

# **TDA7400**

# ADVANCED CAR SIGNAL PROCESSOR

- FULLY INTEGRATED SIGNAL PROCESSOR OPTIMIZED FOR CAR RADIO APPLICA-TIONS
- FULLY PROGRAMMABLE BY I<sup>2</sup>C BUS
- INCLUDES AUDIOPROCESSOR, STEREO -DECODER WITH NOISE BLANKER AND MULTIPATH DETECTOR
- SOFTMUTE FUNCTION DEDICATED ALSO TO RDS
- PROGRAMMABLE ROLL-OFF COMPENSA-TION
- NO EXTERNAL COMPONENTS

#### DESCRIPTION

The TDA7400 is the newcomer of the CSP family introduced by TDA7460/61. It uses the same innovative concepts and design technologies allowing fully software programmability through  $I^2C$  bus and overall cost optimisation for the system designer.

Device includes an audioprocessor with configur-



able inputs and absence of external components for filter settings, a last generation stereodecoder with multipath detector and a sophisticated stereoblend and noise cancellation circuitry. Strength points of the CSP approach are flexibility and overall cost/room saving in the application, combined with high performances.



## **BLOCK DIAGRAM**

#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol | Parameter                           | Value      | Unit |
|--------|-------------------------------------|------------|------|
| Vs O   | Operating Supply Voltage            | 10.5       | V    |
| Tamb O | Operating Ambient Temperature Range | -40 to 85  | °C   |
| Tstg O | Operating Storage Temperature Range | -55 to 150 | °C   |

#### SUPPLY

| Symbol | Parameter               | Test Condition                    | Min. | Тур. | Max. | Unit |
|--------|-------------------------|-----------------------------------|------|------|------|------|
| Vs     | Supply Voltage          |                                   | 7.5  | 9    | 10   | V    |
| ls     | Supply Current          | $V_{\rm S} = 9V$                  |      | 30   | 40   | mA   |
| SVRR   | Ripple Rejection @ 1KHz | Audioprocessor (all filters flat) |      | 60   |      | dB   |
|        |                         | Stereodecoder + Audioprocessor    |      | 55   |      | dB   |

## ESD

All pins are protected against ESD according to the MIL883 standard.

## **PIN CONNECTION**



# THERMAL DATA

| Symbol    | Parameter                            | Value | Unit |
|-----------|--------------------------------------|-------|------|
| Rth-jpins | Thermal Resistance Junction-pins Max | 85    | °C/W |

# **PIN DESCRIPTION**

| N. | Name   | Function                              | Туре |
|----|--------|---------------------------------------|------|
| 1  | CDR    | CD Right Channel Input                |      |
| 2  | CDROUT | CD Output Right Channel               | 0    |
| 3  | CDGND  | CD Input Common Ground                | I    |
| 4  | CDLOUT | CD Output Left Channel                | 0    |
| 5  | CDL    | CD Input Left Channel                 | I    |
| 6  | nc     |                                       | -    |
| 7  | PH -   | Differential Phone Input -            |      |
| 8  | PH +   | Differential Phone Input +            | I    |
| 4  | CASSL  | Cassette Input Left                   | 1    |
| 6  | CDGND  | Ground reference CD                   |      |
| 7  | CDL    | CD Left Channel Input                 | I    |
| 8  | PHGND  | Phone Input Ground                    |      |
| 9  | nc     |                                       | -    |
| 10 | AM     | AM Input                              | I    |
| 11 | nc     |                                       | -    |
| 12 | MPX    | FM Stereodecoder Input                | I    |
| 13 | nc     |                                       | -    |
| 14 | LEVEL  |                                       | 0    |
| 15 | MPIN   | Multipath Input                       |      |
| 16 | MPOUT  | Multipath Output                      | 0    |
| 17 | nc     |                                       | -    |
| 18 | MUXL   | Multiplexer Output Left Channel       | 0    |
| 19 | MUXR   | Multiplexer Output Right Channel      | 0    |
| 20 | nc     |                                       | -    |
| 21 | QUAL   | Stereodecoder Quality Output          | 0    |
| 22 | SMUTE  | Soft Mute Drive                       | 1    |
| 23 | SCL    | I <sup>2</sup> C Clock Line           | I/O  |
| 24 | SDA    | I <sup>2</sup> C Data Line            | I/O  |
| 25 | nc     |                                       | -    |
| 26 | GND    | Supply Ground                         | S    |
| 27 | VS     | Supply Voltage                        | S    |
| 28 | nc     |                                       | -    |
| 29 | OUTRR  | Right Rear Speaker Output             | 0    |
| 30 | OUTLR  | Left Rear Speaker Output              | 0    |
| 31 | OUTRF  | Right Front Spaeaker Output           | 0    |
| 32 | OUTLF  | Left Front Speaker Output             | 0    |
| 33 | nc     |                                       | -    |
| 34 | ACOUTR | Pre-speaker AC Output Right Channel   | 0    |
| 35 | ACOUTL | Pre-speaker AC Output Left Channel    | 0    |
| 36 | nc     |                                       | -    |
| 37 | ACINLR | Pre-speaker Input Left Channel        |      |
| 38 | ACINRR | Pre-speaker Input Right Channel       |      |
| 39 | ACINRF | Pre-speaker Input Right Front Channel |      |
| 40 | ACINLF | Pre-speaker Input Left Front Channel  |      |
| 41 | VREF   | Reference Voltage Output              | S    |
| 42 | CREF   | Reference Capacitor Pin               | S    |
| 43 | TAPEL  | Tape Input Left                       |      |
| 44 | TAPER  | Tape Input Right                      |      |

P in type legenda: I = Input O = Output I/O = Input/Output S = Supply nc = not connected

#### AUDIO PROCESSOR PART

#### **Input Multiplexer**

- Quasi-differential CD and cassette stereo input
- AM mono input
- Phone differential input
- Multiplexer signal after In-Gain available at separate pins

#### Volume control

- 1dB attenuator
- Max. gain 15dB
- Max. attenuation 79dB

#### **Bass Control**

- 2nd order frequency response
- Center frequency programmable in 4(5) steps
- DC gain programmable

■ ±15 x 1dB steps

#### **Treble Control**

- 2nd order frequency response
- Center frequency programmable in 4 steps
- ±15 x 1dB steps

#### **Speaker Control**

- 4 independent speaker controls in 1dB steps
- max gain 15dB
- max. attenuation 79dB

# **Mute Functions**

Direct mute

Digitally controlled softmute with 4 programmable mute time

| <b>ELECTRICAL CHARACTERISTICS</b> (Vs = 9V; Tamb = $25^{\circ}$ C; RL = $10K\Omega$ ; all gains = $0dB$ ; f = $1KHz$ ; |
|------------------------------------------------------------------------------------------------------------------------|
| unless otherwise specified).                                                                                           |

| Symbol    | Parameter                         | Test Condition                        | Min. | Тур. | Max. | Unit |
|-----------|-----------------------------------|---------------------------------------|------|------|------|------|
| INPUT SEL | ECTOR                             |                                       |      |      |      |      |
| Rin       | Input Resistance                  | all inputs except Phone               |      | 100  |      | KΩ   |
| Vcl       | Clipping Level                    |                                       |      | 2.6  |      | Vrms |
| SIN       | Input Separation                  |                                       | 80   | 100  |      | dB   |
| GIN MIN   | Min. Input Gain                   |                                       | -0.5 | 0    | 0.5  | dB   |
| GIN MAX   | Max. Input Gain                   |                                       |      | 15   |      | dB   |
| GSTEP     | Step Resolution                   |                                       |      | 1    |      | dB   |
| Vdc       | DC Steps                          | Adjacent Gain Step                    |      | 0.5  |      | mV   |
|           |                                   | GMIN TO GMAX                          |      | 5    |      | mV   |
| DIFFEREN  | ITIAL CD STEREO INPUT             |                                       |      |      |      |      |
| Rin       | Input Resistance                  | Differential                          | 70   | 100  | 130  | KΩ   |
|           |                                   | Common Mode                           | 70   | 100  | 130  | KΩ   |
| CMRR      | Common Mode Rejection Ratio       | Vcm = 1 <sub>VRMS</sub> @ 1KHz        | 45   | 70   |      | dB   |
|           |                                   | Vсм = 1 <sub>VRMS</sub> @ 10КНz       | 45   | 60   |      | dB   |
| еn        | Output Noise @ Speaker<br>Outputs | 20Hz to 20KHz flat; all stages<br>0dB |      | 9    |      | μV   |
| DIFFEREN  | ITIAL PHONE INPUT                 |                                       |      |      |      |      |
| Rin       | Input Resistance                  | Differential                          | 40   | 56   |      | KΩ   |
| CMRR      | Common Mode Rejection Ratio       | Vcm = 1 <sub>VRMS</sub> @ 1KHz        | 40   | 70   |      | dB   |
|           |                                   | Vcm = 1 <sub>VRMS</sub> @ 10KHz       | 40   | 60   |      | dB   |

