INTEGRATED CIRCUITS

Product specification Supersedes data of 1998 Jan 08 File under Integrated Circuits, IC02 1999 Aug 20

TDA8051

FEATURES

- High operating input sensitivity
- Gain controlled amplifier
- PLL controlled carrier frequency
- Low crosstalk between I and Q channel outputs
- 3-wire transmission bus
- 5 V supply voltage.

APPLICATIONS

• BPSK/QPSK demodulation.

GENERAL DESCRIPTION

This TDA8051 is a monolithic bipolar IC intended for Quadrature Phase Shift Key (QPSK) demodulation. It includes:

- · Low noise RF and gain controlled amplifier
- Two matched mixers
- Symmetrical Voltage Controlled Oscillator (VCO) with 0 to 90° signal generator whose frequency is controlled by an integrated Phase Lock Loop (PLL) circuit.
- Two matched amplifiers for output base-band active filtering and output buffers

The gain control is produced by output level detection compared with an external pre-fixed reference. The PLL consists of:

- Divide by four preamplifier
- 12-bit programmable main divider
- Crystal oscillator with 8-bit programmable reference divider
- Phase/frequency detector combined with charge pump to drive tuning amplifier
- 30 V output

QUICK REFERENCE DATA

All AC units are RMS values unless otherwise specified.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage range	4.75	5.00	5.25	V
f _{I(LNA)}	input carrier frequency at LNA input	44	-	130	MHz
V _{I(LNA)}	input level at LNA input	-30	_	0	dBmV
$\Delta \Phi_{I-Q}$	phase error between I and Q channels	-	±3	-	deg
ΔG_{I-Q}	gain error between I and Q channels	-	±1	-	dB
α _{CT(I-Q)}	crosstalk between I and Q channels	-	-30	-	dBc
IM3	3rd-order intermodulation distortion in I and Q channels (0 dBmV at LNA_IN)	-	_	-45	dBc
Vo	voltage output on pin I_OUT and Q_OUT	-	48	-	dBmV
f _{step}	step at output	50	-	250	kHz
f _{xtal}	crystal frequency	1	-	4	MHz
T _{amb}	operating ambient temperature	0	-	70	°C

ORDERING INFORMATION

TYPE NUMBER		PACKAGE	
	NAME	DESCRIPTION	VERSION
TDA8751T	SO32	plastic small outline package; 32 leads; body width 7.5 mm	SOT287-1

Philips Semiconductors

Product specification

QPSK receiver

TDA8051

1999 Aug 20

_

ω

PINNING

SYMBOL	PIN	DESCRIPTION
I_OUT	1	I data buffered balanced output
I_OUTC	2	I data buffered balanced output
I_OUT2	3	I data filtered output
I_IN1	4	input to active filter amplifier for I data
I_OUT1	5	I data raw output
A1VCC	6	analog supply voltage 1
DEMOD_IN	7	demodulator RF input
LNA_OUT	8	low noise amplifier RF output
LNA_IN	9	low noise amplifier RF input
A1GND	10	analog ground 1
AGC_IN	11	AGC control voltage input
OSC_IN	12	oscillator input
DVCC	13	digital supply voltage
CLK	14	3-wire bus serial control clock
DATA	15	3-wire bus serial control data
ĒN	16	3-wire bus serial control enable (active LOW)
TEST	17	not connected
СР	18	charge pump output for PLL loop filter
TUNE	19	tuning voltage output
DGND	20	digital ground
ТКВ	21	VCO tank circuit input
ТКА	22	VCO tank circuit input
A2VCC	23	analog supply voltage 2
A2GND	24	analog ground 2
A3VCC	25	analog supply voltage 3
OUTGND	26	output amplifiers ground
OUTVCC	27	output amplifiers supply voltage
Q_OUT1	28	Q data raw output
Q_IN1	29	input to active filter amplifier for Q data
Q_OUT2	30	Q data filtered output
Q_OUTC	31	Q data buffered balanced output
Q_OUT	32	Q data buffered balanced output

Fig.2 Pin configuration.

TDA8051

FUNCTIONAL DESCRIPTION

The QPSK modulated signal is applied to the input as an asymmetrical RF signal in the bandwidth 44 to 130 MHz. The spectrum extension to this waveform must be limited by a band-pass filter superseding the IC.

