INTEGRATED CIRCUITS ### DATA SHEET ### **TDA8565Q** 4 × 12 W single-ended car radio power amplifier with diagnostic interface Product specification Supersedes data of November 1994 File under Integrated Circuits, IC01 1995 Dec 08 ### 4 × 12 W single-ended car radio power amplifier with diagnostic interface **TDA8565Q** #### **FEATURES** - Requires very few external components - · High output power - · Fixed gain - Diagnostic facility (distortion, short-circuit and temperature detection) - · Good ripple rejection - Mode select switch (operating, mute and standby) - · Load dump protection - $\bullet\,$ AC and DC short-circuit safe to ground and to V_P - · Low power dissipation in any short-circuit condition - · Thermally protected - · Reverse polarity safe - · Electrostatic discharge protection - No switch-on/switch-off plop - · Flexible leads - Low thermal resistance - · Identical inputs. #### **GENERAL DESCRIPTION** The TDA8565Q is an integrated class-B output amplifier in a 17-lead DIL-bent-to-SIL power package. It contains 4×12 W single-ended amplifiers. #### **APPLICATIONS** • The device is primarily developed for car radio applications. #### **QUICK REFERENCE DATA** | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |---------------------|---------------------------------|------------------------------|------|------|------|------| | V _P | operating supply voltage | | 6.0 | 14.4 | 18.0 | V | | I _{ORM} | repetitive peak output current | | _ | _ | 4 | Α | | I _{q(tot)} | total quiescent current | | _ | 88 | _ | mA | | I _{sb} | standby current | | _ | 0.1 | 100 | μΑ | | $ Z_{l} $ | input impedance | | 50 | _ | _ | kΩ | | Po | output power | $R_L = 4 \Omega$; THD = 10% | _ | 6.4 | _ | W | | | | $R_L = 2 \Omega$; THD = 10% | _ | 12 | - | W | | SVRR | supply voltage ripple rejection | | _ | 41 | _ | dB | | V _{no} | noise output voltage | $R_s = 0 \Omega$ | _ | 200 | _ | μV | #### **ORDERING INFORMATION** | TYPE | PACKAGE | | | | |----------|---------|--|----------|--| | NUMBER | NAME | DESCRIPTION | VERSION | | | TDA8565Q | DBS17P | plastic DIL-bent-SIL power package; 17 leads (lead length 12 mm) | SOT243-1 | | ### 4×12 W single-ended car radio power amplifier with diagnostic interface ### TDA8565Q #### **BLOCK DIAGRAM** ### 4 × 12 W single-ended car radio power amplifier with diagnostic interface TDA8565Q #### **PINNING** | SYMBOL | PIN | DESCRIPTION | |-----------------|-----|---------------------------------| | IN1 | 1 | input 1 | | SGND | 2 | signal ground | | IN2 | 3 | input 2 | | SVRR | 4 | supply voltage ripple rejection | | V _{P1} | 5 | supply voltage 1 | | OUT1 | 6 | output 1 | | GND1 | 7 | power ground 1 | | OUT2 | 8 | output 2 | | n.c. | 9 | not connected | | OUT3 | 10 | output 3 | | GND2 | 11 | power ground 2 | | OUT4 | 12 | output 4 | | V _{P2} | 13 | supply voltage 2 | | MODE | 14 | mode select switch input | | IN3 | 15 | input 3 | | V_{DIAG} | 16 | diagnostic output | | IN4 | 17 | input 4 | #### **FUNCTIONAL DESCRIPTION** The TDA8565Q contains four identical amplifiers which can be used for single-ended applications. The gain of each amplifier is fixed at 40 dB. Special features of the device are as follows. #### Mode select switch (pin 14) - Low standby current (<100 μA) - · Low switching current (low cost supply switch) - · Mute facility. To avoid switch-on plops, it is advised to keep the amplifier in the mute mode during ≥100 ms (charging of the input capacitors at pins 1, 3, 15 and 17). This can be achieved by: - Microcontroller control - External timing circuit (see Fig.3). The circuit in Fig.3 slowly ramps up the voltage at the mode select switch pin when switching on and results in fast muting when switching off. In the event of fast switching at mode select pin it is advised to increase the $1\!