| ELECTRICAL | CHARACTERISTICS | (continued) |
|------------|-----------------|-------------|
|------------|-----------------|-------------|

| Symbol   | Parameter                             | Test Condition               | Min.  | Тур.                        | Max. | Unit |
|----------|---------------------------------------|------------------------------|-------|-----------------------------|------|------|
| VOLUME ( | CONTROL                               |                              |       |                             |      |      |
| Gмах     | Max Gain                              |                              |       | 15                          |      | dB   |
| Амах     | Max Attenuation                       |                              |       | 79                          |      | dB   |
| Astep    | Step Resolution                       |                              |       | 1                           |      | dB   |
| EA       | Attenuation Set Error                 | G = -20 to 20dB              | -1.25 | 0                           | 1.25 | dB   |
|          |                                       | G = -60 to 20dB              | -4    | 0                           | 3    | dB   |
| Εт       | Tracking Error                        |                              |       |                             | 2    | dB   |
| Vdc      | DC Steps                              | Adjacent Attenuation Steps   |       | 0.1                         | 3    | mV   |
|          |                                       | From 0dB to G <sub>MIN</sub> |       | 0.5                         | 5    | mV   |
| SOFT MUT | ΓE                                    |                              | -     |                             |      |      |
| Амите    | Mute Attenuation                      |                              | 80    | 100                         |      | dB   |
| To       | Delay Time                            | T1                           |       | 0.48                        |      | ms   |
| VTHIOW   |                                       | T2                           |       | 0.96                        |      | ms   |
|          |                                       | Т3                           |       | 40.4                        |      | ms   |
|          |                                       | T4                           |       | 324                         |      | ms   |
| VTHIow   | Low Threshold for SM Pin <sup>1</sup> |                              |       |                             | 1    | V    |
| VTHhigh  | High Threshold for SM Pin             |                              | 2.5   |                             |      | V    |
| Rpd      | Internal Pull-up Resistor             |                              |       | 100                         |      | KΩ   |
| BASS CON | NTROL                                 |                              | -     |                             |      | _    |
| CRANGE   | Control Range                         |                              |       | ±15                         |      | dB   |
| Astep    | Step Resolution                       |                              |       | 1                           |      | dB   |
| fc       | Center Frequency                      | fc1                          |       | 60                          |      | Hz   |
|          |                                       | fc2                          |       | 70                          |      | Hz   |
|          |                                       | fc3                          |       | 80                          |      | Hz   |
|          |                                       | fc4                          |       | 100<br>(150) <sup>(2)</sup> |      | Hz   |
| QBASS    | Quality Factor                        | Q1                           |       | 1                           |      |      |
|          |                                       | Q2                           |       | 1.25                        |      |      |
|          |                                       | Q3                           |       | 1.5                         |      |      |
|          |                                       | Q4                           |       | 2                           |      |      |
| DCGAIN   | Bass-Dc-Gain                          | DC = off                     |       | 0                           |      | dB   |
|          |                                       | DC = on                      |       | 4.4                         |      | dB   |
| TREBLE C | ONTROL                                |                              |       |                             |      |      |
| CRANGE   | Control Range                         |                              |       | ±15                         |      | dB   |
| ASTEP    | Step Resolution                       |                              |       | 1                           |      | dB   |
| fc       | Center Frequency                      | fC1                          |       | 10                          |      | KHz  |
|          |                                       | fc2                          |       | 12.5                        |      | KHz  |
|          |                                       | fcз                          |       | 15                          |      | KHz  |
|          |                                       | fC4                          |       | 17.5                        |      | KHz  |

The SM pin is active low (Mute = 0)
See description of Audioprocessor Part

| Symbol          | Parameter                     | Test Condition                                               | Min. | Тур.  | Max. | Unit |
|-----------------|-------------------------------|--------------------------------------------------------------|------|-------|------|------|
| SPEAKER         | ATTENUATORS                   |                                                              |      |       |      |      |
| Rin             | Input Impedance               |                                                              | 35   | 50    | 65   | KΩ   |
| Gмах            | Max Gain                      |                                                              |      | 15    |      | dB   |
| Amax            | Max Attenuation               |                                                              |      | -79   |      | dB   |
| ASTEP           | Step Resolution               |                                                              |      | 1     |      | dB   |
| Amute           | Output Mute Attenuation       |                                                              | 80   | 90    |      | dB   |
| EE              | Attenuation Set Error         |                                                              |      |       | 2    | dB   |
| Vdc             | DC Steps                      | Adjacent Attenuation Steps                                   |      | 0.1   | 5    | mV   |
| AUDIO OU        | TPUTS                         |                                                              |      |       |      |      |
| VCLIP           | Clipping Level                | d = 0.3%                                                     | 2.2  | 2.6   |      | Vrms |
| R∟              | Output Load Resistance        |                                                              | 2    |       |      | KΩ   |
| CL              | Output Load Capacitance       |                                                              |      |       | 10   | nF   |
| Rout            | Output Impedance              |                                                              |      | 30    | 120  | Ω    |
| Vdc             | DC Voltage Level              |                                                              |      | 4.5   |      | V    |
| GENERAL         |                               |                                                              |      |       |      |      |
| e <sub>NO</sub> | Output Noise                  | BW = 20 Hz to 20 KHz<br>output muted                         |      | 3     |      | μV   |
|                 |                               | BW = 20 Hz to 20 KHz<br>all gain = 0dB                       |      | 6.5   |      | μV   |
| S/N             | Signal to Noise Ratio         | all gain = 0dB flat; Vo = 2VRMS                              |      | 110   |      | dB   |
|                 |                               | bass treble at 12dB;<br>a-weighted; Vo = 2.6V <sub>RMS</sub> |      | 100   |      | dB   |
| d               | Distortion                    | VIN = 1VRMS; all stages 0dB                                  |      | 0.002 |      | %    |
|                 |                               | VIN = 1VRMS; Bass & Treble = 12dB                            |      | 0.05  |      | %    |
| Sc              | Channel separation Left/Right |                                                              | 80   | 100   |      | dB   |
| Ет              | Total Tracking Error          | A <sub>V</sub> = 0 to -20dB                                  |      | 0     | 1    | dB   |
|                 |                               | A <sub>V</sub> = -20 to -60dB                                |      | 0     | 2    | dB   |

# **Stereodecoder Part**

**ELECTRICAL CHARACTERISTICS** (Vs = 9V; deemphasis time constant =  $50\mu$ s, VMPx = 500mV(75KHz deviation), fm= 1KHz, Gv = 6dB, Tamb =  $27^{\circ}C$ ; unless otherwise specified).

