TDA8356

FEATURES

- Few external components
- Highly efficient fully DC-coupled vertical output bridge circuit
- Vertical flyback switch
- Guard circuit
- Protection against:
 - short-circuit of the output pins (7 and 4)
 - short-circuit of the output pins to V_{P}
- Temperature (thermal) protection
- High EMC immunity because of common mode inputs
- A guard signal in zoom mode.

QUICK REFERENCE DATA

GENERAL DESCRIPTION

The TDA8356 is a power circuit for use in 90° and 110° colour deflection systems for field frequencies of 50 to 120 Hz. The circuit provides a DC driven vertical deflection output circuit, operating as a highly efficient class G system.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
DC supply	•	-			
V _P	supply voltage	9	4.5	25	V
l _q	quiescent supply current	-	30	-	mA
Vertical circuit		·		·	
I _{O(p-p)}	output current (peak-to-peak value)	-	-	2	A
I _{diff(p-p)}	differential input current (peak-to-peak value)	-	600	-	μΑ
V _{diff(p-p)}	differential input voltage (peak-to-peak value)	-	1.5	1.8	V
Flyback switch					
I _M	peak output current	-	_	±1	A
V _{FB}	flyback supply voltage	-	-	50	V
Thermal data (ir	accordance with IEC 747-1)	·		·	
T _{stg}	storage temperature	-55	-	+150	°C
T _{amb}	operating ambient temperature	-25	-	+75	°C
T _{vj}	virtual junction temperature	-	-	150	°C

TDA8356

ORDERING INFORMATION

TYPE NUMBER		PACKAGE			
	NAME	DESCRIPTION	VERSION		
TDA8356	SIL9P	plastic single-in-line power package; 9 leads	SOT131-2		

BLOCK DIAGRAM

TDA8356

DC-coupled vertical deflection circuit

PINNING

SYMBOL	PIN	DESCRIPTION
I _{drive(pos)}	1	input power-stage (positive); includes I _{I(sb)} signal bias
I _{drive(neg)}	2	input power-stage (negative); includes I _{I(sb)} signal bias
VP	3	operating supply voltage
V _{O(B)}	4	output voltage B
GND	5	ground
V _{FB}	6	input flyback supply voltage
V _{O(A)}	7	output voltage A
V _{O(guard)}	8	guard output voltage
V _{I(fb)}	9	input feedback voltage

FUNCTIONAL DESCRIPTION

The vertical driver circuit is a bridge configuration. The deflection coil is connected between the output amplifiers, which are driven in phase opposition. An external resistor (R_M) connected in series with the deflection coil provides internal feedback information. The differential input circuit is voltage driven. The input circuit has been adapted to enable it to be used with the TDA9150, TDA9151B, TDA9160A, TDA9162, TDA8366 and TDA8376 which deliver symmetrical current signals. An external resistor (R_{CON}) connected between the differential input determines the output current through the deflection coil. The relationship between the differential input current and the output current is defined by: $I_{diff} \times R_{CON} = I_{coil} \times R_{M}$. The output current is adjustable from 0.5 A (p-p) to 2 A (p-p) by varying R_M. The maximum input differential voltage is 1.8 V. In the application it is recommended that V_{diff} = 1.5 V (typ). This is recommended because of the spread of input current and the spread in the value of R_{CON}.

The flyback voltage is determined by an additional supply voltage V_{FB}. The principle of operating with two supply voltages (class G) makes it possible to fix the supply voltage V_P optimum for the scan voltage and the second supply voltage V_{FB} optimum for the flyback voltage. Using this method, very high efficiency is achieved.

The supply voltage V_{FB} is almost totally available as flyback voltage across the coil, this being possible due to the absence of a decoupling capacitor (not necessary, due to the bridge configuration). The output circuit is fully protected against the following:

- thermal protection
- short-circuit protection of the output pins (pins 4 and 7)
- short-circuit of the output pins to V_{P.}

A guard circuit $V_{O(guard)}$ is provided. The guard circuit is activated at the following conditions:

- during flyback
- during short-circuit of the coil and during short-circuit of the output pins (pins 4 and 7) to $V_{\rm P}$ or ground
- during open loop
- · when the thermal protection is activated.

This signal can be used for blanking the picture tube screen.

TDA8356

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBO	L PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
DC supply			i	•	•
V _P	supply voltage	non-operating	-	40	V
			-	25	V
V _{FB}	flyback supply voltage		-	50	V
Vertical circ	uit	·			
I _{O(p-p)}	output current (peak-to-peak value)	note 1	-	2	A
V _{O(A)}	output voltage (pin 7)		-	52	V
Flyback swit	tch				
I _M	peak output current		-	±1.5	А
Thermal dat	a (in accordance with IEC 747-1)		·		
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	operating ambient temperature		-25	+75	°C
T _{vj}	virtual junction temperature		-	150	°C
R _{th vj-c}	resistance vj-case		-	4	K/W
R _{th vj-a}	resistance v _j -ambient in free air		-	40	K/W
t _{sc}	short-circuiting time	note 2	-	1	hr