/_{\!2}V_P$ decoupling capacitor (pin 4) to 150 μF to avoid switch plops. ### 4 × 12 W single-ended car radio power amplifier with diagnostic interface TDA8565Q #### Diagnostic output (pin 16) DYNAMIC DISTORTION DETECTOR (DDD) At the onset of clipping of one or more output stages, the dynamic distortion detector becomes active and pin 16 goes LOW. This information can be used to drive a sound processor or DC volume control to attenuate the input signal and thus limit the distortion. The output level of pin 16 is independent of the number of channels that are clipping (see Fig.4). #### SHORT-CIRCUIT PROTECTION When a short-circuit occurs at one or more outputs to ground or to the supply voltage, the output stages are switched off until the short-circuit is removed and the device is switched on again, with a delay of approximately 20 ms after removal of the short-circuit. During this short-circuit condition, pin 16 is continuously LOW. When a short-circuit across the load of one or more channels occurs the output stages are switched off during approximately 20 ms. After that time it is checked during approximately 50 μ s to see whether the short-circuit is still present. Due to this duty cycle of 50 μ s/20 ms the average current consumption during this short-circuit condition is very low (approximately 40 mA). During this short-circuit condition, pin 16 is LOW for 20 ms and HIGH for 50 μs (see Fig.5). The power dissipation in any short-circuit condition is very low. #### **TEMPERATURE DETECTION** When the virtual junction temperature $T_{\nu j}$ reaches 150 °C, pin 16 will be active LOW. #### **OPEN COLLECTOR OUTPUT** Pin 16 is an open-collector output, which allows pin 16 of more devices being tied together. # 4×12 W single-ended car radio power amplifier with diagnostic interface TDA8565Q #### **LIMITING VALUES** In accordance with the Absolute Maximum Rating System (IEC 134). | SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT | |------------------|--------------------------------------|--------------------------------|------|------|------| | V _P | supply voltage | | | | | | | operating | | _ | 18 | V | | | non-operating | | _ | 30 | V | | | load dump protection | during 50 ms; $t_r \ge 2.5$ ms | _ | 45 | V | | V _{psc} | AC and DC short-circuit safe voltage | | _ | 18 | V | | V _{pr} | reverse polarity | | _ | 6 | V | | I _{OSM} | non-repetitive peak output current | | _ | 6 | А | | I _{ORM} | repetitive peak output current | | _ | 4 | А | | P _{tot} | total power dissipation | | _ | 60 | W | | T _{stg} | storage temperature | | -55 | +150 | °C | | T _{amb} | operating ambient temperature | | -40 | +85 | °C | | T _{vj} | virtual junction temperature | | _ | 150 | °C | #### THERMAL CHARACTERISTICS | SYMBOL | PARAMETER | VALUE | UNIT | |---------------------|---|-------|------| | R _{th j-a} | thermal resistance from junction to ambient in free air | 40 | K/W | | R _{th j-c} | thermal resistance from junction to case (see Fig.6) | 1.3 | K/W | # 4×12 W single-ended car radio power amplifier with diagnostic interface TDA8565Q #### **DC CHARACTERISTICS** V_P = 14.4 V; T_{amb} = 25 °C; measured in Fig.14; unless otherwise specified. | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |-------------------|---------------------------------|--------------------------------------|------|------|------|------| | Supply | | | • | | | | | V _P | supply voltage | note 1 | 6.0 | 14.4 | 18.0 | ٧ | | Iq | quiescent current | | _ | 88 | 160 | mA | | Vo | DC output voltage | note 2 | _ | 6.95 | _ | V | | Mute select s | witch | | | | | | | V ₁₄ | switch-on voltage level | | 8.5 | _ | - | V | | MUTE CONDITION | N | | | | | | | V _{mute} | mute voltage | | 3.3 | _ | 6.4 | V | | Vo | output signal in mute position | V _{I(max)} = 1 V; f = 1 kHz | _ | _ | 2 | mV | | STANDBY COND | DITION | | | | | | | V _{sb} | DC voltage in standby condition | | 0 | _ | 2 | V | | I _{sb} | DC current in standby condition | | _ | _ | 100 | μΑ | | V_{sw} | switch-on current | | _ | 12 | 40 | μΑ | | Diagnostic or | utput (pin 16) | | | | | | | V_{DIAG} | diagnostic output voltage | any short-circuit or clipping | _ | _ | 0.6 | V | #### **Notes** - 1. The circuit is DC adjusted at V_P = 6 to 18 V and AC operating at V_P = 8.5 to 18 V. - 2. At 18 V < V_P < 30 V the DC output voltage $\leq \frac{1}{2}$ V_P. ### 4×12 W single-ended car radio power