| Symbol   | Parameter                           | Test Condition                                                   | Min. | Тур. | Max. | Unit   |
|----------|-------------------------------------|------------------------------------------------------------------|------|------|------|--------|
| Vin      | MPX Input Level                     | Gv = 3.5dB                                                       |      | 0.5  | 1.25 | Vrms   |
| Rin      | Input Resistance                    |                                                                  |      | 100  |      | KΩ     |
| Gmin     | Min. Input Gain                     |                                                                  |      | 3.5  |      | dB     |
| GMAX     | Max. Input Gain                     |                                                                  |      | 11   |      | dB     |
| GSTEP    | Step Resolution                     |                                                                  |      | 2.5  |      | dB     |
| SVRR     | Supply Voltage Ripple<br>Rejection  | Vripple = 100mV; f = 1KHz                                        |      | 60   |      | dB     |
| α        | Max. channel Separation             |                                                                  |      | 50   |      | dB     |
| THD      | Total Harmonic Distortion           |                                                                  |      | 0.02 | 0.3  | %      |
| S+N<br>N | Signal plus Noise to Noise<br>Ratio | A-weighted, S = 2Vrms                                            |      | 91   |      | dB     |
| MONO/ST  | EREO-SWITCH                         |                                                                  |      |      |      |        |
| VPTHST1  | Pilot Threshold Voltage             | for Stereo, PTH = 1                                              |      | 15   |      | mV     |
| VPTHST0  | Pilot Threshold Voltage             | for Stereo, PTH = 0                                              |      | 25   |      | mV     |
| VPTHMO1  | Pilot Threshold Voltage             | for Mono, PTH = 1                                                |      | 12   |      | mV     |
| Vpthmo0  | Pilot Threshold Voltage             | for Mono, PTH = 1                                                |      | 19   |      | mV     |
| PLL      |                                     | -                                                                | -    | -    |      | -      |
| ∆f/f     | Capture Range                       |                                                                  | 0.5  |      |      | %      |
| DEEMPHA  | SIS and HIGHCUT                     |                                                                  |      |      |      | 1      |
| THC50    | Deemphasis Time Constant            | Bit 7, Subadr, 10 = 0,<br>VLEVEL >> VHCH                         |      | 50   |      | μs     |
| THC75    | Deemphasis Time Constant            | Bit 7, Subadr, 10 = 1,<br>V <sub>LEVEL</sub> >> V <sub>HCH</sub> |      | 75   |      | μs     |
| THC50    | Highcut Time Constant               | Bit 7, Subadr, 10 = 0,<br>V <sub>LEVEL</sub> >> V <sub>HCL</sub> |      | 150  |      | μs     |
| THC75    | Highcut Time Constant               | Bit 7, Subadr, 10 = 1,<br>V <sub>LEVEL</sub> >> V <sub>HCL</sub> |      | 225  |      | μs     |
| STEREOB  | LEND-and HIGHCUT-CONTR              | ROL                                                              |      |      |      |        |
| REF5V    | Internal Reference Voltage          |                                                                  |      | 5    |      | V      |
| TCREF5V  | Temperature Coefficient             |                                                                  |      | 3300 |      | ppm    |
| LGmin    | Min. LEVEL Gain                     |                                                                  |      | 0    |      | dB     |
| LGmax    | Max. LEVEL Gain                     |                                                                  |      | 10   |      | dB     |
| LGstep   | LEVEL Gain Step Resolution          |                                                                  |      | 0.67 |      | dB     |
| VSBLmin  | Min. Voltage for Mono               |                                                                  |      | 29   |      | %REF5V |
| VSBLmax  | Min. Voltage for Mono               |                                                                  |      | 58   |      | %REF5V |
| VSBLstep | Step Resolution                     |                                                                  |      | 4.2  |      | %REF5V |
| VHCHmin  | Min. Voltage for NO Highcut         |                                                                  |      | 42   |      | %REF5V |
| VHCHmax  | Min. Voltage for NO Highcut         |                                                                  |      | 66   |      | %REF5V |
| VHCHstep | Step Resolution                     |                                                                  |      | 8.4  |      | %REF5V |
| VHCLmin  | Min. Voltage for FULL Highcut       |                                                                  |      | 17   |      | %VHCH  |
| VHCLmax  | Max. Voltage for FULL Highcut       |                                                                  |      | 33   |      | %VHCH  |
| VHCLstep | Step Resolution                     |                                                                  |      | 4.2  | İ    | %VHCH  |

|--|

| Symbol        | Parameter                                          | Test Condition     | Min. | Тур. | Max. | Unit |
|---------------|----------------------------------------------------|--------------------|------|------|------|------|
| Carrier and   | harmonic suppression at the                        | output             |      |      |      |      |
| α19           | Pilot Signal f = 19KHz                             |                    |      | 50   |      | dB   |
| α38           | Subcarrier f = 38KHz                               |                    |      | 75   |      | dB   |
| α57           | Subcarrier f = 57KHz                               |                    |      | 62   |      | dB   |
| α76           | Subcarrier f = 76KHz                               |                    |      | 90   |      | dB   |
| Intermodula   | ation (Note 1)                                     |                    |      |      |      |      |
| α2            | f <sub>mod</sub> = 10KHz, f <sub>spur</sub> = 1KHz |                    |      | 65   |      | dB   |
| α3            | f <sub>mod</sub> = 13KHz, f <sub>spur</sub> = 1KHz |                    |      | 75   |      | dB   |
| Traffic Ratio | o (Note 2)                                         |                    |      |      |      |      |
| α57           | Signal f = 57KHz                                   |                    |      | 70   |      | dB   |
| SCA - Subs    | sidiary Communications Autho                       | orization (Note 3) | -    | -    |      |      |
| α67           | Signal f = 67KHz                                   |                    |      | 75   |      | dB   |
| ACI - Adjac   | ent Channel Interference (Not                      | e 4)               |      |      |      |      |
| α114          | Signal f = 114KHz                                  |                    |      | 95   |      | dB   |
| α190          | Signal f = 190KHz                                  |                    |      | 84   |      | dB   |

Notes to the characteristics:

1. Intermodulation Suppression:

 $\alpha 2 = \frac{V_{O(signal/(at1KHz)})}{V_{O(spurious)(at1KHz)}}; \ f_s = (2 \ x \ 10KHz) - 19KHz$ 

 $\alpha 3 = \frac{V_{O(signal)(a11KHz)}}{V_{O(spurious)(a11KHz)}}; \ f_s = (3 \ x \ 13KHz) - 38KHz$ 

measured with: 91% pilot signal; fm = 10kHz or 13kHz.

 Traffic Radio (V.F.) Suppression: measured with: 91% stereo signal; 9% pilot signal; fm=1kHz; 5% subcarrier (f = 57kHz, fm = 23Hz AM, m = 60%)

$$\alpha 57 (V.W > F.) = \frac{V_{Q(signal)(at1KHz)}}{V_{O(spurious_{at}1KHz + 23KHz)}}$$

3. SCA (Subsidiary Communications Authorization) measured with: 81% mono signal; 9% pilot signal; fm = 1kHz; 10%SCA - subcarrier (fs = 67kHz, unmodulated).

$$\alpha 67 = \frac{V_{O(sign a lat1KHz)}}{V_{O(spurious a 19KHz)}}; F_{S} = (2 \times 38KHz) - 67KHz$$

4. ACI (Adjacent Channel Interference):  $\alpha 114 = \frac{V_{O(signal)(at1KHz)}}{V_{O(spurious)(at4KHz)}}; F_{S} = 110KHz - (3 \times 38KHz)$  $\alpha 190 = \frac{V_{O(signal)(at1KHz)}}{V_{O(spurious)(at4KHz)}}; F_{S} = 186KHz - (5 \times 38KHz)$ 

measured with: 90% mono signal; 9% pilot signal; fm =1kHz; 1% spurious signal ( fs = 110kHz or 186kHz, unmodulated).



| Symbol              | Parameter                     | Test Condition                                                   | Min. | Тур. | Max. | Unit    |
|---------------------|-------------------------------|------------------------------------------------------------------|------|------|------|---------|
| PLL                 |                               |                                                                  |      |      |      |         |
| Δf/f                | Capture Range                 |                                                                  | 0.5  |      |      | %       |
| DEEMPHA             | SIS and HIGHCUT               |                                                                  |      |      |      |         |
| $	au_{HC50}$        | Deemphasis Time Constant      | Bit 7, Subadr. 10 = 0;<br>V <sub>LEVEL</sub> >> V <sub>HCH</sub> |      | 50   |      | μs      |
| τ <sub>HC75</sub>   | Deemphasis Time Constant      | Bit 7, Subadr. 10 = 1;<br>V <sub>LEVEL</sub> >> V <sub>HCH</sub> |      | 75   |      | μs      |
| τ <sub>HC50</sub>   | Highcut Time Constant         | Bit 7, Subadr. 10 = 0;<br>V <sub>LEVEL</sub> >> V <sub>HCL</sub> |      | 150  |      | μs      |
| τ <sub>HC75</sub>   | Highcut Time Constant         | Bit 7, Subadr. 10 = 1;<br>VLEVEL >> VHCHL                        |      | 225  |      | μs      |
| STEREOBI            | LEND and HIGHCUT CONTR        | OL                                                               |      |      |      |         |
| REF 5V              | Internal Reference Voltage    |                                                                  |      | 5    |      | V       |
| TCREF5V             | Temperature Coefficient       |                                                                  |      | 3300 |      | ppm     |
| LGmin               | Min. LEVEL Gain               |                                                                  |      | 0    |      | dB      |
| LGmax               | Max. LEVEL Gain               |                                                                  |      | 10   |      | dB      |
| LGstep              | LEVEL Gain Step Resolution    |                                                                  |      | 0.67 |      | dB      |
| VSBLmin             | Min. Voltage for Mono         |                                                                  |      | 29   |      | % REF5V |
| VSBLmax             | Max. Voltage for Mono         |                                                                  |      | 58   |      | % REF5V |
| VSBLstep            | Step Resolution               |                                                                  |      | 4.2  |      | % REF5V |
| VHCHmin             | Min. Voltage for NO Highcut   |                                                                  |      | 42   |      | % REF5V |
| VHCH <sub>max</sub> | Max. Voltage for NO Highcut   |                                                                  |      | 66   |      | % REF5V |
| VHCHstep            | Step Resolution               |                                                                  |      | 8.4  |      | % REF5V |
| VHCLmin             | Min. Voltage for FULL Highcut |                                                                  |      | 17   |      | % VHCH  |
| VHCLmax             | Max. Voltage for FULL Highcut |                                                                  |      | 33   |      | % VHCH  |
| VHCLstep            | Step Resolution               |                                                                  |      | 4.2  |      | % REF5V |

