB = 1)		_	1.1xf _{osc}	1-	MHz
F.2.3	bandpass quality factor		_	3	<u> </u>	
CLOCHE FILTE	ER		•	•	•	•
F.3.1	centre frequency		4.26	4.29	4.31	MHz
F.3.2	Bandwidth		241	268	295	kHz
Y DELAY LINE	•		•	-!-	!	
F.4.1	delay time	YD3YD0 = 1011; Xtal: A; note 6	490	520	550	ns
F.4.11	delay time	YD3YD0 = 1011; Xtal: B, C or D; note 6	530	560	590	ns
F.4.2	tuning range delay time	with respect to 520/560 ns, 12 settings, see Table 13	-280	-	+160	ns
F.4.3	bandwidth of internal delay line	note 6	8	_	_	MHz

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
GROUP DELAY	CORRECTION, NOTE 24		-	'	'	!
F.5.1	input signal amplitude (peak-to-peak value)		_	2.0	_	V
F.5.2	input current		_	0.1	1.0	μΑ
F.5.3	output signal amplitude (peak-to-peak value)		1.8	2.0	2.2	V
F.5.4	output impedance		_	_	250	Ω
F.5.5	top sync level at output		_	2.4	_	V
F.5.51	temperature dependence of top sync level		_	+5	_	mV/K
Colour dem	odulation part					
CHROMINANC	E AMPLIFIER					
D.1.1	ACC control range	note 25	26	_	_	dB
D.1.2	change in amplitude of the output signals over the ACC range		_	_	2	dB
D.1.3	threshold colour killer	from colour OFF to colour ON	-40	_	-35	dB
D.1.4	hysteresis colour killer	strong signal conditions; S/N ≥ 40 dB; note 6	-	+3	_	dB
D.1.5		noisy input signals; note 6	-	+1	_	dB
ACL CIRCUIT;	NOTE 26		•	•		•
D.2.1	chrominance burst ratio at which the ACL starts to operate		_	3.0	_	
REFERENCE F	PART			•	•	•
Phase-locke	d loop; note 27					
D.3.1	catching range		±360	±600	_	Hz
D.3.2	phase shift for a ±400 Hz deviation of the oscillator frequency	note 6	_	_	2	deg
Oscillator						
D.4.1	temperature coefficient of the oscillator frequency	note 6	-	_	1	Hz/K
D.4.2	oscillator frequency deviation with respect to the supply	note 6; V _P = 8 V ±10%	-	_	25	Hz
D.4.3	minimum negative resistance		_	_	1.0	kΩ
D.4.4	maximum load capacitance		_	_	15	pF
HUE CONTRO	 L					
D.5.1	hue control range	63 steps; see Fig.4	±35	±40	_	deg
D.5.2	hue variation for ±10% V _P	note 6	_	0	_	deg
D.5.3	hue variation with temperature	$T_{amb} = 0$ to 70 °C; note 6	_	0	_	deg

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DEMODULATO	DRS		· '	-!	'	
General						
D.6.1	spread of signal amplitude ratio between standards	note 6	-1	_	+1	dB
PAL/NTSC o	demodulator					•
D.6.2	gain between both demodulators G(B-Y) and G(R-Y)		1.60	1.78	1.96	
D.6.3	bandwidth of demodulators	-3 dB; note 29	_	650	_	kHz
PAL/NTSC d	demodulator (continued)					
D.6.4	residual carrier output	$f = f_{osc}$; (R-Y) output			5	mV
D.6.5	(peak-to-peak value)	$f = f_{osc}$; (B-Y) output	_	_	5	mV
D.6.6		$f = 2f_{osc}$; (R-Y) output			5	mV
D.6.7		$f = 2f_{osc}$; (B–Y) output	_	_	5	mV
D.6.8	H/2 ripple at (R–Y) output (peak-to-peak value)		_	_	25	mV
D.6.9	change of output signal amplitude with temperature	note 6	_	0.1	_	%/K
D.6.10	change of output signal amplitude with supply voltage	note 6	_	_	0.3	dB/V
D.6.11	phase error in the demodulated signals	note 6	-	_	±5	deg
SECAM den	nodulator		•		•	•
D.7.1	black level off-set		_	_	7	kHz
D.7.11	temperature dependence of black level		_	_	60	Hz/K
D.7.2	pole frequency of deemphasis		77	85	93	kHz
D.7.3	ratio pole and zero frequency		_	3	_	
D.7.4	non linearity				3	%
D.7.5	calibration voltage		3	4	5	V