The RF input is either the LNA input, if the level is -30 to 0 dBmVrms, or the DEMOD input if the level is -20 to +10 dBmVrms. The amplified RF signal is then mixed with two clocks in quadrature to provide the base-band demodulated In-phase (I) and Quad-phase (Q) signals.

The VCO operates at twice the RF carrier frequency in the bandwidth 88 - 260 MHz (one octave), therefore the 0 to 90° clocks are generated by a divider by 2.

The VCO frequency can be programmed by an integrated PLL that tunes the external LC tank circuit.

The raw I and Q generated signals contain spurious spikes, therefore each signal is passed through a third order active low-pass filter (RC cell + Sallen-Key structure), whose cut-off frequency is set by external components. The filtered I and Q data signals are then amplified to provide balanced buffer outputs.

The data sent to the PLL is loaded in bursts, framed by signal \overline{EN} . Programming clock edges, together with their relevant data bits, are ignored until \overline{EN} becomes active (LOW). The internal latches are updated with the latest programming data when \overline{EN} returns to inactive (HIGH). The last 14 bits only are retained within the programming register. No check is made on the number of clock pulses received while programming is enabled. An active clock edge causing a shift of the data bits is generated when \overline{EN} goes HIGH while CLOCK is still LOW. The main divider ratio and the reference divider ratio are provided via the serial bus (see Table 1).

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{CC}	supply voltage	-0.3	6.0	V
V _(max)	maximum voltage on all pins except pin 9 (5 V)	-0.3	V _{CC}	V
t _{sc}	maximum short circuit duration on outputs	-	10	S
T _{stg}	storage temperature	-40	+150	°C
T _{j(max)}	maximum junction temperature	_	150	°C
T _{amb}	operating ambient temperature	0	70	°C
V _{CC(tune)}	tuning voltage supply	-0.3	30	V

HANDLING

HBM ESD: The IC pins withstand 2 kV except pin 26 (1750 V).

MM ESD: The IC pins withstand 100 V except pins 2 and 31 (75 V).

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	65	K/W

TDA8051

CHARACTERISTICS

Measured in application circuit with the following conditions: $V_{CC} = 5 \text{ V}$; $T_{amb} = 25^{\circ}\text{C}$. All AC units are RMS values, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies	1		•		I	-
V _{CCA1}	analog supply voltage		4.75	5	5.25	V
I _{CCA1}	analog supply current		-	23	_	mA
V _{CCA2}	analog supply voltage		4.75	5	5.25	V
I _{CCA2}	analog supply current		-	18	_	mA
V _{CCA3}	analog supply voltage		4.75	5	5.25	V
I _{CCA3}	analog supply current		-	29	_	mA
V _{cc(o)}	output supply voltage		4.75	5	5.25	V
I _{cc(o)}	output supply current		-	17	_	mA
V _{CCD}	digital supply voltage		4.75	5	5.25	V
I _{CCD}	digital supply current		-	13	_	mA
V _{CC(tune)}	tuning supply voltage		-	_	30	V
	amplifier: $R_s = 75 \Omega/R_i = 75 \Omega$ u	Inless otherwise specified		•		•
V _{I(DC)}	DC input level	internally set	-	0.85	_	V
Vi	input level		-30	-	0	dBmV
f _i	input carrier frequency		44	-	130	MHz
R _i	input resistance		-	75	_	Ω
C _i	input capacitance		-	2.5	_	pF
R _{LLNA}	input return loss		-	-15	_	dB
NF _{LNA}	noise figure		-	7	11	dB
V _{leak(LO)}	LO leakage on pin at LNA_IN	$f_{N \times LO} = 140 - 860 \text{ MHz};$ pin LNA_OUT connected to DEMOD_IN	-	-	-15	dBmV
		f _{LO/2} = 70 – 130 MHz; pin LNA_OUT connected to DEMOD_IN	-	-35	-30	dBmV
G _{LNA}	LNA gain	$ f = 100 \text{ MHz}; \\ V_{I(LNA)} = 0 \text{ dBmV} $	8	10	_	dB
Vo	output level	-	-20	-	+10	dBmV
ΔV _o	output flatness	in 1 MHz bandwidth; V _{I(LNA)} = 0 dBmV	-	0.25	0.5	dB
		44 to 70 MHz; V _{I(LNA)} = 0 dBmV	-	0.50	-	dB
		70 to 130 MHz; V _{I(LNA)} = 0 dBmV	_	1.3	1.5	dB
IM3	3rd-order intermodulation	2 carriers at +10 dBmV each at pin LNA_IN at 103 to 105 MHz	-	-	-60	dBc

