Video IF Amplifier and Demodulator with Full-SCART

TDA 5931-65

Bipolar IC

Features

- Multistandard video IF
- Interference suppression circuitry
- Mean/peak value control
- Area of application: TV set with Full-SCART

Туре	Ordering Code	Package
TDA 5931-65	Q67000-A5136	P-DIP-18

Functional Description

Video IF for all European standards for positive and negative modulation. The video section contains a Full-SCART interface. An output for the demodulated video signal (pin 9) allows the insertion of a sound trap into the signal path to the input or the SCART switch and the SCART output buffer amplifier (pin 7). The analog setting function (delayed AGC threshold) is controlled via a potentiometer, all other switch functions are controlled via open-collector transistors.

Circuit Description

The component includes a four-stage, capacitively coupled, symmetrically designed and controlled amplifier, a limiter with selection, and a mixer for quasi-synchronous demodulation of positive and negative modulated IF signals. In addition a video output amplifier and noise suppression circuitry are included. This output is used for generating the AGC voltage. The AGC for both modulation types has been realized as integral AGC with noise free peak and mean value detector (only for positive modulation). For SCART applications this output is switched a video source switch with two inputs (for the demodulator signal or SCART socket) and two outputs (SCART- and TV output). The demodulator output (pin 9) provides a video signal output level 3 dB higher than the level required for the operation of the TV set or to drive the SCART connector. Therefore it is possible to insert a sound trap in between this output and the input of the SCART switch (pin 7). The insertion loss of the sound trap has to attenuate the signal level at pin 9 by a factor 2/3 or 3 dB (AC and DC) to avoid distortions in the SCART switch.

The delayed tuner AGC is generated by a threshold amplifier driven by the control voltage. The amplifier response can be controlled by means of an external potentiometer. (The increase of the tuner AGC voltage shall create a higher tuner gain = positive control).

Pin Functions

Pin No.	Function
1	Video IF input
2	SCART switch A/W
3	SCART input
4	SCART input/output
5	+ $V_{\rm S}$ supply voltage
6	Positive video output
7	Video output of the sound trap (2 Vpp)
8	Ground
9	Video input of the sound trap (3 Vpp)
10	Demodulator tank circuit
11	Demodulator tank circuit
12	TV-standard switch-over (B/G) – (L)
13	Low-pass filter (averaging)
14	Tuner AGC threshold
15	Tuner AGC output
16	AGC-time constant
17	Ground
18	Video IF input

Block Diagram

Absolute Maximum Ratings

 $T_{A} = 0$ to 70 °C

Parameter	Symbol	Lin	Unit		
		min.	max.		
Sound trap input	V ₇	3.3	8.5	V	
Demodulator output	V ₉	0	V_5	V	
Demodulator output	Ig	- 3	10	mA	
Supply voltage	V ₅	0	13.2	V	
SCART A/W	V ₂	0	6	V	
Pos. video output	I ₆	- 3	5	mA	
Pos. video output	V ₆	0	8.5	V	
Demodulator tank circuit	V ₁₀ /V ₁₁	0	V_5	V	
SCART OUT	I ₄	- 3	5	mA	
SCART OUT	V4	0	V ₅	V	
Tuner AGC threshold	V ₁₄	0	6	V	
Tuner AGC output	V ₁₅	0	10	V	
IF input	V ₁ /V ₁₈	0	6	V	
IF control	V ₁₆	0	8.5	V	
Norm switch-over	V ₁₂	0	6	V	
Norm switch-over	V ₁₃	0	6	V	
SCART IN	V ₃	0	6	V	
Junction temperature	Tj		150	°C	
Storage temperature	T _{stg}	- 40	125	°C	
Thermal resistance (system-air)	T _{th SA}		70	K/W	

Operating Range

Supply voltage	V ₅	10.8	13.2	V
Supply voltage delayed tuner AGC	V ₁₅	1.5	13.2	V
Ambient temperature during operation	T _A	0	70	°C
Input frequency range – 3 dB	fif	10	100	MHz
Input frequency range – 0.3 dB	f _{IF}	30	75	MHz

All voltage values are referenced to ground, if not stated otherwise.

The current are identified according to the source/sink principle. If the $I_{\rm C}$ considered a sink (the current flows from the respective pin to ground), it is identified by a negative algebraic sign. However, if the $I_{\rm C}$ is the source (the current flows from $V_{\rm B}$ via the respective pin to ground), it is identified by a positive algebraic sign.