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Base-band o	lelay line		'	·	-1	!
D.8.1	variation of output signal for adjacent time samples at constant input signals		-0.1	_	0.1	dB
D.8.2	residual clock signal (peak-to-peak value)		_	-	5	mV
D.8.3	delay of delayed signal		63.94	64.0	64.06	μs
D.8.4	delay of non-delayed signal		40	60	80	ns
D.8.5	difference in output amplitude when delay line is bypassed or not (via BPS-bit)		_	-	5	%
PAL ^{plus} helpe	er demodulator			•		'
D.9.1	helper output voltage (peak-to-peak value)		610	686	770	mV
D.9.2	helper set-up amplitude	only helper lines 22 and 23	380	400	420	mV
D.9.3	group delay within passband		_	_	10	ns
D.9.4	demodulation phase error	including H/2 phase error	_	_	5	deg.
D.9.5	suppression of modulated helper in demodulated signal (0-1 MHz)		-36	_	-	dB
D.9.6	residual 4.43 MHz signal		-36	_	_	dB
D.9.7	harmonic distortion in ACC		-36	_	_	dB
D.9.8	helper output timing to Y output		_	_	10	ns
D.9.9	off-set demodulated mid grey to inserted mid grey level (mid grey line 23 - line 22)		_	-	5	mV
D.9.10	helper set-up width		_	52.8	_	μs
D.9.11	delay between mid sync of input and start of helper set-up (YD3YD0=1011)	note 30	-	8.6	_	μs
D.9.12	delay between start black set-up and start helper set-up (only line 22 and 23)		-	30.8	-	μs
D.9.13	base-band helper bandwidth	-3 dB	_	2.6	_	MHz

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
RGB/YUV sv	witch and YUV outputs				•	•
RGB INPUTS						
R.1.1	input signal amplitude (peak-to-peak value)		-	0.7	1.0	V
R.1.11	maximum source impedance		_	_	1.0	kΩ
R.1.2	difference between black level of internal and external signals at the outputs		-	-	10	mV
R.1.3	input currents	no clamping; note 3	_	0.1	1	μΑ
R.1.4	delay difference for the three channels	note 6	-	0	20	ns
YUV INPUTS	(WHEN ACTIVATED)					•
R.1.5	Y input signal amplitude (peak-to-peak value)		-	1.0	_	V
R.1.6	U/V input signal amplitude (peak-to-peak value)		-	1.33/1.05	_	V
R.1.7	maximum source impedance		_	_	1.0	kΩ
R.1.8	difference between black level of internal and external signals at the outputs		_	_	10	mV
R.1.9	input currents	no clamping; note 3	_	0.1	1	μΑ
FAST BLANKIN	NG		·			
R.2.1	input voltage	no data insertion	_	_	0.4	V
		data insertion	0.9	_	_	V
R.2.2	maximum input pulse		_	_	3.5	V
R.2.3	delay difference of blanking and RGB signals	note 6	-	-	tbf	ns
R.2.4	input current		_	_	0.2	mA
R.2.5	suppression of internal YUV signals	notes 6; insertion; f _i = 0 to 5 MHz	55	_	_	dB
R.2.6	suppression of external RGB signals	notes 6; no insertion; f _i = 0 to 5 MHz	55	_	_	dB
R.2.7	delay between blanking input and YUV outputs		-	-	tbf	ns

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Y OUTPUT, NO	TE 31					•
R.3.1	output signal amplitude (peak-to-peak value)	black-to-white	_	1.0	_	V
R.3.2	output voltage during PAL ^{plus}	black-to-white	_	0.8	_	V
R.3.4	difference in black level between YUV and RGB mode		_	_	10	mV
R.3.5	output impedance		_	_	250	Ω
R.3.6	output DC level	black level	2.8	3.0	3.2	V
R.3.7	bandwidth of the RGB switch circuit (–3 dB)		7	_	_	MHz
R.3.8	signal-to-noise ratio	f = 0 - 5 MHz	_	52	_	dB
R.3.9	black set-up amplitude	MACP=1 or HD=1	190	200	210	mV
R.3.10	black set-up width		_	52.8	_	μs
R.3.11	delay between mid-sync at input and black set-up	note 30	_	8.8	_	μs
R.3.12	off-set Y _{BLACK} to re-inserted black		_	_	10	mV
R.3.13	gain from Y/CVBS _{IN} to Y _{OUT}		1.35	1.43	1.50	
R.3.14	gain from Y/CVBS _{IN} to Y _{OUT}	MACP = 1 or HD = 1	1.08	1.14	1.20	
UV OUTPUTS			•			•
R.4.1	output voltage V (peak-to-peak value)	standard EBU colour bar	0.88	1.05	1.25	V
R.4.2	output voltage U (peak-to-peak value)	standard EBU colour bar	1.12	1.33	1.58	V
R.4.3	output impedance		_	_	250	Ω
R.4.4	output DC level		2.2	2.4	2.6	V
R.4.6	difference in black level between YUV and RGB mode		_	_	10	mV
COLOUR MAT	RIX FROM RGB TO YUV				·	·
R.5.1	gain from R to Y _{OUT}		0.40	0.43	0.46	
R.5.2	gain from G to Y _{OUT}		0.79	0.84	0.90	
R.5.3	gain from B to Y _{OUT}		0.15	0.16	0.17	
R.5.4	gain from R to U _{OUT}		0.40	0.43	0.46	
R.5.5	gain from G to U _{OUT}		0.79	0.84	0.90	
R.5.6	gain from B to U _{OUT}		1.19	1.27	1.35	
R.5.7	gain from R to V _{OUT}		0.94	1.00	1.07	
R.5.8	gain from G to V _{OUT}		0.79	0.84	0.90	
R.5.9	gain from B to V _{OUT}		0.15	0.16	0.17	

