INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC02 1995 Mar 21

Philips Semiconductors

TDA5731M

FEATURES

- Balanced mixer with a common emitter input for band A (single input)
- 2-pin oscillator for bands A and B
- 3-pin oscillator for band C
- Balanced mixer with a common base input for band B and C (balanced input)
- Local oscillator buffer output for external synthesizer
- SAW filter preamplifier with a low output impedance to drive the SAW filter directly
- Electronic band switch.

APPLICATIONS

- 3-band TV tuners
- 3-band TV front-ends
- 3-band VCR tuners
- 3-band VCR front-ends.

QUICK REFERENCE DATA

GENERAL DESCRIPTION

The TDA5731M is a monolithic integrated circuit that performs the band A, band B and band C mixer/oscillator functions in TV and VCR tuners. This low power mixer/oscillator circuit requires a power supply of 5 V and is available in a very small package outline. This device gives the designer the capability to design an economical and physically small 3-band tuner. The tuner development time can be drastically reduced by using this device.

In addition, when hyperband is not required, the TDA5731M may be used in a VHF/UHF tuner with an appropriate tuned circuit for VHFI and VHFIII in band A and the tuned circuit of band C for UHF.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage		_	5.0	_	V
lP	supply current		-	36	_	mA
f _R	frequency range	band A	42	_	180	MHz
		band B	160	-	470	MHz
		band C	430	_	860	MHz
Ν	noise figure	band A	-	7.5	_	dB
		band B	_	8.0	_	dB
		band C	-	9.0	_	dB
IP	intermodulation	band A	-	-66	_	dB
		band B	-	-66	_	dB
		band C	-	-66	_	dB
G _v	voltage gain	band A	-	23	_	dB
		band B	-	34	-	dB
		band C	-	33	_	dB

ORDERING INFORMATION

ТҮРЕ	PACKAGE			
NUMBER	NAME	NAME DESCRIPTION VERSION		
TDA5731M	SSOP20	plastic shrink small outline package; 20 leads; body width 4.4 mm SOT266-1		

TDA5731M

Low power VHF, UHF and hyperband mixer/oscillator for TV and VCR 3-band tuners

BLOCK DIAGRAM

TDA5731M

Low power VHF, UHF and hyperband mixer/oscillator for TV and VCR 3-band tuners

PINNING

SYMBOL	PIN	DESCRIPTION
AOSCIB	1	band A oscillator input base
COSCIB	2	band C oscillator input base
AOSCOC	3	band A oscillator output collector
COSCOC1	4	band C oscillator output collector 1
BOSCIB	5	band B oscillator input base
COSCOC2	6	band C oscillator output collector 2
BOSCOC	7	band B oscillator output collector
GND	8	ground (0 V)
IFOUT1	9	IF amplifier output 1
IFOUT2	10	IF amplifier output 2
BS	11	band switch input
LOOUT1	12	local oscillator amplifier output 1
LOOUT2	13	local oscillator amplifier output 2
V _P	14	supply voltage
AIN	15	band A input
BIN1	16	band B input 1
BIN2	17	band B input 2
RFGND	18	ground for RF input
CIN1	19	band C input 1
CIN2	20	band C input 2

TDA5731M

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX/	UNIT
V _P	supply voltage	-0.3	+7.0	V
V _{SW(max)}	maximum switching voltage	-0.3	+7.5	V
V _{P(op)}	operating supply voltage	4.5	5.5	V
V _{n(max)}	maximum voltage on each pin with a 22 k Ω resistor connected in series	_	35	V
I _O	output current of each pin to ground	_	-10	mA
t _{sc(max)}	maximum short-circuit time (all pins)	_	10	S
T _{stg}	storage temperature	-55	+150	°C
T _{amb}	operating ambient temperature	-10	+80	°C
Tj	junction temperature	_	+150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air	120	K/W

HANDLING

Human Body Model: GND (8), RFGND (18), V_P (14) shorted together. Pins 4, 6 and 7 withstand 500 V. All other pins withstand 2000 V.