Notes

1. I_O maximum determined by current protection.

2. Up to $V_P = 18 V$.

TDA8356

CHARACTERISTICS

 V_P = 14.5 V; T_{amb} = 25 °C; V_{FB} = 45 V; f_i = 50 Hz; $I_{I(sb)}$ = 400 μ A; measured in test circuit of Fig.3; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
DC supply	Ι		-			
VP	operating supply voltage		9.0	4.5	25	V
V _{FB}	flyback supply voltage		VP	-	50	V
l _P	supply current	no signal; no load	-	30	55	mA
Vertical cir	cuit	•	-!			-
Vo	output voltage swing (scan)	$\begin{split} I_{diff} &= 0.6 \text{ mA (p-p)};\\ V_{diff} &= 1.8 \text{ V (p-p)};\\ I_{O} &= 2 \text{ A (p-p)} \end{split}$	13.2	-	-	V
LE	linearity error	I _O = 2 A (p-p); note 1	-	1	4	%
		I _O = 50 mA (p-p); note 1	-	1	4	%
Vo	output voltage swing (flyback) V _{O(A)} - V _{O(B)}	$I_{diff} = 0.3 \text{ mA};$ $I_O = 1 \text{ A (M)}$	-	40	-	V
V _{DF}	forward voltage of the internal efficiency diode (V _{O(A)} - V _{FB})	$I_O = -1 A (M);$ $I_{diff} = 0.3 mA$	-	-	1.5	V
I _{os}	output offset current	I _{diff} = 0; I _{I(sb)} = 50 to 500 μA	-	-	40	mA
V _{os}	offset voltage at the input of the feedback amplifier ($V_{I(fb)}$ - $V_{O(B)}$)	I _{diff} = 0; I _{I(sb)} = 50 to 500 μA	-	-	24	mV
$\Delta V_{\text{os}} T$	output offset voltage as a function of temperature	I _{diff} = 0	-	-	72	μV/K
V _{O(A)}	DC output voltage	I _{diff} = 0; note 2	-	6.5	_	V
G _{vo}	open-loop voltage gain (V ₇₋₄ /V ₁₋₂)	notes 3 and 4	-	80	-	dB
	open loop voltage gain $(V_{7-4}/V_{9-4}; V_{1-2} = 0)$	note 3	-	80	-	dB
V _R	voltage ratio V ₁₋₂ /V ₉₋₄		-	0	-	dB
f _{res}	frequency response (-3 dB)	open loop; note 5	-	40	_	Hz
GI	current gain (I _O /I _{diff})		-	5000	-	
$\Delta G_c T$	current gain drift as a function of temperature		-	-	10 ⁻⁴	К
I _{I(sb)}	signal bias current		50	400	500	μA
I _{FB}	flyback supply current	during scan	-	-	100	μA
PSRR	power supply ripple rejection	note 6	-	80	-	dB
V _{I(DC)}	DC input voltage		-	2.7	-	V
V _{I(CM)}	common mode input voltage	$I_{I(sb)} = 0$	0	-	1.6	V
I _{bias}	input bias current	$I_{I(sb)} = 0$	-	0.1	0.5	μA
I _{O(CM)}	common mode output current	$\Delta I_{I(sb)} = 300 \ \mu A \ (p-p);$ $f_i = 50 \ Hz; \ I_{diff} = 0$	-	0.2	-	mA

December 1994

TDA8356

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Guard circuit							
I _O	output current	not active; V _{O(guard)} = 0 V	-	-	50	μA	
		active; V _{O(guard)} = 4.5 V	1	-	2.5	mA	
V _{O(guard)}	output voltage on pin 8	I _O = 100 μA	-	-	5.5	V	
	allowable voltage on pin 8	maximum leakage current = 10 μA;	-	-	40	V	

Notes

1. The linearity error is measured without S-correction and based on the same measurement principle as performed on the screen. The measuring method is as follows:

Divide the output signal $I_4 - I_7 (V_{RM})$ into 22 equal parts ranging from 1 to 22 inclusive. Measure the value of two succeeding parts called one block starting with part 2 and 3 (block 1) and ending with part 20 and 21 (block 10). Thus part 1 and 22 are unused. The equations for linearity error for adjacent blocks (LEAB) and not adjacent blocks (NAB) are given below

$$\mathsf{LEAB} = \frac{\mathbf{a}_{k} - \mathbf{a}_{(k+1)}}{\mathbf{a}_{avg}} \text{ ; NAB } = \frac{\mathbf{a}_{max} - \mathbf{a}_{min}}{\mathbf{a}_{avg}}$$

2. Related to V_P.

 V values within formulae, relate to voltages at or between relative pin numbers, i.e. V₇₋₄/V₁₋₂ = voltage value across pins 7 and 4 divided by voltage value across pins 1 and 2.

4. V₉₋₄ AC short-circuited.

5. Frequency response V_{7-4}/V_{9-4} is equal to frequency response V_{7-4}/V_{1-2} .

6. At $V_{(ripple)}$ = 500 mV eff; measured across R_M ; f_i = 50 Hz.

December 1994

TDA8356

December 1994

TDA8356

APPLICATION INFORMATION