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Horizontal a	and vertical synchronization					
SYNC VIDEO I	NPUTS					
H.1.1	sync pulse amplitude	note 3	35	300	350	mV
H.1.2	slicing level for horizontal sync	note 32	50	55	60	%
H.1.3	slicing level for vertical sync	note 32	35	40	45	%
HORIZONTAL	OSCILLATOR				•	•
H.2.1	free running frequency		_	15625	_	Hz
H.2.2	spread on free running frequency		_	_	±2	%
H.2.3	frequency variation with respect to the supply voltage	$V_P = 8.0 \text{ V} \pm 10\%$; note 6	_	0.2	0.5	%
H.2.4	frequency variation with temperature	T _{amb} = 0 to 70 °C; note 6	_	_	80	Hz
FIRST CONTR	OL LOOP; NOTE 33		•	•	•	•
H.3.1	holding range PLL		_	±0.9	±1.2	kHz
H.3.2	catching range PLL	note 6	±0.6	±0.9	_	kHz
H.3.3	signal-to-noise ratio of the video input signal at which the time constant is switched		15	17	19	dB
H.3.4	hysteresis at the switching point		2	3	4	dB
H.3.5	jitter (± 3σ) when in automatic mode		_	_	5	ns
H _A OUTPUT A	ND CLP OUTPUT/INPUT			•	•	•
Switched to	H_A output (HO = 1)					
H.4.1	output voltage HIGH	at a source current of 2 mA	4.0	5.0	5.5	V
H.4.2	output voltage LOW	at a sink current of 2 mA	_	0.2	0.4	V
H.4.3	sink current		2	_	_	mA
H.4.4	source current		2	_	-	mA
H.4.5	pulse width	at nominal horizontal frequency	4.6	4.7	4.8	μs
H.4.6	delay between mid sync of input and mid H _A pulse	note 30	0.3	0.45	0.6	μs
Switched to	CLP output (HO = 0)	1			-	
H.4.7	CLP pulse width	at nominal horizontal frequency	3.5	3.6	3.7	μs
H.4.8	delay between start CLP pulse to start black set-up	HD=1 or MACP=1, YD3YD0=1011, and nominal horizontal frequency	5.2	5.3	5.4	μs
H.4.9	delay between mid sync of input and start CLP	note 30	3.0	3.2	3.4	μs

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Switched to	CLP input (ECL=1)			· ·		
H.4.10	input voltage LOW		0	_	0.6	V
H.4.11	input voltage HIGH		2.4	_	5.5	V
Switched to	LEP input (ECL=1) (continued)					
H.4.12	clamping pulse width		1.8	3.5	_	μs
H.4.13	clamping off-set on UV outputs		_	_	10	mV
H.4.14	input impedance		3	_	-	ΜΩ
VEDTICAL OC						
	CILLATOR; NOTE 34		T	50/00	<u> </u>	T
H.5.1	free running frequency		-	50/60	-	Hz
H.5.2	locking range		45		64.5	Hz
H.5.3	divider value not locked		_	625/525	-	lines
H.5.4	locking range		488	-	722	lines/ frame
V _A OUTPUT	1					
H.6.1	output voltage HIGH	at a source current of 2 mA	4.0	5.0	5.5	V
H.6.2	output voltage LOW	at a sink current of 2 mA	_	0.2	0.4	V
H.6.3	sink current		2	_	-	mA
H.6.4	source current		2	_	_	mA
H.6.5	pulse width	f _V = 50 Hz	_	2.5	_	lines
H.6.6	pulse width	f _V = 60 Hz	_	3.0	-	lines
H.6.7	delay between start of vertical sync of input and positive edge of V _A	note 35	_	37.7	_	μs
H.6.8	output impedance	ECL = 1	3	_	_	ΜΩ
SANDCASTLE	OUTPUT			1	-1	
General						
H.7.1	zero level		0	0.5	1.0	V
H.7.2	sink current		_	0.5	_	mA
Horizontal/ve	ertical blanking					-
H.7.3	voltage level		2.2	2.5	2.8	V
H.7.4	source current		_	0.7	_	mA
H.7.6	horizontal blanking width		_	10	_	μs
H.7.7	delay between start horizontal blanking and start clamping pulse		_	6.4	_	μs