Machine Model: GND (8), RFGND (18), V_P (14) shorted together. Pins 4, 6 and 7 withstand 50 V. All other pins withstand 200 V.

IF AMPLIFIER CHARACTERISTICS

V_P = 5 V; T_{amb} = 25 °C; differentialy measured at 36 MHz; measured in circuit of Fig.6; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	T	YP.	MAX.	
STWBOL	PARAMETER	CONDITIONS	IVIIIN.	MOD.	PHASE		UNIT
S ₂₂	output reflection coefficient	note 1; see Fig.11	-	-14	+9	_	dB/°
Zo	output impedance $(R_s + L_s)$	R _s	_	7	74	_	Ω
		L _s	-	2	21	_	nH

Note

1. All S parameters are referenced to a 50 Ω system.

TDA5731M

CHARACTERISTICS

 V_{P} = 5 V; T_{amb} = 25 °C; measured in circuit of Fig.6; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	
Supply (T	_{amb} = −10 to +80 °C; V _P = 4.5 to	o 5.5 V)		-		
V _P	supply voltage		4.5	5.0	5.5	V
I _P	supply current		28	36	44	mA
V _{SW}	switching voltage (depending	band A	0	_	0.18V _P	V
	on supply voltage V _P)	band B	0.26V _P	_	0.47V _P	V
		band C	0.55V _P	_	VP	V
I _{SW}	switching current	band A	_	_	2	μA
		band B	-	-	10	μA
		band C	-	-	25	μA
Band A m	ixer (including IF amplifier)	•				
f _R	frequency range		42	-	180	MHz
N	noise figure	f _i = 50 MHz; see Fig.3	-	7.5	9	dB
	f _i = 180 MHz; see Fig.3	_	9	10	dB	
g _{os}	optimum source	f _i = 50 MHz	_	0.5	-	mS
	conductance for minimum noise figure	f _i = 180 MHz	-	1.1	_	mS
YI	input admittance (G _P //C _P)	f _i = 50 MHz; see Fig.7	_	0.27	_	mS
		f _i = 180 MHz; see Fig.7	_	0.34	_	mS
		$f_i = 50$ to 180 MHz; see Fig.7	-	1.9	_	pF
IP3	intermodulation using the 3 signals method	f _N = 180 MHz; note 1	-	-66	-60	dB
Vi	input voltage	10 kHz pulling in channel; $f_i = 180 \text{ MHz}$	96	100	_	dBµV
G _v	voltage gain	20log(V ₉₋₁₀ /V ₁₅); f _i = 50 MHz; note 2	20.5	23	25.5	dB
		20log(V ₉₋₁₀ /V ₁₅); f _i = 180 MHz; note 2	20.5	23	25.5	dB
Band A os	scillator					
f _R	frequency range	$T_{amb} = -10 \text{ to } +80 \text{ °C};$ $V_P = 4.5 \text{ to } 5.5 \text{ V};$ $V_{tune} = 0.45 \text{ to } 28 \text{ V}$	80	-	210	MHz
f _{shift}	frequency shift	$\Delta V_p = \pm 5\%$; note 3	_	_	200	kHz
Xripple(p-p)	ripple susceptibility of supply voltage (peak-to-peak value)	f _i = 80 MHz; note 4	20	-	-	mV
f _{ripple(p-p)}	frequency ripple (peak-to-peak value)	from 20 Hz to 500 kHz; f _i = 210 MHz	20	-	-	mV
f _{drift}	frequency drift	without compensation: notes 5 and 6	-	-	600	kHz
		5 s to 15 min after switching on; without compensation: note 7	-	-	200	kHz