| Symbol   | Parameter                                                  | Test Co      | ondition                | Min. | Тур. | Max. | Unit  |
|----------|------------------------------------------------------------|--------------|-------------------------|------|------|------|-------|
| Vrectadj | Noise Rectifier discharge<br>adjustment <sup>6)</sup>      | Signal PEACK | $NRD = 00^{6}$          |      | 0.3  |      | V/ms  |
|          | adjustment <sup>6)</sup>                                   | in Testmode  | NRD = 01 <sup>6)</sup>  |      | 0.8  |      | V/ms  |
|          |                                                            |              | NRD = 10 <sup>6)</sup>  |      | 1.3  |      | V/ms  |
|          |                                                            |              | NRD = 11 <sup>6)</sup>  |      | 2.0  |      | V/ms  |
| SRPEAK   | Noise Rectifier Charge                                     | Signal PEACK | $PCH = 0^{7}$           |      | 10   |      | mV/μs |
|          |                                                            | in Testmode  | PCH = 1 <sup>7)</sup>   |      | 20   |      | mV/μs |
| Vadjmp   | Noise Rectifier adjustment through Multipath <sup>8)</sup> | Signal PEACK | NPNB = 00 <sup>8)</sup> |      | 0.3  |      | V/ms  |
|          | through Multipath <sup>8)</sup>                            | in Testmode  | NPNB = 01 <sup>8)</sup> |      | 0.5  |      | V/ms  |
|          |                                                            |              | NPNB = 10 <sup>8)</sup> |      | 0.7  |      | V/ms  |
|          |                                                            |              | NPNB = 11 <sup>8)</sup> |      | 0.9  |      | V/ms  |

0) All Thresholds are measured using a pulse with  $T_R = 2\mu s$ ,  $T_{HIGH} = 2\mu s$  and  $T_F = 10\mu s$ . The repetition rate must not increase the PEAK voltage.

1) NBT represents the Noiseblanker Byte bits D<sub>2</sub>, D<sub>0</sub> for the noise blanker trigger threshold

2) NAT represents the Noiseblanker Byte bit pair  $D_4$ ,  $D_3$  for the noise controlled triggeradjustment

3) OVD represents the Noiseblanker Byte bit pair  $D_7$ ,  $D_6$  for the over deviation detector

4) FSC represents the Fieldstrength Byte bit pair  $\mathsf{D}_1,\,\mathsf{D}_0$  for the fieldstrength control

5) BLT represents the Speaker RR Byte bit pair  $D_7$ ,  $D_6$  for the blanktime adjustment

6) NRD represents the Configuration-Byte bit pair  $D_1$ ,  $D_0$  for the noise rectifier discharge-adjustment

7) PCH represents the Stereodecoder-Byte bit D5 for the noise rectifier charge-current adjustment

8) MPNB represents the HighCut-Byte bit D7 and the Fieldstrength-Byte D7 for the noise rectifier multipath adjustment











# Figure 3. Fieldstrength Controlled Trigger Adjustment



#### **Multipath Detector**

- Internal 19kHz band pass filter
- Programmable band pass and rectifier gain

ELECTRICAL CHARACTERISTICS (continued)

external programming selectable internal influence on Stereoblend

two pin solution fully independent usable for

| Symbol  | Parameter                                  | Test Condition                             | Min. | Тур. | Max. | Unit |
|---------|--------------------------------------------|--------------------------------------------|------|------|------|------|
| fсмр    | Center Frequency of Multipath-<br>Bandpass | stereodecoder locked on Pilottono          |      | 19   |      | KHz  |
| GBPMP   | Bandpass Gain                              | bits $D_2$ , $D_1$ configuration byte = 00 |      | 6    |      | dB   |
|         |                                            | bits $D_2$ , $D_1$ configuration byte = 01 |      | 12   |      | dB   |
|         |                                            | bits $D_2$ , $D_1$ configuration byte = 10 |      | 16   |      | dB   |
|         |                                            | bits $D_2$ , $D_1$ configuration byte = 11 |      | 18   |      | dB   |
| Grectmp | Rectifier Gain                             | bits $D_7$ , $D_6$ configuration byte = 00 |      | 7.6  |      | dB   |
|         |                                            | bits $D_7$ , $D_6$ configuration byte = 01 |      | 4.6  |      | dB   |
|         |                                            | bits $D_7$ , $D_6$ configuration byte = 10 |      | 0    |      | dB   |
|         |                                            | bits $D_7$ , $D_6$ configuration byte = 11 |      | off  |      | dB   |
| Існмр   | Rectifier Charge Current                   | bit $D_5$ configuration byte = 0           |      | 0.5  |      | μA   |
|         |                                            | bit $D_5$ configuration byte = 1           |      | 1.0  |      | μA   |
| DISMP   | Rectifier Discharge Current                |                                            |      | 1    |      | mA   |

# **Quality Detector**

| A | Multipath Influence Factor | bit D7 High-Cut byte +<br>bit D7 Fieldstrength byte + | 00<br>01<br>10<br>11 |  | 65 |  | dB |  |
|---|----------------------------|-------------------------------------------------------|----------------------|--|----|--|----|--|
|---|----------------------------|-------------------------------------------------------|----------------------|--|----|--|----|--|

# DESCRIPTION OF THE AUDIOPROCESSOR PART

#### Input Multiplexer

- CD quasi differential
- Cassette stereo
- Phone differential
- AM mono
- Stereodecoderinput.

#### Input stages

Most of the input stages have remained the samec as in preceeding ST audioprocessors with exception of the CD inputs (see figure 4).

In the meantime there are some CD players in the market which having a significant high source impedance which affects strongly the commonmode rejection of the normal differential input stage. The additional buffer of the A106 CD input avoids this drawback and offers the full commonmode rejection even with those CD players.

#### **AutoZero**

In order to reduce the number of pins there is no AC coupling between the In-Gain and the following stage, so that any offset generated by or before the In-Gain stage would be transferred or even amplified to the output.

To avoid that effect a special offset cancellation stage called AutoZero is implemented.

This stage is located before the Mixing-block to eliminate all offsets generated by the Stereodecoder, the Input Stage and yhe In-Gain (Please notice that externally generated offsets, e.g. gen-

#### Figure 4. Input stages

erated through the leakage current of the coupling capacitors, are not cancelled).

The auto-zeroing isstarted every time the DATA-BYTE 0 is selected and taken a time of max. 0.3ms. To avoid audible clicks the audioprocessor is muted before the loudness stage during this time.

#### AutoZero Remain

In some cases, for example if the  $\mu$ P is executing a refresh cycle of the I<sup>2</sup>C bus programming, it is not useful to start a new AutoZero action because no new source is selected and an undesired mute would appear at the outputs. For such applications the TDA7461 could be switched in the "Auto Zero Remain mode" (Bit 6 of the subaddress byte). If this bit is set to high, the DATABYTE 0 could be loaded without invoking the AutoZero and the old adjustment value remains.

#### **Multiplexer Output**

The output signal of the Input Multiplexer is available at separate pins (please see the Blockdiagram). This signal represents the input signal amplifier by the In Gain stage and is also going into the Mixer stage.

#### Softmute

The digitally controlled softmute stage allows muting/demuting the signal with a  $1^{2}$ C bus programmable slope. The mute process can either be activated by the softmute pin or by the  $1^{2}$ C bus. The slope is realized in a special S shaped curve to mute slow in the critical regions (see figure 6).



## Figure 5. Softmute Timing



Note: Please notice that a started Mute action is always terminated and could not beinterrupted by a change of the mute signal.

For timing purposes the Bit 3 of the  $I^2C$  bus output register is set to 1 from the start of muting until the end of demuting.

#### Bass

There are three parameters programmable in the bass stage: (see figs 6, 7, 8, 9):

#### Attenuation

Figure 6 shows the attenuation as a function of frequency at a center frequency at a center frequency of 80Hz.

#### **Central Frequency**

Figure 7 shows the four possible center frequen-



Figure 6. Bass Control @ fc = 80Hz, Q = 1

cies 60,70,80 and 100Hz.

