INTEGRATED CIRCUITS ## DATA SHEET # **TDA8444**Octuple 6-bit DAC with I²C-bus Product specification File under Integrated Circuits, IC01 March 1991 ## Octuple 6-bit DAC with I²C-bus **TDA8444** #### **GENERAL DESCRIPTION** The TDA8444 comprises eight digital-to-analogue converters (DACs) each controlled via the two-wire I^2C -bus. The DACs are individually programmed using a 6-bit word to select an output from one of 64 voltage steps. The maximum output voltage of all DACs is set by the input V_{max} and the resolution is approximately $V_{max}/64$. At power-on all DAC outputs are set to their lowest value. The I^2C -bus slave receiver has a 7-bit address of which 3 bits are programmable via pins A0, A1 and A2. #### **Features** - Eight discrete DACs - I²C-bus slave receiver - 16-pin DIL package. #### **QUICK REFERENCE DATA** | PARAMETER | CONDITIONS | SYMBOL | MIN. | TYP. | MAX. | UNIT | |-------------------------|--|------------------|------|------|---------------------|------| | Supply voltage | | V _P | 10.8 | 12.0 | 13.2 | V | | Supply current | no loads; V _{max} = V _P ; | | | | | | | | all data = 00 | I _{CC} | 8 | 12 | 15 | mA | | Total power dissipation | no loads; V _{max} = V _P ; | | | | | | | | all data = 00 | P _{tot} | _ | 150 | _ | mW | | Effective range of | | | | | | | | V _{max} input | V _P = 12 V | V_{max} | 1 | _ | 10.5 | V | | DAC output voltage | | | | | | | | range | | V _O | 0.1 | _ | V _P -0.5 | V | | Step value of 1 LSB | $V_{\text{max}} = V_{\text{P}};$ | | | | | | | | $V_{\text{max}} = V_{\text{P}};$
$I_{\text{O}} = -2 \text{ mA}$ | V_{LSB} | 70 | 160 | 250 | mV | #### **PACKAGE OUTLINE** 16-lead DIL; plastic (SOT38); SOT38-1; 1996 July 23. ## Octuple 6-bit DAC with I²C-bus #### TDA8444 #### **PINNING** | PIN | SYMBOL | DESCRIPTION | |------|------------------|--| | 1 | V _P | positive supply voltage | | 2 | V _{max} | control input for DAC maximum output voltage | | 3 | SDA | I ² C-bus serial data input/output | | 4 | SCL | I ² C-bus serial data clock | | 5 | A0 | and the same of th | | 6 | A1 | programmable address bits for I ² C-bus slave receiver | | 7 | A2 | 1011 0 500 01000 10001001 | | 8 | GND | ground | | 9-16 | DAC0-7 | analogue voltage outputs | ## Octuple 6-bit DAC with I²C-bus TDA8444 #### **FUNCTIONAL DESCRIPTION** #### I²C-bus The TDA8444 I2C-bus interface is a receive-only slave. Data is accepted from the I2C-bus in the following format: | S | 0 | 1 | 0 | 0 | A2 | A1 | A0 | 0 | Α | 13 | 12 | 11 | 10 | SD | SC | SB | SA | Α | Χ | Χ | D5 | D4 D | 3 D2 | 2 D1 | D0 | Α | Р | |----|------|------|-------|-------|------|-----|----|---|---|------------------------------------|----|------|-------|-------|-------|------|----|---|---|---|-------|--------|------|------|--------|------|---| | | < | | ac | ldre | ss b | yte | | > | | < | | inst | ructi | ion b | yte | | ٠' | | < | | first | data b | yte | | ·> | | | | Wh | ere: | S | = | star | t cor | diti | on | | | | | | | | | A2, | A1, | A0 | | | | = | prog | ramm | able | add | ress l | oits | | | Р | = | stop | cor | ditio | on | | | | | | | | | 13, I | 2, I1 | , IO | | | | = | instr | uction | bits | | | | | | Α | = | ackı | nowl | edg | е | | | | | SD, SC, SB, SA = subaddress bits | | | | | | | | | | | | | | | | | | | Χ | = | don | 't ca | re | | | | | | D5, D4, D3, D2, D1, D0 = data bits | | | | | | | | | | | | | | | | | | Fig.3 Data format. #### Address byte Valid addresses are 40, 42, 44, 46, 48, 4A, 4C, 4E (hexadec), depending on the programming of bits A2, A1 and A0. With these addresses, up to eight TDA8444 ICs can be operated independently from one I²C-bus. No other addresses are acknowledged by the TDA8444. #### Instruction and data bytes Valid instructions are 00 to 0F and F0 to FF (hexadec); the TDA8444 will not respond to other instruction values. Instructions 00 to 0F cause auto-incrementing of the subaddress (bits SD to SA) when more than one data byte is sent within one transmission. With auto-incrementing, the first data byte is written into the DAC