Semiconductor Group

Characteristics

 $T_{A} = 25 \text{ °C}; V_{S} = 12 \text{ V}$

Parameter	Symbol	Symbol Limit V			Unit	Test Condition
		min.	typ.	max.		
Static Characteristics						
Total current consumption	- I ₅	38.5	56	71.5	mA	$V_{1/16} = 10 \text{ mVrms}$
AGC Voltage						
Min. AGC Max. AGC	V ₁₆ V ₁₆	0 2.6	0.1 2.85	0.5 6.0	V V	$V_{1/16} = 45 \mu \text{Vrms}$ $V_{1/16} = 175 \text{mVrms}$

AGC-Time Constant (by neg. modulation)

Charge current (<i>I</i> _{max} :2)	I ₁₆	0.55	0.7	0.95	mA	$V_{16} = 2 \text{ V}; V_6 < 2.2 \text{ V}$
Discharge current	$-I_{16}$	13	17	23	μA	$V_{16} = 2 \text{ V}; V_6 > 2.8 \text{ V}$
Charge/discharge ratio	V ₁₆	55	82	140		

AGC-Time Constant (by pos. modulation)

Charge current	<i>I</i> ₁₆	1.1	1.4	1.7	mA	$V_{16} = 2 \text{ V}; V_6 \ge 4.1 \text{ V}$
Discharge current	$-I_{16}$	0.15	0.25	0.35	μA	$V_{16} = 2 \text{ V};$
						3.1 V < V ₆ < 4.1 V
Discharge current	$-I_{16}$	70	90	110	μA	$V_{16} = 2 \text{ V}; V_6 < 2.3 \text{ V}$
Charge/discharge ratio	V ₁₆	4000	5600	9000		

Averaging by Pos. Modulation

White level	V ₁₃	4.9	5.7	6.5	V	V _{1/18} = 10 mVrms
Zero carrier level	V ₁₃	3.3	3.7	4.1	V	$V_{1/18} = 0 \text{ V}; V_{16} = 3 \text{ V}$
Tuner AGC threshold $I_5 = I_{max}$:2	$V_{14} \\ I_{14} \\ V_{16} \\ V_{16}$	4.2 650 2.8 0.33	4.5 850 3.1 0.38	4.8 1050 3.4 0.43	V μA V V	$R_{14/17} = \infty$ V ₁₄ = 0 V R _{14/17} = 10 kΩ R _{14/17} = 10 Ω

The characteristics data apply to the supply voltage range V_S stated or in case of alignment to the alignment instructions (**see page 40**). All static voltages are referenced to ground if not stated otherwise.

The input levels are given as rms values referenced to synchronous peak f_{PC} = 38.9 MHz.

Parameter	Symbol		Limit Va	ues	Unit	Test Condition	
		min.	typ.	max.			
Tuner AGC current max. 1 ms	- I ₁₅	10	18	30	mA	$V_{15} = 0.5 V_5$ $V_{1/18} = 100 \text{ mVrms}$ $V_{14} = 0.75 V$	
	- I ₁₅	0	-	10	μΑ	$V_{15} = 0.5 V_5$ $V_{1/18} = 10 \text{ mVrms}$ $V_{14} = 4.0 \text{ V}$	
IF input	V ₁ , V ₁₈	5.7	6.0	6.3	V		
Demodulator tank	V ₁₀ , V ₁₁	V ₅ – 3.5	V ₅ – 3.8	V ₅ – 4.1	V		
Video Output (Demode	ulator)						
Output current	- <i>I</i> ₉	1.9	2.6	3.3	mA	$V_9 = 6 V, V_{1, 18} =$ carrier no-demod.	
Output current	Ig	4			mA	to ground	
Sychron level	V ₉	5.2	5.6	6.2	V	$V_{1/18} = 10 \text{ mVrms}$	
Sound Trap Input							
Sychron pulse level White level	V ₇ V ₇	3.3	3.7 5.7	6.0	V V	Signal ratio $V_{9/7} = 3/2$ Signal ratio $V_{9/7} = 3/2$ $V_{1/18} = 0 \lor; V_{16} = 3 \lor$ $0 \lor > V_2 > 2.4 \lor$	
Pos. Video Output							
Output current	$-I_6$ I_6	1.7 4	2.2	2.7	mA mA	$V_6 = 6 V$ to ground via	
Pos. modulation (L standard)						$R = 500 \ \Omega$ see Sound Trap Input	
White level	V_6	3.9	4.2	4.9	V	$V_{1/18} = 10 \text{ mVrms}$	
Zero carrier (sync.) Neg. modulation (BG standard)	<i>V</i> ₆	1.9	2.2	2.7	V	$V_{1/18} = 0 \text{ V}; V_{16} = 3 \text{ V}$	
Synchron pulse level	V_6	1.9	2.2	2.7	V	V _{1/18} = 10 mVrms	
Zero carrier	V_6	4.1	4.4	5.1	V	$V_{1/18} = 0 \text{ V}; V_{16} = 3 \text{ V}$	