amplifier with diagnostic interface TDA8565Q #### **AC CHARACTERISTICS** V_P = 14.4 V; R_L = 4 Ω ; f = 1 kHz; T_{amb} = $^{\circ}C$; measured in Fig.14; unless otherwise specified. | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |----------------------|---------------------------------|---|------|------|------|------| | Po | output power | THD = 0.5%; note 1 | 4 | 5 | _ | W | | | | THD = 10%; note 1 | 5.5 | 6.4 | _ | W | | Po | output power | $R_L = 2 \Omega$; THD = 0.5%; note 1 | Ī- | 8.5 | _ | W | | | | $R_L = 2 \Omega$; THD = 10%; note 1 | - | 12 | _ | W | | THD | total harmonic distortion | P _o = 1 W | - | 0.15 | _ | % | | f _{Ir} | low frequency roll-off | at -3 dB; note 2 | Ī- | 45 | _ | Hz | | f _{hr} | high frequency roll-off | at -1 dB | 20 | _ | _ | kHz | | G _v | closed loop voltage gain | | 39 | 40 | 41 | dB | | SVRR | supply voltage ripple rejection | | | | | | | | on | note 3 | 38 | 41 | _ | dB | | | mute | note 3 | 42 | 48 | _ | dB | | | standby | f = 100 Hz to 10 kHz; note 3 | 80 | 90 | _ | dB | | Z _i | input impedance | | 50 | 60 | 75 | kΩ | | V _{no} | noise output voltage | | | | | | | | on | $R_s = 0 \Omega$; note 4 | _ | 200 | 300 | μV | | | on | $R_s = 10 \Omega$; note 4 | _ | 250 | _ | μV | | | mute | notes 4 and 5 | _ | 175 | _ | μV | | α_{cs} | channel separation | $R_S = 10 \Omega$ | 40 | 52 | _ | dB | | $ \Delta G_v $ | channel unbalance | | _ | _ | 1 | dB | | Dynamic dist | ortion detector | • | | • | | | | THD | total harmonic distortion | V ₁₆ ≤ 0.6 V; no short-circuit | _ | 10 | _ | % | #### Notes - 1. Output power is measured directly at the output pins of the IC. - 2. Frequency response externally fixed. - 3. Ripple rejection measured at the output with a source impedance of 0 Ω , maximum ripple amplitude of 2 V (p-p). - 4. Noise voltage measured in a bandwidth of 20 Hz to 20 kHz. - 5. Noise output voltage independent of R_s ($V_l = 0 V$). # 4×12 W single-ended car radio power amplifier with diagnostic interface TDA8565Q # $4 \times 12 \text{ W}$ single-ended car radio power amplifier with diagnostic interface TDA8565Q # $4 \times 12 \text{ W}$ single-ended car radio power amplifier with diagnostic interface TDA8565Q 1995 Dec 08 ### 4×12 W single-ended car radio power amplifier with diagnostic interface TDA8565Q #### **TEST/APPLICATION INFORMATION** ### 4×12 W single-ended car radio power amplifier with diagnostic interface **TDA8565Q** #### **PACKAGE OUTLINE** #### DBS17P: plastic DIL-bent-SIL power package; 17 leads (lead length 12 mm) SOT243-1 1.45 #### Note 15.5 4.2 0.60 0.38 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. 23.6 19.6 | OUTLINE | REFERENCES | | | EUROPEAN ISSUE DA | | | |----------|------------|-------|------|-------------------|------------|---------------------------------| | VERSION | IEC | JEDEC | EIAJ | | PROJECTION | ISSUE DATE | | SOT243-1 | | | | | | 95-03-11
97-12-16 | 11.0 1995 Dec 08 13 ### 4 × 12 W single-ended car radio power amplifier with diagnostic interface TDA8565Q #### **SOLDERING** #### Introduction There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011). #### Soldering by dipping or by wave The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg\ max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit. #### Repairing soldered joints Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 $^{\circ}$ C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 $^{\circ}$ C, contact may be up to 5 seconds. #### **DEFINITIONS** | Data sheet status | | | | | |---------------------------|---|--|--|--| | Objective specification | This data sheet contains target or goal specifications for product development. | | | | | Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. | | | | | Product specification | This data sheet contains final product specifications. | | | | | Limiting values | | | | | Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. #### Application information Where application information is given, it is advisory and does not form part of the specification. #### LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.