TDA 9321H-N2

NUMBER	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Clamping pu	lse		<u> </u>		•	-
H.7.8	voltage level		4.2	4.5	4.8	V
H.7.9	source current		_	0.7	_	mA
H.7.10	pulse width		_	3.6	_	μs
H.7.11	delay between mid sync of input and start of clamping pulse	note 30	3.0	3.2	3.4	μs
I ² C-BUS CO	NTROL INPUTS/OUTPUTS		·			
SDA/SCL INF	PUTS/OUTPUTS					
B.1.1	input voltage level		0	_	5.5	V
B.1.2	low-level input voltage		_	_	1.5	V
B.1.3	high-level input voltage		3.5	_	_	V
B.1.4	low-level input current	V _i = 0 V	_	_	-10	μΑ
B.1.5	high-level input current	V _i = 5.5 V	_	_	10	μΑ
B.1.6	low-level output voltage	SDA, I _L = 3 mA	_	_	0.4	V
GENERAL PUR	RPOSE SWITCH OUTPUTS, NOTE 36		•	•	•	-
B.2.1	output voltage HIGH		4.0	5.0	5.5	V
B.2.2	output voltage LOW		_	0.2	0.4	V
B.2.3	sink current		2	_	_	mA
B.2.4	source current		2	_	_	mA

Notes

- 1. The 2 supply pins must be decoupled separately but they must be derived from the same main supply to avoid too big differences between the two.
- 2. On set AGC.
- 3. This parameter is not tested during production and is just given as application information for the designer of the television receiver
- 4. Loop bandwidth BL = 60 kHz (natural frequency fN = 15 kHz; damping factor d = 2; calculated with top sync level as FPLL input signal level). LC-VCO circuit: $Q_0 = 60$, $C_{int.} = 30$ pF.
- 5. The optimum temperature stability of the PLL can be obtained when a Toko coil as given in Table 54 is applied.
- 6. This parameter is not tested during production but is guaranteed by the design and qualified by means of matrix batches which are made in the pilot production period.
- 7. Measured at 10 mV (RMS) top sync input signal.
- 8. So called projected zero point, i.e. with switched demodulator.
- 9. Measured in accordance with the test line given in Fig.5. For the differential phase test the peak white setting is reduced to 87%.

The differential gain is expressed as a percentage of the difference in peak amplitudes between the largest and smallest value relative to the subcarrier amplitude at blanking level.

The phase difference is defined as the difference in degrees between the largest and smallest phase angle.

- 10. This figure is valid for the complete video signal amplitude (peak white-to-black), see Fig.6.
- 11. The noise inverter is only active in the "strong signal mode" (no noise detected in the incoming signal)
- 12. The test set-up and input conditions are given in Fig.7. The figures are measured with an input signal of 10 mV RMS.

- 13. Measured at an input signal of 10 mV_{RMS}. The S/N is the ratio of black-to-white amplitude to the black level noise voltage (RMS value). B = 5 MHz. Weighted in accordance with CCIR 567.
- 14. The AGC response time is also dependent on the acquisition time of the PLL demodulator. The values given are valid when the PLL is in lock.
- 15. The AFC control voltage is obtained from the control voltage of the VCO of the PLL demodulator. The tuning information is supplied to the tuning system via the I²C-bus. 2 bits are reserved for this function. The AFC value is valid only when the PL-bit is 1.
- 16. The weighted S/N ratio is measured under the following conditions:
 - a) The vision IF modulator must meet the following specifications:
 - Incidental phase modulation for black-to-white jumps less than 0.5 degrees.
 - QSS AF performance, measured with the television-demodulator AMF2 (audio output, weighted S/N ratio) better than 60 dB (deviation 27 kHz) for 6 kHz sine wave black-to-white modulation.
 - Picture-to-sound carrier ratio: PC/SC1 = 13 dB (transmitter).
 - b) The measurements must be carried out with the Siemens SAW filters G3962 for vision IF and G9350 for sound IF. Input level for sound IF 10 mV_{RMS} with 27 kHz deviation.
 - c) The PC/SC ratio at the vision IF input is calculated as the addition of the TV transmitter ratio and the SAW filter PC/SC ratio. This PC/SC ratio is necessary to achieve the S/N(W) values as indicated.
- 17. Signal with negative-going sync. Amplitude includes sync pulse amplitude.
- 18. Indicated is a signal for a colour bar with 75% saturation (chroma: burst ratio = 2.2:1).
- 19. When a signal is identified which can be combed (right combination of colour standard and reference X-tal) the comb filter is switched to that mode via the SYS1 and SYS2 pins and then the filter is activated by switching on the reference carrier signal and connecting the Y/C output signal of the comb filter to the video processing circuits.
- 20. The subcarrier output signal can be used as reference signal for external comb filter IC's (e.g. SAA 4961). When the ECMB bit is low the subcarrier signal is suppressed and the dc level is low. With the ECMB bit high the output level is high and the subcarrier signal is present.
- 21. The outputs SYS1 and SYS2 can be used to switch the comb filter to the different colour standards like PAL-M, PAL-N, PAL-B,G and NTSC-M and are controlled by the colour decoder identification circuit.
 - The setting of the outputs for the various standards is given in table 55.
- 22. For the detection of the status of the incoming SCART signal a voltage divider with a ratio of 2/3 has to be connected between pin 8 of the SCART plug and the detection input. The impedance of the voltage divider should not be too high-ohmic because of the input impedance of 100 k Ω .
- 23. When the decoder is forced to a fixed subcarrier frequency (via the XA-XD or the CM-bits) the chroma trap is always switched-on, also when no colour signal is identified. When 2 X-tals are active the chroma trap is switched-off when no colour signal is identified.
- 24. The typical group delay characteristic for the BG standard is given in Fig.8.
- 25. At a chrominance input voltage of 660 mV (p-p) (colour bar with 75% saturation i.e. burst signal amplitude 300 mV (p-p)) the dynamic range of the ACC is +6 and –20 dB.
- 26. The ACL function can be activated by via the ACL bit. The ACL circuit reduces the gain of the chroma amplifier for input signals with a chroma-to-burst ratio which exceeds a value of 3.0.