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{o(DC)}	DC output level		_	1.3	_	V
R _o	output resistance		-	75	-	Ω
	demodulator: $R_s = 75 \Omega/R_i = 2$	$20~{ m k}\Omega$ unless otherwise spec	ified			
V _{I(DC)}	DC input level	internally set	-	1	-	V
Vi	input level		-20	_	+10	dBmV
f _i	input carrier frequency		44	_	130	MHz
R _i	input resistance		-	75	-	Ω
Ci	input capacitance		-	2.5	-	pF
RL	input Return Loss		-	-12	-	dB
V _{o(I-Q)}	output level on pin I_OUT1 or Q_OUT1		_	22	-	dBmV
B _{o(I-Q)}	output 3 dB bandwidth	LO = 200 MHz; RF = 100 to 130 MHz	-	35	38	MHz
C/N	carrier to noise ratio at 500 kHz on pin at I_OUT1 or	$V_I = -20 \text{ dBmV};$ $V_{o(I \text{ and } Q)} = 22 \text{ dBmV}$	-	88	-	dBc/Hz
	Q_OUT1	$V_I = 10 \text{ dBmV};$ $V_{o(I \text{ and } Q)} = 22 \text{ dBmV}$	-	93	-	dBc/Hz
V _{leak(LO)}	LO leakage on pin DEMOD_IN	$f_{LO} = 140$ to 260 MHz; $f_{LO/2} = 70$ to 130 MHz	-	-	-15	dBmV
V _{AGC(r)}	AGC range	$f_{LO} = 200 \text{ MHz};$ $f_{RF} = 100.25 \text{ MHz at}$ -20 to +10 dBmV; $f_{BF} = 250 \text{ kHz at } 22 \text{ dBmV}$	30	-	-	dB
V _{AGC(s)}	AGC slope maximum	$f_{LO} = 200 \text{ MHz};$ $f_{RF} = 100.25 \text{ MHz at}$ -20 to +10 dBmV; $f_{BF} = 250 \text{ kHz at } 22 \text{ dBmV}$	_	30	-	dB/V
V _{AGC}	gain control voltage at AGC_IN		10% V _{CCA}	-	90% V _{CCA}	V
G _{max}	max. conversion gain	$\begin{array}{l} f_{LO} = 260 \text{ MHz}; \\ f_{RF} = 130.25 \text{ MHz at} \\ -20 \text{ dBmV}; \text{ V}_{AGC} = 4.5 \text{ V} \end{array}$	42	-	-	dB
G _{min}	min. conversion gain		_	—	12	dB
$\Delta \Phi_{I-Q}$	phase error between I and Q channels	$ f_{LO} = 140 \text{ to } 260 \text{ MHz}; $	-	±3	-	deg
ΔG _{I-Q}	gain error between I and Q channels	f_{LO} = 140 to 260 MHz; f_{RF} = 70.25 to 130.25 MHz; f_{BF} = 250 kHz at 22 dBmV over specified input range	_	±1	-	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ΔΦ _{I-Q}	$ \begin{array}{l} \mbox{phase error between I and Q} \\ \mbox{channels} \end{array} \begin{array}{l} f_{LO} = 88 \mbox{ to 140 MHz;} \\ f_{RF} = 44.25 \mbox{ to 70.25 MHz;} \\ f_{BF} = 250 \mbox{ kHz at 22 dBmV} \\ \mbox{over specified input range} \end{array} \right. $		-	±3	-	deg
∆G _{I-Q}	$ \begin{array}{ll} \mbox{gain error between I and Q} & f_{LO} = 88 \mbox{ to 140 MHz;} & - \\ \mbox{f}_{RF} = 44.25 \mbox{ to 70.25 MHz;} \\ \mbox{f}_{BF} = 250 \mbox{ kHz at 22 dBmV} \\ \mbox{over specified input range} \end{array} $		±1	_	dB	
M3	3rd-order intermodulation in I and Q channels	see Fig.3	_	-	-45	dBc
M2	2nd-order intermodulation in I and Q channels	see Fig.3	_	-	-40	dBc
AMREJ	AM rejection at I and Q channels	guaranteed by design; see Fig.4	_	-	-38	dBc