#### **Quality Factors**

Figure 8 shows the four possible quality factors 1, 1.25, 1.5 and 2.

#### DC Mode

In this mode the DC gain is increased by 5.1dB. In addition the programmed center frequency and quality factor is decreased by 25% which can be used to reach alternative center frequencies or quality factors.

## TREBLE

There are two parameters programmable in the treble stage (see figs 10, 11):

#### Attenuation

Figure 10 shows the attenuation as a function of frequency at a center frequency of 17.5KHz.

#### **Center Frequency**

Figure 11 shows the four possible Center Frequency (10, 12.5, 15 and 17.5kHz).

#### **AC Coupling**

In some applications additional signal manipulations are desired, for example surround-sound or more-band-equalizing.

For this purpose a AC-Coupling is placed before the Speaker-attenuators, which can be activated or internally shorted by Bit7 in the Bass/Treble-Configuration byte. In short condition the inputsignal of the speaker-attenuator is available at AC Outputs and the AC Input could be used as







Figure 8. Bass Quality factors @ Gain = 14dB, fc = 80Hz





additional stereo inputs. The input impedance of the AC Inputs is always 100 K  $\!\Omega.$ 





Note: In general the center frequency, Q and DC-mode can be set independenty. The exception from this rule is the mode (5/xx1111xx) where the center frequency is set to 150Hz instead of 100Hz.





**Speaker Attenuator** 

The speaker attenuators have exactly the same structure and range like the Volume stage

<u>لرک</u>

# FUNCTIONAL DESCRIPTION OF STEREODE-CODER

The stereodecoder part of the TDA7400 (see Fig. 12) contains all functions necessary to demodulate the MPX signal like pilot tone dependent MONO/STEREO switching as well as "stereoblend" and "highcut" functions.

#### **Stereodecoder Mute**

**[**7]

The TDA7400 has a fast and easy to control RDS mute function which is a combination of the audioprocessor's softmute and the high-ohmic mute of the stereodecoder. If the stereodecoder is selected and a softmute command is sent (or activated through the SM pin) the stereodecoder will be set automatically to the high-ohmic mute condition after the audio signal has been softmuted.

Hence a checking of alternate frequencies could be performed. To release the system from the mute condition simply the unmute command must be sent: the stereodecoder is unmuted immediately and the audioprocessor is softly unmuted. Fig. 13 shows the output signal  $V_0$  as well as the internal stereodecoder mute signal. This influence of Softmute on the stereodecoder mute can

#### Figure 12. Block Diagram of the Stereodecoder

be switched off by setting bit 3 of the Softmute byte to "0". A stereodecoder mute command (bit 0, stereodecoder byte set to "1") will set the stereodecoder in any case independently to the high-ohmic mute state.

If any other source than the stereodecoder is selected the decoder remains muted and the MPX pin is connected to Vref to avoid any discharge of the coupling capacitor through leakage currents.

#### Ingain + Infilter

The Ingain stage allows to adjust the MPX signal to a magnitude of about 1Vrms internally which is the recommended value. The 4th order input filter has a corner frequency of 80KHz and is used to attenuate spikes and nose and acts as an anti allasing filter for the following switch capacitor filters.

#### Demodulator

In the demodulator block the left and the right channel are separated from the MPX signal. In this stage also the 19 kHz pilot tone is cancelled. For reaching a high channel separation the TDA7400 offers an I2C bus programmable roll-off





Figure 13. Signals During Stereodecoder's Softmute

adjustment which is able to compensate the lowpass behaviour of the tuner section. If the tuner attenuation at 38kHz is in a range from 13.8% to 24.6% the TDA7400 needs no external network in front of the MPX pin. Within this range an adjustment to obtain at least 40dB channel separation is possible.

The bits for this adjustment are located together with the fieldstrength adjustment in one byte. This gives the possibility to perform an optimization step during the production of the carradio where the channel separation and the fieldstrength control are trimmed.

The setup of the Stereoblend characteristics which is programmable in a wide range is described in 2.8.

#### Deemphasis and Highcut.

The lowpass filter for the deemphasis allows to choose between a time constant of  $50\mu$ s and  $75\mu$ s (bit D7, Stereodecoder byte).

The highcut control range will be in both cases  $\tau_{HC} = 2 \cdot \tau_{Deemp}$ . Inside the highcut control range (between VHCH and VHCL) the LEVEL signal is converted into a 5 bit word which controls the lowpass time constant between  $\tau_{Deemp}$ ...3.  $\tau_{Deemp}$ . There by the resolution will remain always 5 bits independently of the absolute voltage range between the VHCH and VHCL values.

The highcut function can be switched off by  $l^2C$  bus (bit D<sub>7</sub>, Fieldstrength byte set to "0").

The setup of the highcut characteristics is described in 2.9.

#### PLL and Pilot Tone Detector

The PLL has the task to lock on the 19kHz pilo-

#### Figure 14. Internal Stereoblend Characteristics



tone during a stereo transmission to allow a correct demodulation. The included detector enables the demodulation if the pilot tone reaches the selected pilot tone threshold VPTHST. Two different thresholds are available. The detector output (signal STEREO, see block diagram) can be checked by reading the status byte of the TDA7400 via I<sup>2</sup>C bus.

#### **Fieldstrength Control**

The fieldstrength input is used to control the high cut and the stereoblend function. In addition the signal can be also used to control the noise blanker thresholds and as input for the multipath detector. These additional functions are described in sections 3.3 and 4.

#### **LEVEL Input and Gain**

To suppress undesired high frequency modulation on the highcut and stereoblend function the LEVEL signal is lowpass filtered firstly.

The filter is a combination of a 1st order RC lowpass at 53kHz (working as anti-aliasing filter) and a 1st-order switched capacitor lowpass at 2.2kHz. The second stage is a programmable gain stage to adapt the LEVEL signal internally to different IF device (see Testmode section 5 LEVELINTERN).

The gain is widely programmable in 16 steps from 0dB to 10dB (step = 0.67dB). These 4 bits are located together with the Roll-Off bits in the "Stereodecoder Adjustment" byte to simplify a possible adaptation during the production of the carradio.

#### **Stereoblend Control**

The stereoblend control block converts the inter-

47/



#### Figure 15. Relation Between Internal and External LEVEL Voltage and Setup of Stereoblend

#### Figure 16. Highcut Characteristics



nal LEVEL voltage (LEVEL INTERN) into an demodulator compatible analog signal which is used to control the channel separation between 0dB and the maximum separation. Internally this control range has a fixed upper limit which is the internal reference voltage REF5V. The lower limit can be programmed between 29.2% and 58%, of REF5V in 4.167% steps (see figs. 11, 12).

To adjust the external LEVEL voltage to the internal range two values must be defined: the LEVEL gain  $L_G$  and VSBL (see fig. 12). To adjust the voltage where the full channel separation is reached (VST) the LEVEL gain  $L_G$  has to be defined. The following equation can be used to estimate the gain:

# $L_{G} = \frac{\text{REF5V}}{\text{Field strength voltage [STEREO]}}$

The gain can be programmed through 4 bits in the "Stereodecoder-Adjustment" byte.

The MONO voltage VMO (0dB channel separation) can be choosen selecting VSBL

All necessary internal reference voltages like REF5V are derived from a bandgap circuit. Therefore they have a temperature coefficient near zero. This is useful if the fieldstrength signal is also temperature compensated.

But most IF devices apply a LEVEL voltage with a TC of 3300ppm. The TDA7400 offers this TC for the reference voltages, too. The TC is selectable with bit D7 of the "stereodecoder adjustment" byte.

#### **Highcut Control**

The highcut control setup is similar to the stereoblend control setup : the starting point VHCH can be set with 2 bits to be 42, 50, 58 or 66% of REF5V whereas the range can be set to be 17, 22, 28 or 33% of VHCH (see fig. 21).

#### FUNCTIONAL DESCRIPTION OF THE NOISE-BLANKER

In the automotive environment the MPX signal is disturbed by spikes produced by the ignition and for example the wiper motor. The aim of the noiseblanker part is to cancel the audible influence of the spikes.

Therefore the output of the stereodecoder is held at the actual voltage for a time between 22 and  $38\mu s$  (programmable).

The block diagram of the noiseblanker is given in fig.17.

In a first stage the spikes must be detected but to avoid a wrong triggering on high frequency (white) noise a complex trigger control is implemented. Behind the triggerstage a pulse former generates the "blanking" pulse. To avoid any crosstalk to the signalpath the noiseblanker is supplied by his own biasing circuit.

#### **Trigger Path**

The incoming MPX signal is highpass filtered, amplified and rectified. This second order high-pass-filter has a corner frequency of 140kHz.