TDA 9321H-N2

27. All frequency variations are referenced to 3.58 or 4.43 MHz carrier frequency.

All oscillator specifications are measured with the Philips crystal series 9922 520 with a series capacitance of 18 pF. The oscillator circuit is rather insensitive to the spurious responses of the X-tal. As long as the resonance resistance of the third overtone is higher than that of the fundamental frequency the oscillator will operate at the right frequency.

The typical crystal parameters for the X-tals mentioned above are:

- a) Load resonance frequency $f_0 = 4.433619$, 3.579545, 3.582056 and 3.575611 MHz; $C_L = 20$ pF.
- b) Motional capacitance $C_M = 20.6$ fF (4.43 MHz crystal) or 14.7 fF (3.58 MHz crystal).
- c) Parallel capacitance $C_0 = 5.0$ pf.

The minimum detuning range can only be specified if both the IC and the X-tal tolerances are known and therefore the figures regarding catching range are only valid for the specified X-tal series. In this figure tolerances of the X-tal with respect to the nominal frequency, motional capacitance and ageing have been taken into account and have been counted for by gaussic addition.

Whenever different typical X-tal parameters are used the following equation might be helpful for calculating the impact on the tuning capabilities:

Detuning range = $C_M / (1 + C_0 / C_L)^2$

The resulting detuning range should be corrected for temperature shift and supply voltage deviation of both the IC and the X-tal. To guarantee a catching range of ± 300 Hz on 4.43 MHz the minimum motional capacitance of the X-tal must have a value 13.2 fF or higher. For a catching range of 250 Hz with the 3.58 MHz X-tal the minimum motional capacitance must have a value of 9 fF.

The actual series capacitance in the application should be CL = 18 pF to account for parasitic capacitances on and off chip.

- 28. The hue control is active for NTSC on the demodulated colour difference signals and for PAL^{plus} on the demodulated helper signal.
- 29. This parameter indicates the bandwidth of the complete chrominance circuit including the chrominance bandpass filter. The bandwidth of the low-pass filter of the demodulator is approximately 1 MHz.
- 30. This delay is partially caused by the low-pass filter at the sync separator input.
- 31. The "internal" luminance signal (signal which is derived from the incoming CVBS or Y/C signals) has a separate gain control setting (controlled by the I²C bits GAI1 and GAI0 and with a gain variation between -1 dB and +2 dB) which can be used to get an optimal input signal amplitude for the feature box.
- 32. The slicing level is independent of sync pulse amplitude. The given percentage is the distance between the slicing level and the black level (back porch). When the amplitude of the sync pulse exceeds the value of 350 mV the sync separator will slice the sync pulse at a level of 175 mV above top sync. The maximum sync pulse amplitude is $4 \text{ V}_{\text{p-p}}$.
- 33. To obtain a good performance for both weak signal and VCR playback the time constant of the first control loop is switched depending on the input signal condition and the condition of the I²C-bus. Therefore the circuit contains a noise detector and the time constant is switched to 'slow' when too much noise is present in the signal. In the 'fast' mode during the vertical retrace time the phase detector current is increased 50% so that phase errors due to head-switching of the VCR are corrected as soon as possible. Switching between the two modes can be automatically or overruled by the I²C-bus.