Parameter	Symbol	L	imit Value	es	Unit	Test Condition	
		min.	typ.	max.			
Neg. SCART Output							
Output current	$-I_4$ I_4	1.6	2	2.6	mA mA	$R_{\rm L} = \infty$; see Sound Trap Input $V_4 = V_5$	
Pos. modulation (L standard)	14					to ground via $R = 500 \Omega$	
White level	V_4	$V_5 - 5.3$	$V_5 - 5.0$	$V_5 - 4.3$ $V_5 - 2.5$	V	$V_{1/18} = 10 \text{ mVrms}$	
Zero carrier (sync.) Neg. modulation (BG standard)	V ₄	$V_5 - 3.2$	V ₅ – 2.9	V ₅ – 2.5	V	$V_{1/18} = 0 \text{ V}; V_{16} = 3 \text{ V}$	
Synchron pulse level Zero carrier	$egin{array}{c} V_4 \ V_4 \end{array}$	$V_5 - 3.2$ $V_5 - 5.5$	$V_5 - 2.9$ $V_5 - 5.2$	$V_5 - 2.5$ $V_5 - 4.6$	V V	$V_{1/18} = 10 \text{ mVrms}$ $V_{1/18} = 0 \text{ V}; V_{16} = 3 \text{ V}$	
Pos. SCART Input 4			1 -				
Clamp level	V ₃	1.8	1.9	2	V	via $R = 270 \text{ k}\Omega$ at	
Output current	I ₃	3			mA	ground V_3 = 1.2 V	
Switching Voltage							
L = L/E standard	V ₁₂	0		1.9	V		
H = B/G standard o. open	V ₁₂	2.4		6	V		
Switching Voltage							
Open = SCART operat.	<i>V</i> ₂						
H = SCART operation L = HF operation	$V_2 V_2$	2.4 0		6 1.9	V V		
Dynamic Characteristic		U		1.0	V		
Min. IF-input voltage							
start of internal							
AGC operation			45	60		GV/pp 1 dP	
$\frac{f_{\rm PC}}{M_{\rm OV}}$ ms	V _{1/18}		45	60	μV	6 Vpp – 1 dB	
Max. IF-input voltage (end of internal AGC-control range)							
$f_{\rm PC}$ rms	V _{1/18}	105	140		mV	6 Vpp – 1 dB	
IF-control range	Δv	65	70		dB		

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Video output voltages (peak to peak) $f_{\rm PC}$ = 10 mVrms with neg. modulation and residual carrier = 10%; with neg. modulation and residual carrier < 6%

Pos. video output	<i>V</i> ₆	1.8	2.0	2.2	Vpp	0 V < V ₂ < 1.9 V
changes related to	ΔV_6		2	5	%	$\begin{array}{l} 0 \ {\sf V} < V_{12} < 1.9 \ {\sf V}; \\ 0 < V_2 < 1.9 \ {\sf V} \end{array}$
TV-standard switch over						$2.4 V < V_{12} < 6 V$
Change due to operating voltage			1.5	3	%	$\Delta V_6 / \Delta V_5$ 10.8 V < V_5 < 13.2 V
Neg. SCART output	V_4	1.9	2.1	2.3	Vpp	$R_{\rm L} = \infty$
Changes of the video output voltage over the control range of 55 dB	ΔV_6		0.2	0.5	dB	
Video gain	V ₆ /V ₃	1.9	2.0	2.1		$R_{\rm G} < 500 \ \Omega;$ 2.4 < $V_2 < 6 \ V;$ $V_3 = 1 \ Vpp (2 \ MHz)$
Video bandwidth	P _{6/3-3dB}	8	9		MHz	2.4 < V_2 < 6 V; V_3 = 1 Vpp sinus
Cross talk attenuation	A	40	50		dB	$0 < V_2 < 1.9 V;$ $V_{1/18} = 0 V; V_{16} = 3 V;$ $V_3 = 1 Vpp sinus$ 50 Hz 10 MHz

Design Notes (no 100% final test)