۵V _{o(I/Q)}	output flatness at I and Q	in 1 MHz bandwidth	-	0.25	-	dB
	outputs	f = 40 to 70 MHz	-	3	-	dB
		f = 70 to 130 MHz	-	3	_	dB
/ _{o(DC)}	DC output level		-	2.5	-	V
Ro	output resistance		-	400	-	Ω
Output sect	ion: R _s = 400 Ω/R _i = 4 kΩ/R or	pin I_OUT2 or Q_OUT2 = 20	kΩ unless	otherv	vise specif	ied
V _{I(DC)}	DC input voltage		-	3.6	-	V
/ _i	input level		-	22	-	dBmV
۲ _i	input resistance		-	17.5	_	kΩ
C _i	input capacitance		-	0.4	_	pF
Э ₀	gain from I-Q_IN1 to I-Q_OUT2	f _{BF} = 1 MHz at 22 dBmV	_	3.8	_	dB
Vo(I-Q_out2)	output flatness on	f _{BF} = 0 to 1.5 MHz	-	0.25	-	dB
	pins I_OUT2 and Q_OUT2	f _{BF} = 0 to 6 MHz at 22 dBmV input	-	1	-	dB
/ _{o(flt)}	DC output level at filter output		-	2.6	-	V
₹ ₀	output resistance	f < 20 MHz	-	250	-	Ω
H ₂	2nd harmonic	f _{BF} = 1 MHz at 48 dBmV output	_	-40	-35	dBc
H ₃	3rd harmonic	f _{BF} = 1 MHz at 48 dBmV output	_	-45	-40	dBc
M3	3rd-order intermodulation at pins I_OUT and Q_OUT	see Fig.5	_	-50	-45	dBc
X _{CT(I-Q)}	crosstalk between I and Q channels	f = 5 MHz; see Fig.6	_	-40	-30	dBc
N _o	output noise power at 500 kHz from carrier	see Fig.7	_	-56	_	dBmv/Hz
G _{I-Q}	gain from I-Q_IN1 to I-Q_OUT	f _{BF} = 1 MHz at 22 dBmV input	_	27	-	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{1(I-Q)}	DC output level on pin I-Q_OUT		-	3.1	_	V
R _{o(dif)}	output differential resistance		-	460	-	Ω
	= 75 Ω/R_i = 4 k Ω unless otherw	vise specified	•			•
Vo	voltage output on pins I_OUT and Q_OUT	see Fig.8	-	48	_	dBmV
LO _{lev}	LO level on pins I_OUT and Q_OUT	see Fig.8	-	-	-45	dBc
So	spurious emission on pins I_OUT and Q_OUT	f = 0 to 5 MHz; see Fig.8	-	-40	_	dBc
ΔG_{I-Q}	gain error on pins I_OUT and Q_OUT	see Fig.8	-	±1	_	dB
AMR	AM rejection in I and Q channels	guaranteed by design; see Fig.9	-	-	-40	dBc
IM3	3rd-order intermodulation	guaranteed by design; see Fig.10	-	-	-45	dBc
Voltage Cor	ntrolled Oscillator (VCO)		-		I	-
f _{vco(min)}	min. oscillation frequency	note 1	-	88	-	MHz
f _{vco(max)}	max. oscillation frequency	note 1	-	260	_	MHz
αN _(osc)	oscillator phase noise	at 10 kHz	-	-75	_	dBc/Hz
		at 100 kHz	-	-95	_	dBc/Hz
Phase Lock	(ed Loop (PLL)					
Step	frequency step size	at pin VCO output	100	_	500	kHz
RD	fixed reference divider ratio		-	2	_	_
RDR	programmable reference divider ratio		2	-	80	-
ND	programmable fix main divider ratio		-	4	_	-
NDR	main divider ratio		128	_	2600	_
I _(CP)	charge pump current		-	300	_	μA
Crystal osc	•		- i			•
f _{xtal}	crystal frequency	r_{xtal} = 25 to 200 Ω	1	-	4	MHz
Z _i	crystal oscillator input impedance (absolute value)	f _{xtal} = 4 MHz	600	120 0	_	Ω
V _{I(DC)}	DC input level		_	2.9	_	V
Vi	input level		_	30	_	mVrms

