2-GHz Mixer

TDA 6130-5X4

Preliminary Data

Bipolar IC

Features

- A wide range of supply voltage
- Few external components
- High conversion transconductance
- Wide range of input signal.

Туре	Ordering Code	Package
TDA 6130-5X4	Q67000-A5176	P-DSO-14-1

The TDA 6130-5X4 is a symmetrical mixer like the components **S 042** P^* and **TBB 042** G^* but for frequencies up to 2 GHz. It can be driven by an external source or by the build-in oscillator.

^{*} already cancelled

Pin Configuration

(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	N.C.	N.C.
2	MIXO	Mixer output
3	MIXO	Mixer output
4	Vs	Supply voltage
5	N.C.	N.C.
6	OSCI	Oscillator input
7	OSCI	Oscillator input
8	N.C.	N.C.
9	MIXE	Mixer input emitter
10	MIXB	Mixer input base
11	MIXE	Mixer input emitter
12	MIXB	Mixer input base
13	N.C.	N.C.
14	GND	Ground

Block Diagram

Circuit Description

The pins 1, 5, 8, 13 should be connected to pin 14 (ground) to reach optimal HF features. A galvanic connection between pins 6 and 7 and 10 and 12 through coupling windings is recommended.

A resistor of at least 220 Ω may be connected between pins 9 and 14 (ground) and between 11 and 14 to increase the currents and thus the conversion transconductance.

Pins 9 and 11 may be connected through any impedance. In case of a direct connection between pin 9 and 11, the resistance from this pin to 14 may be at least 100 Ω . Depending on the layout, a capacitor may be required between pins 6 and 7 to prevent oscillations in the UHF band.

Absolute Maximum Ratings

 $T_{\rm A}$ = 0 to 70 °C

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Supply voltage	V_4	0	8	V	
Mixer output	V _{2,3}	1	8	V	Open collector
Oscillator input	V _{6,7}	0	2.5	V	
Mixer input emitter	V _{9, 11}	0.8	3.5		
Mixer input base	V _{10, 12}	0	$V_4 - 1.5$	V	
Junction temperature	Tj		125	°C	
Storage temperature	T _{stg}	- 40	150	°C	
Thermal resistance	R _{th SA}		125	K/W	

Operating Range

Supply voltage	Vs	4	7	V
Input frequency range	f_{15}		2000	MHz
Ambient temperature in operation	T _A	0	70	°C

Characteristics

 $T_{\rm A}$ = 25 °C; $V_{\rm S}$ = 6 V \pm 10 % (test circuit 1)

Parameter	Symbol	Limit Values			Unit	Test
		min.	typ.	max.		Condition
Current consumption	$I_{\rm S} = I_2 + I_3 + I_4$	1.1	1.6	2.1	mA	
Output-current	$I_2 = I_3$	0.35	0.54	0.75	mA	
Output-current difference	$I_2 - I_3$	3	10	60	μA	
Supply current	<i>I</i> ₄	0.2	0.4	0.6	mA	
Power gain $f_e = 100 \text{ MHz}, f_{OSC} = 110,7 \text{ MHz}$ $f_e = 1 \text{ GHz}, f_{OSC} = 1,1 \text{ GHz}$	VP	13 13	16 16	19 19	dB dB	
Break down voltage $I_{2,3} = 10 \text{ mA}; V_{6,7} = 0$	V _{2,3}		18		V	
Noise figure	NF	6	7	10	dB	DSB
Mixer output impedance	R C		7.0 0.6 1.5		kΩ kΩ pF	$f_{\rm MO} = 100 \text{ M}$ $f_{\rm MO} = -1 \text{ G}$

Test Circuit 1

Application Circuit