The circuit contains a video identification circuit which is independent of first loop. This identification circuit can be used to close or open the first control loop when a video signal is present or not present on the input. This enables a stable On Screen Display (OSD) when just noise is present at the input. The coupling of the video identification circuit with the first loop can be defeated via the I²C-bus.

To prevent that the horizontal synchronisation is disturbed by anti copy signals like Macrovision the phase detector is gated during the vertical retrace period from line 11 to 17 (60 Hz signal) or 11 to 22 (50 Hz signal) so that pulses during scan have no effect on the output voltage. The width of the gate pulse is about 22 μ s. During weak signal conditions (noise detector active) the gating is active during the complete scan period and the width of the gate pulse is reduced to 5.7 μ s so that the effect of noise is reduced to a minimum.

The output current of the phase detector in the various conditions are shown in Table 56.

TDA 9321H-N2

- 34. The timing pulses for the vertical ramp generator are obtained from the horizontal oscillator via a divider circuit. This divider circuit has 3 modes of operation:
 - a) Search mode 'large window'.

This mode is switched on when the circuit is not synchronized or when a non-standard signal (number of lines per frame outside the range between 311 and 314 (50 Hz mode) or between 261 and 264 (60 Hz mode) is received). In the search mode the divider can be triggered between line 244 and line 361 (approximately 43.3 to 64.5 Hz).

b) Standard mode 'narrow window'.

This mode is switched on when more than 15 succeeding vertical sync pulses are detected in the narrow window. When the circuit is in the standard mode and a vertical sync pulse is missing the retrace of the vertical ramp generator is started at the end of the window. Consequently, the disturbance of the picture is very small. The circuit will switch back to the search window when, for 6 successive vertical periods, no sync pulses are found within the window.

c) Standard TV-norm (divider ratio 525 (60 Hz) or 625 (50 Hz).

When the system is switched to the narrow window it is checked whether the incoming vertical sync pulses are in accordance with the TV-norm. When 15 standard TV-norm pulses are counted the divider system is switched to the standard divider ratio mode. In this mode the divider is always reset at the standard value even if the vertical sync pulse is missing.

When 3 vertical sync pulses are missed the system switches back to the narrow window and when also in this window no sync pulses are found (condition 3 missing pulses) the system switches over to the search window.

The vertical divider needs some waiting time during channel-switching of the tuner. When a fast reaction of the divider is required during channel-switching the system can be forced to the search window by means of the NCIN bit in subaddress 06.

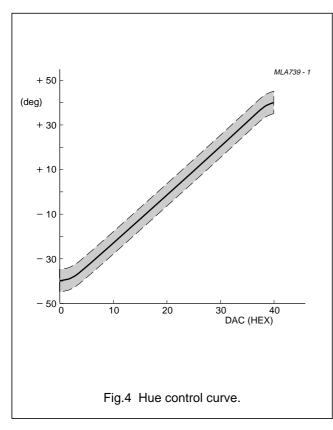
- 35. The delay between the positive edge of V_A and the positive edge of CLP (~ negative edge of H_A) after V_A is 32.0 μs for field 1 and 0 μs for field 2. Especially for PAL^{plus} signals the regenerated V_A pulses must have a fixed and known phase relation to the undisturbed V pulses of the incoming video signal. This relation must remain correct as long as the vertical divider is in the standard mode (indirect sync mode). Therefore the coincidence window used here must be a half line window. With a well defined phase relation of the generated V_A pulses to the generated H_A pulses a correct field identification and all the required timing signals referring to a certain line in each frame can be generated externally in the PAL^{plus} decoder environment.
- 36. The general purpose outputs (pin 19 and 22) can be used to switch external circuits like sound traps etc. They are controlled via the I²C-bus by the bits OS0 (pin 19) and OS1 (pin 22).

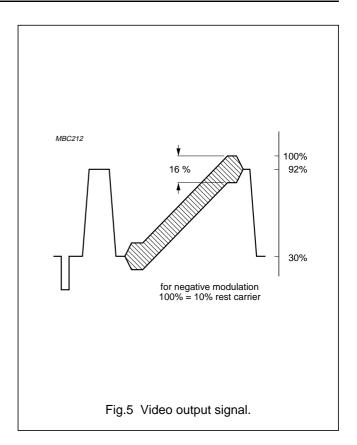
Table 54 Coil data for the IF-PLL demodulator (a	approximated coil values)
---	---------------------------

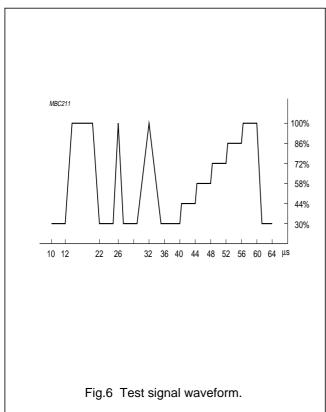
IF Freq.	VCO Freq.	Coil	TOKO sample number		
(MHz)	(MHz)	(nH)	5 mm (5KM)		
38.9	77.8	150	P369INAS-159HM		
45.75	91.5	100	P369INAS-160HM		
58.75	117.5	70	P369INAS-161HM		
Те	mperature coeffic	30 ± 100 ppm/°C			