The rectified signal, RECT, is lowpass filtered to generate a signal called PEAK. Also noise with a frequency 140kHz increases the PEAK voltage. The resulting voltage can be adjusted by use of the noise rectifier discharge current.

The PEAK voltage is fed to a threshold generator, which adds to the PEAK voltage a DC dependent threshold VTH. Both signals, RECT and PEAK+VTH are fed to a comparator which triggers a re-triggerable monoflop. The monoflop's output activates the sample-and-hold circuits in the signalpath for selected duration.

#### Automatic Noise Controlled Threshold Adjustment (ATC)

There are mainly two independent possibilities for programming the trigger threshold:

- a the low threshold in 8 steps (bits Do to D2 of the noiseblanker byte)
- b the noise adjusted threshold in 4 steps (bits D<sub>3</sub> and D<sub>4</sub> of the noiseblanker byte, see fig. 14).

The low threshold is active in combination with a good MPX signal without any noise; the PEAK voltage is less than 1V. The sensitivity in this operation is high.

If the MPX signal is noisy the PEAK voltage increases due to the higher noise, which is also



rectified. With increasing of the PEAK voltage the trigger threshold increases, too. This particular gain is programmable in 4 steps (see fig. ...).

#### AUTOMATIC THRESHOLD CONTROL MECHA-NISM

# Automatic Threshold Control by the Stereoblend Voltage

Besides the noise controlled threshold adjustment there is an additional possibility for influencing the trigger threshold. It is depending on the stereoblend control.

The point where the MPX signal starts to become noisy is fixed by the RF part. Therefore also the starting point of the normal noise-controlled trigger adjustment is fixed (fig. 11). In some cases the behaviour of the noiseblanker can be improved by increasing the threshold even in a region of higher fieldstrength. Sometimes a wrong triggering occures for the MPX signal often shows distortion in this range which can be avoided even if using a low threshold.

Because of the overlap of this range and the range of the stereo/mono transition it can be controlled by stereoblend. This threshold increase is programmable in 3 steps or switched off with bits  $D_0$  and  $D_1$  of the fieldstrength control byte.

#### **Over Deviation Detector**

If the system is tuned to stations with a high deviation the noiseblanker can trigger on the higher frequencies of the modulation. To avoid this wrong behaviour, which causes noise in the output signal, the noiseblanker offers a deviation dependent threshold adjustment.





#### Figure 18. Block Diagram of the Multipath Detector

By rectifying the MPX signal a further signal representing the actual deviation is obtained. It is used to increase the PEAK voltage. Offset and gain of this circuit are programmable in 3 steps with the bits  $D_6$  and  $D_7$  of the stereodecoder byte (the first step turns off the detector, see fig. 15).

# FUNCTIONAL DESCRIPTION OF THE MULTH PATH DETECTOR

Using the internal multipath detector the audible effects of a multipath condition can be minimized. A multipath condition is detected by rectifying the 19kHz spectrum in the fieldstrength signal.

An external capacitor is used to define the attack and decay times (see block diagram fig. 23). the MPOUT pin is used as detector output connected to a capacitor of about 47nF and additionally the MPIN pin is selected to be the fieldstrength input. Using the configuration an external adaptation to the user's requiremet is given in fig.25.

Selecting the "internal influence" in the configuration byte, the channel separation is automatically reduced during a multipath condition according to the voltage appearing at the MP\_OUT pin. A possible application is shown in fig. 26.

#### Programming

To obtain a good multipath performance an adaptation is necessary. Therefore tha gain of the 19kHz bandpass is programmable in four steps

57

as well as the rectifier gain. The attack and decay times can be set by the external capacitor value.

#### **QUALITY DETECTOR**

The TDA7400 offers a quality detector output which gives a voltage representing the FM reception conditions. To calculate this voltage the MPX noise and the multipath detector output are summed according to the following formula:

The noise signal is the PEAK signal without additional influences. The factor "a" can be programmed from 0.6 to 1.05. the output is a low impedance output able to drive external circuitry as well as simply fed to an A/D converter for RDS applications.

#### **TEST MODE**

During the test mode which can be activated by setting bit  $D_0$  of the testing byte and bit  $D_5$  of the subaddress byte to "1" several internal signals are available at the CASSR pin.

During this mode the input resistance of 100kOhm is disconnected from the pin. The internal signals available are shown in the software specification.

# I<sup>2</sup>C BUS INTERFACE DESCRIPTION

## Interface Protocol The interface protocol comprises:

-a start condition (S)

/ write transmission)

- -a subaddress byte
- -a sequence of data (N-bytes + acknowledge)
- -a stop condition (P)

-a chip address byte (the LSB bit determines read

| CH      | IIP ADDRESS | 5         | S               | UBADDRESS    |       | DA  | ATA 1 to DATA | n   |     |   |
|---------|-------------|-----------|-----------------|--------------|-------|-----|---------------|-----|-----|---|
| MSB     |             | LSB       | <b>I</b><br>MSB |              | LSB   | MSB |               | LSB |     |   |
| S 1 0 0 | 0 1 1       | 0 R/W ACI | K X AZ          | T I A3 A2 A1 | A0 AC | <   | DATA          |     | ACK | Ρ |
| D97     | 7AU627      |           |                 |              |       |     |               |     |     |   |

#### S = Start

ACK = Acknowledge

AZ = AutoZero-Remain

T = Testing

I = Autoincrement

P = Stop

MAX CLOCK SPEED 500kbits/s

The transmitted data is automatically updated after each ACK. Transmission can be repeated without new chip address.

If bit I in the subaddress byte is set to "1", the autoincrement of the subaddress is enabled.

# TRANSMITTED DATA (send mode)

| MSB |   |   |   |    |    |   | LSB |
|-----|---|---|---|----|----|---|-----|
| Х   | Х | Х | Х | ST | SM | Х | Х   |

SM = 1 Soft mute activated

ST = 1 Stereo mode

X = Not Used

| MSB |    |   |    |    |    |    | LSB | FUNCTION                |
|-----|----|---|----|----|----|----|-----|-------------------------|
| 13  | 12 | 1 | 10 | A3 | A2 | A1 | A0  |                         |
|     |    |   |    |    |    |    |     | AntiRadiation Filter    |
| 0   |    |   |    |    |    |    |     | off                     |
| 1   |    |   |    |    |    |    |     | on                      |
|     |    |   |    |    |    |    |     | AutoZero Remain         |
|     | 0  |   |    |    |    |    |     | off                     |
|     | 1  |   |    |    |    |    |     | on                      |
|     |    |   |    |    |    |    |     | Testmode                |
|     |    | 0 |    |    |    |    |     | off                     |
|     |    | 1 |    |    |    |    |     | on                      |
|     |    |   |    |    |    |    |     | Auto Increment Mode     |
|     |    |   | 0  |    |    |    |     | off                     |
|     |    |   | 1  |    |    |    |     | on                      |
|     |    |   |    |    |    |    |     | Databyte Addressing     |
|     |    |   |    | 0  | 0  | 0  | 0   | Input Selector          |
|     |    |   |    | 0  | 0  | 0  | 1   | Volume                  |
|     |    |   |    | 0  | 0  | 1  | 0   | Treble                  |
|     |    |   |    | 0  | 0  | 1  | 1   | Bass                    |
|     |    |   |    | 0  | 1  | 0  | 0   | Speaker attenuator LF   |
|     |    |   |    | 0  | 1  | 0  | 1   | Speaker attenuator RF   |
|     |    |   |    | 0  | 1  | 1  | 0   | Speaker attenuator LR   |
|     |    |   |    | 0  | 1  | 1  | 1   | Speaker attenuator RR   |
|     |    |   |    | 1  | 0  | 0  | 0   | SoftMute / Bass Prog.   |
|     |    |   |    | 1  | 0  | 0  | 1   | Stereodecoder           |
|     |    |   |    | 1  | 0  | 1  | 0   | Noiseblanker            |
|     |    |   |    |    | 0  | 1  | 1   | High Cut Control        |
|     |    |   |    |    | 1  | 0  | 0   | Fieldstrength & Quality |
|     |    |   |    |    |    | 0  | 1   | Configuration           |
|     |    |   |    |    |    |    | 0   | EEPROM                  |
|     |    |   |    | 1  | 1  | 1  | 1   | Testing                 |