addressed by bits SD to SA and then the subaddress is automatically incremented by one position for the next data byte in the series. Auto-incrementation does not occur with instructions F0 to FF. Other than auto-incrementation there is no difference between instructions 00 to 0F and F0 to FF. When only one data byte per transmission is present, the DAC addressed by the subaddress will always receive the data. Valid subaddresses (bits SD to SA) are 0 to 7 (hexadec) relating numerically to DAC0 to DAC7. When the auto-incrementing function is used, the subaddress will sequence through all possible values (0 to F, 0 to F, etc.). #### I²C-bus Input SCL (pin 3) and input/output SDA (pin 4) conform to I²C-bus specifications. Pins 3 and 4 are protected against positive voltage pulses by internal zener diodes connected to the ground plane and therefore the normal bus line voltage should not exceed 5.5 V. The address inputs A0, A1, A2 are programmed by a connection to GND for An = 0 or to V_P for An = 1. If the inputs are left floating, An = 1 will result. ## Octuple 6-bit DAC with I²C-bus **TDA8444** #### Input V_{max} Input V_{max} (pin 2) provides a means of compressing the output voltage swing of the DACs. The maximum DAC output voltage is restricted to approximately V_{max} while the 6-bit resolution is maintained, so giving a finer voltage resolution of smaller output swings. #### Digital-to-analogue converters Each DAC comprises a 6-bit data latch, current switches and an output driver. Current sources with values weighted by 2^0 up to 2^5 are switched according to the data input so that the sum of the selected currents gives the required analogue voltage from the output driver. The range of the output voltage is approximately 0.5 to 10.5 V when $V_{max} = V_P$. The DAC outputs are protected against short-circuits to V_P and GND. To avoid the possibility of oscillations, capacitive loading at the DAC outputs should not exceed 2 nF. #### **RATINGS** Limiting values in accordance with the Absolute Maximum System (IEC 134) | PARAMETER | SYMBOL | MIN. | MAX. | UNIT | |--|-------------------|------|----------------------|------| | Supply voltage | $V_P = V_1$ | -0.5 | 18 | V | | Supply current (source) | $I_P = I_1$ | _ | –10 | mA | | | $I_P = I_I$ | _ | 40 | mA | | I2C-bus line voltage | V _{3,4} | -0.5 | 5.9 | V | | Input voltage | V _I | -0.5 | V _P + 0.5 | V | | Output voltage | Vo | -0.5 | V _P + 0.5 | V | | Maximum current on any pin (except pins 1 and 8) | ±I _{max} | _ | 10 | mA | | Total power dissipation | P _{tot} | _ | 500 | mW | | Operating ambient temperature range | T _{amb} | -20 | +70 | °C | | Storage temperature range | T _{stg} | -55 | +150 | °C | #### THERMAL RESISTANCE From junction to ambient R_{th j-a} 75 K/W ## Octuple 6-bit DAC with I²C-bus TDA8444 **CHARACTERISTICS** All voltages are with respect to GND; T_{amb} = 25 °C; V_P = 12 V unless otherwise specified | PARAMETER | CONDITIONS | SYMBOL | MIN. | TYP. | MAX. | UNIT | |---|--|------------------------|------|-----------|------|------| | Supply voltage | | V _P | 10.8 | 12.0 | 13.2 | V | | Voltage level for power-on reset | | V ₁ | 1 | _ | 4.8 | V | | Supply current | no loads; V _{max} = V _P ;
all data = 00 | $I_P = I_1$ | 8 | 12 | 15 | mA | | Total power dissipation | no loads; V _{max} = V _P ;
all data = 00 | P _{tot} | _ | 150 | _ | mW | | Effective range of V _{max} input (pin 2) | V _P = 12 V | $V_{\text{max}} = V_2$ | 1.0 | _ | 10.5 | V | | Pin 2 current | V ₂ = 1 V | l ₂ | _ | _ | -10 | μΑ | | | $V_2 = VP$ | l ₂ | _ | _ | 10 | μΑ | | SDA, SCL inputs (pins 3 and | 4) | | | | | | | Input voltage range | | $ V_{I} $ | 0 | _ | 5.5 | V | | Input voltage LOW | | V _{IL} | _ | _ | 1.5 | V | | Input voltage HIGH | | V _{IH} | 3.0 | _ | _ | V | | Input current LOW | $V_{3;4} = 0.3 \text{ V}$ | I _{IL} | _ | _ | -10 | μΑ | | Input current HIGH | V _{3;4} = 6 V | I _{IH} | _ | _ | ±10 | μΑ | | SDA output (pin 3) | | | | | | | | Output voltage LOW | $I_3 = 3 \text{ mA}$ | V _{OL} | _ | _ | 0.4 | V | | Sink current | | I _{OL} | 3 | 8 | _ | mA | | Address inputs (pins 5 to 7) | | | | | | | | Input voltage range | | $ V_{I} $ | 0 | | 5 | V | | Input voltage LOW | | V _{IL} | _ | _ | 1 | V | | Input voltage HIGH | | V _{IH} | 2.1 | _ | _ | V | | Input current LOW | | I _{IL} | _ | -7 | -12 | μΑ | | Input current HIGH | | I _{IH} | _ | _ | 1 | μΑ | ## Octuple 6-bit DAC with I²C-bus TDA8444 | PARAMETER | CONDITIONS | SYMBOL | MIN. | TYP. | MAX. | UNIT | |----------------------------|--|-------------------|------|------------|----------------------|------| | DAC outputs (pins 9 to 16) | | | | | | | | Output voltage range | | V _O | 0.1 | _ | V _P – 0.5 | V | | Minimum output voltage | data = 00; $I_0 = -2 \text{ mA}$ | VOmin | 0.1 | 0.4 | 0.8 | V | | Maximum output voltage | data = 3F; I _O = -2 mA | | | | | | | at Vmax = VP | | V_{Omax} | 10 | 10.5 | 11.5 | V | | at 1 < Vmax < 10.5 V | | V _{Omax} | | see note 1 | ' | V | | Output sink current | V = V _P ; data = 1F | Io | 2 | 8 | 15 | mA | | Output source current | V = 0 V; data = 1F | Io | -2 | _ | -6 | mA | | Output impedance | data = 1F; | z _o | _ | 4 | 50 | Ω | | | -2 < I _O < +2 mA | | | | | | | Step value of 1 LSB | $V_{\text{max}} = V_P$; $I_O = -2 \text{ mA}$ | V_{LSB} | 70 | 160 | 250 | mV | | Deviation from linearity | $I_0 = -2 \text{ mA}; N \neq 32$ | | 0 | _ | 50 | mV | | Deviation from linearity | $I_O = -2 \text{ mA}; N = 32$ | | 0 | _ | 70 | mV | #### **Note to the Characteristics** 1. $V_0 = 0.95 V_{max} + V_{Omin}$. ## Octuple 6-bit DAC with I²C-bus TDA8444 #### **APPLICATION INFORMATION** Fig.4 Graph showing output voltage as a function of the input data value for V_{max} values of 1, 6, 10 and 12 V; $V_P = 12 \text{ V}$. ## Octuple 6-bit DAC with I²C-bus TDA8444 #### **PACKAGE OUTLINE** DIP16: plastic dual in-line package; 16 leads (300 mil); long body SOT38-1 #### DIMENSIONS (inch dimensions are derived from the original mm dimensions) | UI | NIT | A
max. | A ₁
min. | A ₂
max. | b | b ₁ | С | D ⁽¹⁾ | E ⁽¹⁾ | е | e ₁ | L | M _E | Мн | w | Z ⁽¹⁾
max. | |-----|-----|-----------|------------------------|------------------------|----------------|----------------|----------------|------------------|------------------|------|----------------|--------------|----------------|--------------|-------|--------------------------| | m | nm | 4.7 | 0.51 | 3.7 | 1.40
1.14 | 0.53
0.38 | 0.32
0.23 | 21.8
21.4 | 6.48
6.20 | 2.54 | 7.62 | 3.9
3.4 | 8.25
7.80 | 9.5
8.3 | 0.254 | 2.2 | | inc | hes | 0.19 | 0.020 | 0.15 | 0.055
0.045 | 0.021
0.015 | 0.013
0.009 | 0.86
0.84 | 0.26
0.24 | 0.10 | 0.30 | 0.15
0.13 | 0.32
0.31 | 0.37
0.33 | 0.01 | 0.087 | #### Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | ENCES | EUROPEAN | ISSUE DATE | |---------|--------|----------|-------|------------|---------------------------------| | VERSION | IEC | JEDEC | EIAJ | PROJECTION | ISSUE DATE | | SOT38-1 | 050G09 | MO-001AE | | | 92-10-02
95-01-19 | ## Octuple 6-bit DAC with I²C-bus TDA8444 #### **SOLDERING** #### Introduction There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011). #### Soldering by dipping or by wave The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (T_{stg max}). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit. #### Repairing soldered joints Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds. #### **DEFINITIONS** | Data sheet status | | |---------------------------|---| | Objective specification | This data sheet contains target or goal specifications for product development. | | Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. | | Product specification | This data sheet contains final product specifications. | | Limiting values | | Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. #### **Application information** Where application information is given, it is advisory and does not form part of the specification. #### LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. #### PURCHASE OF PHILIPS I2C COMPONENTS Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.