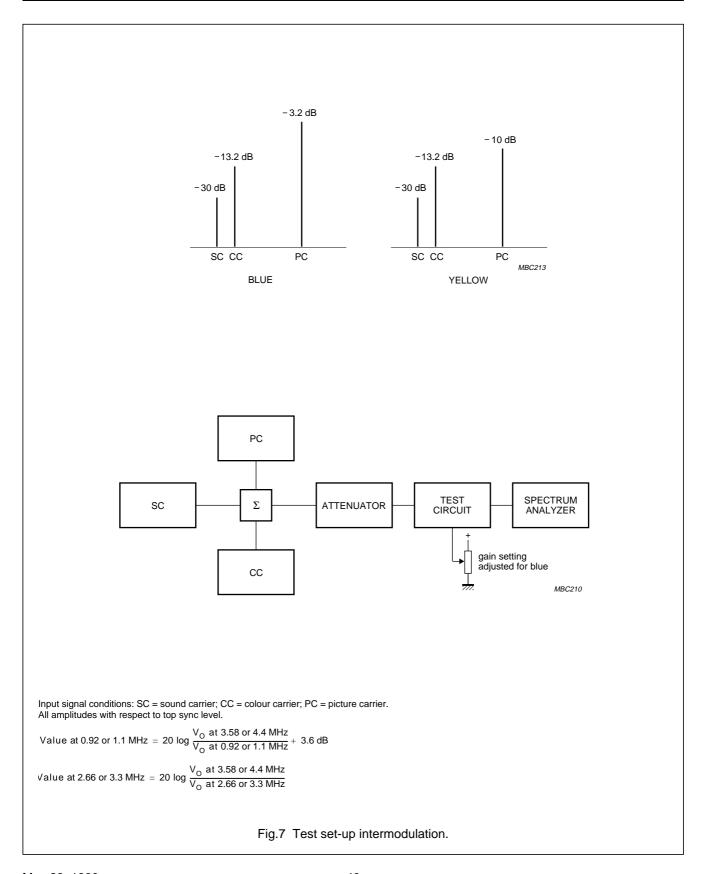
TDA 9321H-N2

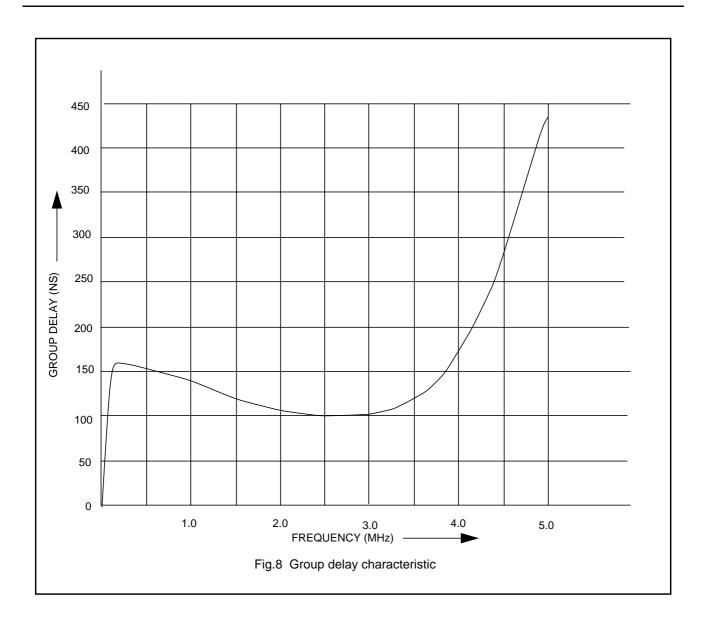
Table 55 Switching conditions of the SYS1 and SYS2 pins


COLOUR STANDARD	SYS1	SYS2	ACTIVE XTAL
PAL-M	LOW	LOW	С
PAL-B,G,H,D,I	LOW	HIGH	А
NTSC-M	HIGH	LOW	D
PAL-N	HIGH	HIGH	В


Table 56 Output current of the phase detector in the various conditions


I ² C-BUS COMMANDS			IC	CONDITIO	NS	φ-1 CURRENT/MODE				
VID	POC	FOA	FOB	IDENT	COIN	NOISE	SCAN	V-RETR	GATING	MODE
_	0	0	0	yes	yes	no	180	270	yes 1)	auto
_	0	0	0	yes	yes	yes	30	30	yes	auto
_	0	0	0	yes	no	-	180	270	no	auto
_	0	0	1	yes	yes	-	30	30	yes	slow
_	0	0	1	yes	no	-	180	270	no	slow
_	0	1	0	yes	yes	no	180	270	yes	fast
_	0	1	0	yes	yes	yes	30	30	yes	slow
_	_	1	1	_	_	_	180	270	no	fast
0	0	_	_	no	_	_	6	6	no	OSD
_	1	_	_	_	_	_	_	_	_	off


Note


1. Only during vertical retrace, width 22 μ s. In the other conditions the width is 5.7 μ s and the gating is continuous.