# SUBADDRESS (receive mode)

## DATA BYTE SPECIFICATION

Input Selector (subaddress 0H)

| MSB |                  |                  |                  |                       |                                 |                                 | LSB                                  | FUNCTION                                                                                                        |
|-----|------------------|------------------|------------------|-----------------------|---------------------------------|---------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| D7  | D6               | D5               | D4               | D3                    | D2                              | D1                              | D0                                   |                                                                                                                 |
|     |                  |                  |                  |                       | 0<br>0<br>0<br>1<br>1<br>1<br>1 | 0<br>0<br>1<br>1<br>0<br>0<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | Source Selector<br>CD<br>Cassette<br>Phone<br>AM<br>Stereo Decoder<br>AC Inputs Front<br>Mute<br>AC inputs Rear |
| 0   | 0<br>0<br>1<br>1 | 0<br>0<br>1<br>1 | 0<br>0<br>1<br>1 | 0<br>1<br>:<br>0<br>1 |                                 |                                 |                                      | In-Gain<br>15dB<br>14dB<br>:<br>1 dB<br>0 dB<br>Coupl. Front Speaker<br>external<br>internal                    |

# Volume and Speaker Attenuation (subaddress 1H, 4H, 5H, 6H, 7H)

| MSB |    |    |    |    |    |    | LSB | FUNCTION                |
|-----|----|----|----|----|----|----|-----|-------------------------|
| D7  | D6 | D5 | D4 | D3 | D2 | D1 | D0  |                         |
| 1   | 0  | 0  | 1  | 1  | 1  | 1  | 1   |                         |
| :   | :  | :  | :  | :  | :  | :  | :   | not used configurations |
| 1   | 0  | 0  | 1  | 0  | 0  | 0  | 1   |                         |
| 1   | 0  | 0  | 1  | 0  | 0  | 0  | 0   |                         |
| 1   | 0  | 0  | 0  | 1  | 1  | 1  | 1   | +15dB                   |
| :   | :  | :  | :  | :  | :  | :  | :   |                         |
| 1   | 0  | 0  | 0  | 0  | 0  | 0  | 1   | +1dB                    |
| 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0dB                     |
| 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0dB                     |
| 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1   | -1dB                    |
| :   | :  | :  | :  | :  | :  | :  | :   |                         |
| 0   | 0  | 0  | 0  | 1  | 1  | 1  | 1   | -15dB                   |
| 0   | 0  | 0  | 1  | 0  | 0  | 0  | 0   | -16dB                   |
| :   | :  | :  | :  | :  | :  | :  | :   | :                       |
| 0   | 1  | 0  | 0  | 1  | 1  | 1  | 0   | -78dB                   |
| 0   | 1  | 0  | 0  | 1  | 1  | 1  | 1   | -79dB                   |
| Х   | 1  | 1  | Х  | Х  | Х  | Х  | Х   | Mute                    |

# TDA7400

# Treble Filter (subaddress 2H)

| MSB    |                  |                  |    |                       |                                           |                                           | LSB                                            | FUNCTION                                                                                                                                                     |
|--------|------------------|------------------|----|-----------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D7     | D6               | D5               | D4 | D3                    | D2                                        | D1                                        | D0                                             |                                                                                                                                                              |
|        |                  |                  |    | 0<br>0<br>1<br>1<br>1 | 0<br>0<br>1<br>1<br>1<br>1<br>:<br>0<br>0 | 0<br>0<br>1<br>1<br>1<br>1<br>:<br>0<br>0 | 0<br>1<br>:<br>0<br>1<br>1<br>0<br>:<br>1<br>0 | Treble Steps     -15dB     -14dB     :     -1dB     0dB     0dB     +1dB     :     +14dB     H14dB     :     +14dB     :     +14dB     :     +14dB     +15dB |
|        | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 |    |                       |                                           |                                           |                                                | Treble Center Frequency<br>10.0KHz<br>12.5KHz<br>15.0KHz<br>17.5KHz<br>Coupl. Rear Speaker                                                                   |
| 0<br>1 |                  |                  |    |                       |                                           |                                           |                                                | external (AC)<br>internal                                                                                                                                    |

## Bass Filter (subaddress 3H)

| MSB |                  |                  |    |                       |                                 |                                           | LSB                                       | FUNCTION                                                                                      |
|-----|------------------|------------------|----|-----------------------|---------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|
| D7  | D6               | D5               | D4 | D3                    | D2                              | D1                                        | D0                                        |                                                                                               |
|     |                  |                  |    | 0<br>0<br>1<br>1<br>1 | 0<br>:<br>1<br>1<br>:<br>0<br>0 | 0<br>0<br>1<br>1<br>1<br>1<br>:<br>0<br>0 | 0<br>1<br>:<br>0<br>1<br>0<br>:<br>1<br>0 | Bass Steps<br>-15dB<br>-14dB<br>:<br>-1dB<br>0dB<br>0dB<br>+1dB<br>:<br>+14dB<br>+15dB        |
| 0   | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 |    |                       |                                 |                                           |                                           | Bass Q-Factor       1.0       1.25       1.50       2.0       Bass DC Mode       off       on |

| MSB              |                  |                  |    |    |                  |                  | LSB    | FUNCTION                                                                                                                                                                                                              |
|------------------|------------------|------------------|----|----|------------------|------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D7               | D6               | D5               | D4 | D3 | D2               | D1               | D0     |                                                                                                                                                                                                                       |
|                  |                  |                  |    | 0  | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 0<br>1 | Mute<br>Enable Soft Mute<br>Disable Soft Mute<br>Mutetime = 0.48ms<br>Mutetime = 0.96ms<br>Mutetime = 40.4ms<br>Mutetime = 324ms<br>Stereodecoder Soft Mute Influence = on<br>Stereodecoder Soft Mute Influence = off |
|                  | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 |    |    |                  |                  |        | Bass Center Frequency<br>Center Frequency = 60 Hz<br>Center Frequency = 70 Hz<br>Center Frequency = 80 Hz<br>Center Frequency = 100Hz<br>Center Frequency = 150Hz                                                     |
| 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 |                  |    |    |                  |                  |        | Noise Blanker Time<br>Center Frequency = $38\mu$ s<br>Center Frequency = $25.5\mu$ s<br>Center Frequency = $32\mu$ s<br>Center Frequency = $22\mu$ s                                                                  |

# Soft Mute and Bass Programming (subaddress 8H)

# Stereodecoder (subaddress 9H)

| MSB    |        |        |        |    |        |        | LSB    | FUNCTION                                                                      |
|--------|--------|--------|--------|----|--------|--------|--------|-------------------------------------------------------------------------------|
| D7     | D6     | D5     | D4     | D3 | D2     | D1     | D0     |                                                                               |
|        |        |        |        |    |        |        | 0<br>1 | STD Unmuted<br>STD Muted                                                      |
|        |        |        |        |    | 0<br>1 | 1<br>0 | 1<br>0 | In Gain 8.5dB<br>In Gain 6dB<br>others combinations not used                  |
|        |        |        |        | 1  |        |        |        | must be "1"                                                                   |
|        |        |        | 0<br>1 |    |        |        |        | Forced Mono<br>Mono/Stereo switch automatically                               |
|        |        | 0<br>1 |        |    |        |        |        | Noiseblanker PEAK charge current low<br>Noiseblanker PEAK charge current high |
|        | 0<br>1 |        |        |    |        |        |        | Pilot Threshold HIGH<br>Pilot Threshold LOW                                   |
| 0<br>1 |        |        |        |    |        |        |        | Deemphasis 50μs<br>Deemphasis 75μs                                            |

# TDA7400

# Noiseblanker (subaddress AH)

| MSB              |                  |        |                  |                  |                            |                                      | LSB                             | FUNCTION                                                                                                                                                                     |
|------------------|------------------|--------|------------------|------------------|----------------------------|--------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D7               | D6               | D5     | D4               | D3               | D2                         | D1                                   | D0                              |                                                                                                                                                                              |
|                  |                  |        |                  |                  | 0<br>0<br>0<br>1<br>1<br>1 | 0<br>0<br>1<br>1<br>0<br>0<br>1<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0 | Low Threshold 65mV<br>Low Threshold 60mV<br>Low Threshold 55mV<br>Low Threshold 50mV<br>Low Threshold 45mV<br>Low Threshold 40mV<br>Low Threshold 35mV<br>Low Threshold 30mV |
|                  |                  |        | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 |                            |                                      |                                 | Noise Controlled Threshold 320mV<br>Noise Controlled Threshold 260mV<br>Noise Controlled Threshold 200mV<br>Noise Controlled Threshold 140mV                                 |
|                  |                  | 0<br>1 |                  |                  |                            |                                      |                                 | Noise blanker OFF<br>Noise blanker ON                                                                                                                                        |
| 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 |        |                  |                  |                            |                                      |                                 | Over deviation Adjust 2.8V<br>Over deviation Adjust 2.0V<br>Over deviation Adjust 1.2V<br>Over deviation Detector OFF                                                        |