Input resistance (symmetrical)	R _{1/18}	1.5	2	2.5	kΩ	
Input capacitance (symmetrical)	C _{1/18}		2	5	pF	
Low pass cut-off	<i>f</i> _{-3 dB (13)}	70	100	130	Hz	$C_{13/17} = 100 \text{ nF} \pm 10\%$
Pos. video output white level	<i>V</i> ₆	3.9	4.2	4.9	V	2.4 < V_2 = 6 V; (SCART operation) V_3 = 1 Vpp norm
Synchron pulse level frequency	V ₆	1.9	2.2	2.7	V	video signal $V_3 = 1$ Vpp norm video signal
Video input voltage ± 3 dB at $R_{\rm G}$ < 500 Ω	V ₃		1		Vpp	

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Intercarrier noise voltages ratio (weighted according CCIR 468) with parallel tank circuit 38.9 MHz, SAW 361 D, f_{TT} = 5.5 MHz (- 13 dB), demod.: TBA 120

	S/N		48		dB	$V_{1/18} = 10 \text{ mVpp}$ FuBk mod.
	S/N		17		dB	V _{1/18} = 10 mVpp 2.753 MHZ mod.
FuBk – test picture	$-\Delta S/N$	2		dB		with detuning $\Delta f = -400 \text{ kHz}$
FuBk – test picture	$-\Delta S/N$		11		dB	with detuning $\Delta f = +400 \text{ kHz}$

Dyn. Output Resistance

Pos. video output Neg. video output	R ₆ R ₄	80 100	115 150	150 200	Ω Ω	
Noise figure $V_{1/18} = -57 \text{ dBm} =$ $+50 \text{ dB } \mu \text{V}$ $R_{\text{G}} = 800 \Omega$	F		5	7	dB	
Video noise voltage ratio at BT = 10 mVrms 0 dB = 700 mVrms BA unweighted	S/N	50	55		dB	
weighted according to CCIR Rec. 567-1	S/N	55	60		dB	

Video Frequency Response

– 3 dB	B _{3 dB}	8	10	13	MHz	
– 12 dB	B _{- 12 dB}	15	17	20	MHz	

Residual Carrier Voltage at Video Output

$f_{\rm PC}$ = 10 mVrms 38.9 MHz	<i>V</i> ₆	3.0	6.0	mV	
Fundamental wave 1. harmonic wave	V ₆	0.3	0.6	mV	
<i>f</i> = 77.8 MHz					

Parameter	Symbol	Li	Limit Values			Test Condition
		min.	typ.	max.		

Differential Gain with $f_{\rm PC}$ = 10 mV (staircase signal) Peak to Peak According to CCIR Rec. 567-1

Staircase signal	DG	4.5	6	%
Changes via AGC	$\Delta DG/\Delta v$		± 1	%
Changes via detuning	$\Delta DG/\Delta f$		± 1.5	%
<i>f</i> _{PC} = 38.9 MHz;				
$\Delta f \pm$ 400 kHz				

Differential Phase with $f_{\rm PC}$ = 10 mVrms (staircase signal) Peak to Peak According to CCIR Rec. 567-1

Staircase signal		2	2.5	degree	
Changes via AGC	$\Delta DP/\Delta v$			degree	
Changes via detuning f_{PC} = 38.9 MHz;	$\Delta DP / \Delta f$		±1	degree	
$\Delta f \pm 400 \text{ kHz}$					

Interdemodulation Ratio

With f_{IM} = 1.07 MHz = $f_{TT} - f_{FT}$ With BT = 10 mVeff						
With sound porch – 13 dB	$a_{\rm IM}$	32	38	_	dB	OFW G 3950
With sound porch – 13 dB	$a_{\rm IM}$	54	60	_	dB	OFW 361D
With sound porch – 13 dB	a _{IM}	51	57	_	dB	OFW G 1956

Demodulator Tank Circuit Voltage

f_{PC} = 38.9 MHz; C = 47 pF L = 350 nH 100 ≤ Q ₀ ≤ 120; Q ₈ ≈ 60; B ≈ 0.8 1.0 MHz	V _{10/11}	300	450	600	mVpp	
Synchron pulse	$\Delta V_{\rm Sync}/V_{\rm 6}$			5	%	

Alignment Instructions

At a video carrier input level of $V_{1/18} = 4 \text{ mVrms}$, $f_{PC} = 38.9 \text{ MHz}$ and a superimposed AGC voltage of $V_{16} = 1.5 \text{ V}$ the tank circuit is aligned that way, that at the positive video output the demodulated video signal 6 Vpp is at its maximum.

As a modulation every sufficient video test pattern can be used. Then the superimposed AGCcontrol voltage at pin 16 is reduced until the video signal has an amplitude of approx. 2 Vpp. The video signal is then fine tuned for its maximum.

The adjustment is not critical due to the wide maximum.

The adjustment can also be performed regarding intercarrier signal to noise ratio, differential gain or 2T-pulse response.

Test Circuit

Application Circuit