BOX

Fig.9 Application diagram.

 H_A

 V_{A}

 H_{D}

 V_{D}

Philips Semiconductors

BL. CURR.

V-OUT

EW-OUT

H-OUT

42

CVBS-2

CVBS/Y-3

CVBS/Y-4

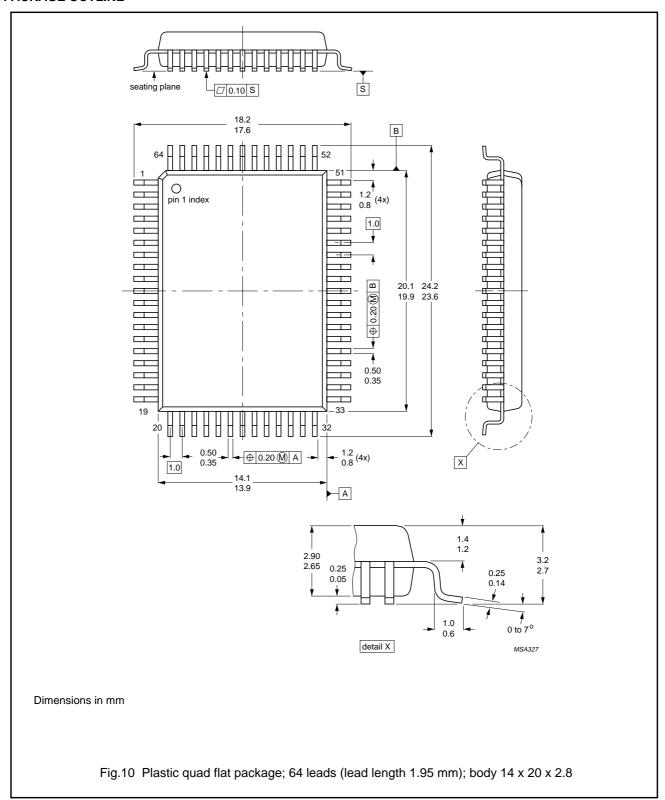
CVBS(TXT)

CVBS(PIP)

AV-2

C-3

TDA 9321H


CVBS

COMB FILTER

С

TDA 9321H-N2

PACKAGE OUTLINE

TDA 9321H-N2

SOLDERING

Plastic quad flat-packs

BY WAVE

During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C.

A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.

BY SOLDER PASTE REFLOW

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C.

REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL)

Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.)

For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.

TDA 9321H-N2

DEFINITIONS

Data sheet status						
Objective specification	This data sheet contains target or goal specifications for product development.					
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.					
Product specification	This data sheet contains final product specifications.					
Limiting values						

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I2C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,

Tel. +61 2 9805 4455, Fax. +61 2 9805 4466

Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,

Tel. +43 1 60 101, Fax. +43 1 60 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,

220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773

Belgium: see The Netherlands **Brazil:** see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG,

Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America
Czech Republic: see Austria

Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,

Tel. +45 32 88 2636, Fax. +45 31 57 1949 **Finland:** Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580/xxx

France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,

Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 23 53 60, Fax. +49 40 23 536 300

Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,

Tel. +30 1 4894 339/239, Fax. +30 1 4814 240

Hungary: see Austria

India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722

Indonesia: see Singapore

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000. Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,

Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,

Tel. +81 3 3740 5130, Fax. +81 3 3740 5077

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Tel. +60 3 750 5214, Fax. +60 3 757 4880 **Mexico:** 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,

Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO,

Tel. +47 22 74 8000, Fax. +47 22 74 8341 **Philippines:** Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,

Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 **Poland:** Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327

Portugal: see Spain Romania: see Italy

Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,

Tel. +27 11 470 5911, Fax. +27 11 470 5494

South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 **Spain:** Balmes 22, 08007 BARCEL ONA

Spain: Baimes 22, 08007 BARCELONA, Tel. +34 3 301 6312. Fax. +34 3 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 632 2000, Fax. +46 8 632 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2686, Fax. +41 1 481 7730

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI. Taiwan Tel. +886 2 2134 2870, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,

209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,

Tel. +90 212 279 2770, Fax. +90 212 282 6707

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381

Uruguay: see South America

Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 625 344, Fax.+381 11 635 777

For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

Internet: http://www.semiconductors.philips.com

© Philips Electronics N.V. 1997

SCA53

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

Let's make things better.