TDA8051

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
3-wire bus						•
V _{IL}	input Low level	guaranteed by design	_	-	0.8	V
V _{IH}	input High level	guaranteed by design	2.4	-	_	V
f _{clk}	clock frequency	guaranteed by design	-	330	-	kHz
t _{su}	input data to CLK set-up time	guaranteed by design	-	2	-	μs
t _h	input data to CLK hold time	guaranteed by design	-	1	_	μs
t _{d(strt)}	delay to rising clock edge	guaranteed by design	-	3	-	μs
t _{d(stp)}	delay from last clock edge	guaranteed by design	-	3	-	μs

Notes

1. The frequency range of the receiver is 44 to 130 MHz. The local oscillator (LO) operates at twice the output frequency (88 to 260 MHz). Frequency control by varicap diodes allows a variation over one octave.

 Crystal oscillator. The crystal oscillator uses a 4, 2 or 1 MHz crystal in series with a capacitor. The crystal is parallel resonant with load capacitance of 18 to 20 pF. Connection to V_{CC} is preferred but can also be to GND.

Note to characteristics

TDA8051

TIMING CHARACTERISTICS

DATA FORMAT

Table 1

FIRST													LAST
Data													
D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	AD1	AD0
Refere	nce ratio)											
Х	X	Х	Х	R7	R6	R5	R4	R3	R2	R1	R0	0	1
Princip	oal ratio												
P11	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	P0	1	1

Philips Semiconductors

QPSK receiver

TDA8051

_

TDA8051

INTERNAL PIN CONFIGURATIONS

		DESCRIPTION	DC VOLTAGE
I_OUT I_OUTC	1 2		3.1 V 3.1 V
I_OUT2	3	OUTGND FCE026	2.6 V
I_IN1	4		3.6 V
I_OUT1 A1VCC	6	Analog supply voltage 1	2.5 V 5 V

SYMBOL	PIN	DESCRIPTION	DC VOLTAGE
DEMOD_IN	7	T FGE127 A1GND	1 V
LNA_OUT	8	A1GND FCE128	1.3 V
LNA_IN	9	() () () () () () () () () ()	0.9 V
A1GND	10	analog ground 1	0. V
AGC_IN	11		_

SYMBOL	PIN	DESCRIPTION	DC VOLTAGE
OSC_IN	12		3.0 V
DVCC	13	digital supply voltage	5 V
CLK	14		n.a.
DATA	15		n.a.
ĒN	16		n.a.
TEST	17	not connected	n.a.
CP	18	DOWN DVCC UP (18) UP (18) FCE035	1.9 V

SYMBOL	PIN	DESCRIPTION	DC VOLTAGE
TUNE	19	(19) (19) (19) (19) (19) (19) (19) (19)	V _{VT}
DGND	20	SUB (20) FCE037	0 V
ТКВ	21		2.4 V
ТКА	22		2.4 V
A2VCC	23	analog DC supply voltage 2	5 V
A2GND	24	analog ground 2	0 V
A3VCC	25	analog supply voltage 3	5 V
OUTGND	26	CEO40	0 V
OUTVCC	27	output amplifiers supply voltage	5 V
Q_OUT1	28	OUTGND FCE041	2.5 V

SYMBOL	PIN	DESCRIPTION	DC VOLTAGE
Q_IN1	29	29 CUTGND FCE042	3.6 V
Q_OUT2	30	OUTGND FCE043	2.6 V
Q_OUTC	31		3.1 V
Q_OUT	32	OUTGND OUTGND FCE044	3.1 V

TDA8051

SOT287-1

PACKAGE OUTLINE

SO32: plastic small outline package; 32 leads; body width 7.5 mm

TDA8051

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^\circ\text{C}.$

TDA8051

Suitability of surface mount IC packages for wave and reflow soldering methods

DACKACE	SOLDERING METHOD	
PACKAGE	WAVE	REFLOW ⁽¹⁾
HLQFP, HSQFP, HSOP, SMS	not suitable ⁽²⁾	suitable
PLCC ⁽³⁾ , SO	suitable	suitable
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable
SQFP	not suitable	suitable
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors – a worldwide company

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Argentina: see South America Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248. Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838. Fax +39 039 203 6800 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 1999

Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: UI. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +27 11 471 5401, Fax. +27 11 471 5398 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil Tel. +55 11 821 2333. Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA Tel. +34 93 301 6312, Fax. +34 93 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd. 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087 Uruguay: see South America

Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 62 5344, Fax.+381 11 63 5777

Internet: http://www.semiconductors.philips.com

SCA67

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

545004/25/02/pp24

Date of release: 1999 Aug 20

Document order number: 9397 750 04691

Let's make things better.