High Cut (subaddress BH)

| MSB    |                  |                  |                  |                  |                  |                  | LSB    | FUNCTION                                                                                     |
|--------|------------------|------------------|------------------|------------------|------------------|------------------|--------|----------------------------------------------------------------------------------------------|
| D7     | D6               | D5               | D4               | D3               | D2               | D1               | D0     |                                                                                              |
|        |                  |                  |                  |                  |                  |                  | 0<br>1 | High Cut OFF<br>High Cut ON                                                                  |
|        |                  |                  |                  |                  | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 |        | Max. High Cut 2dB<br>Max. High Cut 5dB<br>Max. High Cut 7dB<br>Max. High Cut 10dB            |
|        |                  |                  | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 |                  |                  |        | VHCH at 42% REF 5V<br>VHCH at 50% REF 5V<br>VHCH at 58% REF 5V<br>VHCH at 66% REF 5V         |
|        | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 |                  |                  |                  |                  |        | VHCL at 16.7% REF 5V<br>VHCL at 22.2% REF 5V<br>VHCL at 27.8% REF 5V<br>VHCL at 33.3% REF 5V |
| 0<br>1 |                  |                  |                  |                  |                  |                  |        | Strong Multipath influence on PEEK 18K<br>OFF<br>ON                                          |

| MSB |                  |                  |                  |                  |                                 |                                      | LSB                                  | FUNCTION                                                                                                                                                                     |
|-----|------------------|------------------|------------------|------------------|---------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D7  | D6               | D5               | D4               | D3               | D2                              | D1                                   | D0                                   |                                                                                                                                                                              |
|     |                  |                  |                  |                  | 0<br>0<br>0<br>1<br>1<br>1<br>1 | 0<br>0<br>1<br>1<br>0<br>0<br>1<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | VSBL at 28% REF 5V<br>VSBL at 33% REF 5V<br>VSBL at 38% REF 5V<br>VSBL at 42% REF 5V<br>VSBL at 46% REF 5V<br>VSBL at 50% REF 5V<br>VSBL at 54% REF 5V<br>VSBL at 58% REF 5V |
|     |                  |                  | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 |                                 |                                      |                                      | Noiseblanker Field strength Adj 2.3V<br>Noiseblanker Field strength Adj 1.8V<br>Noiseblanker Field strength Adj 1.3V<br>Noiseblanker Field strength Adj OFF                  |
|     | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 |                  |                  |                                 |                                      |                                      | Quality Detector Coefficient $a = 0.6$<br>Quality Detector Coefficient $a = 0.75$<br>Quality Detector Coefficient $a = 0.9$<br>Quality Detector Coefficient $a = 1.05$       |
|     |                  |                  |                  |                  |                                 |                                      |                                      | Not used.                                                                                                                                                                    |

# Fieldstrength Control (subaddress CH)

# Configuration (subaddress DH)

| MSB              |                  |        |        |                  |                  |                  | LSB              | FUNCTION                                                                                                    |
|------------------|------------------|--------|--------|------------------|------------------|------------------|------------------|-------------------------------------------------------------------------------------------------------------|
| D7               | D6               | D5     | D4     | D3               | D2               | D1               | D0               |                                                                                                             |
|                  |                  |        |        |                  |                  | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | Noise Rectifier Discharge Resistor<br>R = infinite<br>$R = 56k\Omega$<br>$R = 33k\Omega$<br>$R = 18k\Omega$ |
|                  |                  |        |        | 0<br>1<br>0<br>1 | 0<br>0<br>1<br>1 |                  |                  | Multipath Detector Bandpass Gain<br>6dB<br>12dB<br>16dB<br>18dB                                             |
|                  |                  |        | 0<br>1 |                  |                  |                  |                  | Multipath Detector internal influence<br>ON<br>OFF                                                          |
|                  |                  | 0<br>1 |        |                  |                  |                  |                  | Multipath Detector Charge Current $0.5 \mu A$<br>Multipath Detector Charge Current $1 \mu A$                |
| 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 |        |        |                  |                  |                  |                  | Multipath Detector Reflection Gain<br>Gain = 7.6dB<br>Gain = 4.6dB<br>Gain = 0dB<br>disabled                |

| - <b>J</b> |
|------------|

| MSB |                  |                  |                       |                       |                            |                                 | LSB                             | FUNCTION                                                                           |
|-----|------------------|------------------|-----------------------|-----------------------|----------------------------|---------------------------------|---------------------------------|------------------------------------------------------------------------------------|
| D7  | D6               | D5               | D4                    | D3                    | D2                         | D1                              | D0                              |                                                                                    |
|     |                  |                  |                       |                       | 0<br>0<br>:<br>1<br>:<br>1 | 0<br>0<br>1<br>:<br>0<br>:<br>1 | 0<br>1<br>0<br>:<br>0<br>:<br>1 | Roll Off Compensation<br>not allowed<br>20.2%<br>21.9%<br>:<br>25.5%<br>:<br>31.0% |
| 1   | 0<br>0<br>:<br>1 | 0<br>0<br>:<br>1 | 0<br>0<br>1<br>:<br>1 | 0<br>1<br>0<br>:<br>1 |                            |                                 |                                 | Level Gain<br>OdB<br>0.66dB<br>1.33dB<br>:<br>10dB<br>must be "1"                  |

# Stereodecoder Adjustment (subaddress EH)

#### **Testing** (subaddress FH)

| MSB    |        |                                                               |                                                     |                                                          |                                                               |        | LSB    | FUNCTION                                                                                                                                                                                                                               |
|--------|--------|---------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D7     | D6     | D5                                                            | D4                                                  | D3                                                       | D2                                                            | D1     | D0     |                                                                                                                                                                                                                                        |
|        |        |                                                               |                                                     |                                                          |                                                               |        | 0<br>1 | Stereodecoder test signals<br>OFF<br>Test signals enabled if bit D5 of the subaddress<br>(test mode bit) is set to "1", too                                                                                                            |
|        |        |                                                               |                                                     |                                                          |                                                               | 0<br>1 |        | External Clock<br>Internal Clock                                                                                                                                                                                                       |
|        |        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1 | 0<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0 |        |        | Testsignals at CASS_R<br>VHCCH<br>Level intern<br>Pilot magnitude<br>VCOCON; VCO Control Voltage<br>Pilot threshold<br>HOLDN<br>NB threshold<br>F228<br>VHCCL<br>VSBL<br>not used<br>not used<br>PEAK<br>not used<br>REF5V<br>not used |
|        | 0<br>1 |                                                               |                                                     |                                                          |                                                               |        |        | VCO<br>OFF<br>ON                                                                                                                                                                                                                       |
| 0<br>1 |        |                                                               |                                                     |                                                          |                                                               |        |        | Audio processor test mode<br>enabled if bit D5 of the subaddress<br>(test mode bit) is set to "1"<br>OFF                                                                                                                               |

Note : This byte is used for testing or evaluation purposes only and must not be set to other values than the default "11111110" in the application!

| DIM. |      | mm     |            | inch       |       |       |  |
|------|------|--------|------------|------------|-------|-------|--|
|      | MIN. | TYP.   | MAX.       | MIN.       | TYP.  | MAX.  |  |
| А    |      |        | 1.60       |            |       | 0.063 |  |
| A1   | 0.05 |        | 0.15       | 0.002      |       | 0.006 |  |
| A2   | 1.35 | 1.40   | 1.45       | 0.053      | 0.055 | 0.057 |  |
| В    | 0.30 | 0.37   | 0.45       | 0.012      | 0.014 | 0.018 |  |
| С    | 0.09 |        | 0.20       | 0.004      |       | 0.008 |  |
| D    |      | 12.00  |            |            | 0.472 |       |  |
| D1   |      | 10.00  |            |            | 0.394 |       |  |
| D3   |      | 8.00   |            |            | 0.315 |       |  |
| е    |      | 0.80   |            |            | 0.031 |       |  |
| Е    |      | 12.00  |            |            | 0.472 |       |  |
| E1   |      | 10.00  |            |            | 0.394 |       |  |
| E3   |      | 8.00   |            |            | 0.315 |       |  |
| L    | 0.45 | 0.60   | 0.75       | 0.018      | 0.024 | 0.030 |  |
| L1   |      | 1.00   |            |            | 0.039 |       |  |
| К    |      | 0°(mii | n.), 3.5°( | typ.), 7°( | max.) |       |  |

# TQFP44 (10 x 10)



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com