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Band B m	ixer (including IF amplifier); m	heasurements using hybrid; note	8		•	
f _R	frequency range		160	-	470	MHz
N	noise figure	f _i = 170 MHz	_	8.0	10	dB
	(not corrected for image)	f _i = 470 MHz	_	8.0	10	dB
ZI	input impedance (R _s + L _s)	f _i = 160 to 470 MHz; see Fig.8	_	23	_	Ω
		f _i = 160 to 470 MHz; see Fig.8	_	10	_	nH
IP3	intermodulation using the	f _N = 170 MHz; note 1	_	-66	-60	dB
	3 signal method	f _N = 470 MHz; note 1	_	-66	-60	dB
Vi	input voltage	f _i = 470 MHz; 10 kHz pulling; in channel	83	87	-	dBµV
		N + 5 - 1 MHz pulling; $f_i = 470$ MHz; note 9	_	62	-	dBµV
Gv	voltage gain	f _i = 170 MHz; note 2	31	34	37	dB
		f _i = 470 MHz; note 2	31	34	37	dB
Band B os	scillator					-
f _R	frequency range	$T_{amb} = -10 \text{ to } +80 \text{ °C};$ $V_P = 4.5 \text{ to } 5.5 \text{ V};$ $V_{tune} = 0.45 \text{ to } 28 \text{ V}$	205	-	490	MHz
f _{shift}	frequency shift	$\Delta V_{P} = \pm 5\%$; note 3	_	-	400	kHz
χripple(p-p)	ripple susceptibility of supply voltage (peak-to-peak value)	f _i = 205 MHz; note 8	20	-	-	mV
f _{ripple(p-p)}	frequency ripple (peak-to-peak value)	from 20 Hz to 500 kHz; f _i = 490 MHz	10	-	-	mV
f _{drift}	frequency drift	without compensation; notes 5 and 6	_	-	2	MHz
		5 s to 15 min after switching on; without compensation; note 7	_	-	300	kHz
Band C m	ixer (including IF amplifier); m	neasurements using hybrid; note	8			
f _R	frequency range		430	-	860	MHz
N	noise figure	f _i = 430 MHz	_	9	11	dB
	(not corrected for image)	f _i = 860 MHz	_	9	11	dB
Zl	input impedance (R _s + L _s)	f _i = 430 MHz; see Fig.9	_	34	_	Ω
		f _i = 860 MHz; see Fig.9	_	45	_	Ω
		f _i = 430 to 860 MHz; see Fig.9	_	9	_	nH
IP3	intermodulation using the	f _N = 430 MHz; note 1	_	-66	-60	dB
	3 signal method	f _N = 860 MHz; note 1	_	-66	-60	dB
Vi	input voltage	10 kHz pulling in channel; f _i = 860 MHz; note 2	83	87	-	dBµV
		N + 5 – 1 MHz pulling; $f_i = 860 \text{ MHz}$; note 9	-	61	-	dBµV
Gv	voltage gain	f _i = 430 MHz; note 2	30	33	36	dB
		f _i = 860 MHz; note 2	30	33	36	dB

TDA5731M

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Band C os	scillator	1	-			
f _R	frequency range	$T_{amb} = -10 \text{ to } +80 \text{ °C};$ V _P = 4.5 to 5.5 V; V _{tune} = 0.45 to 28 V	485	-	900	MHz
f _{shiift}	frequency shift	$\Delta V_P = \pm 5\%$; note 3	-	-	400	kHz
χripple(p-p)	ripple susceptibility of supply voltage (peak-to-peak value)	f _i = 485 MHz; note 4	20	-	_	mV
f _{ripple(p-p)}	frequency ripple (peak-to-peak value)	from 20 Hz to 500 kHz; $f_i = 900 \text{ MHz}$	10	-	-	mV
f _{drift}	frequency drift	without compensation; notes 5 and 6	-	-	2.5	MHz
		5 s to 15 min after switching on; without compensation; note 7	-	-	600	kHz
LO output	t					
Y _O	output admittance (G _P //C _P)	f _i = 80 MHz; see Fig.10	-	2.4	_	mS
		f _i = 80 MHz; see Fig.10	-	0.9	-	pF
		f _i = 900 MHz; see Fig.10	-	4.6	-	mS
		f _i = 900 MHz; see Fig.10	-	0.9	_	pF
Vo	output voltage	$R_L = 50 \ \Omega; T_{amb} = -10 \text{ to } +80 \ ^\circ\text{C};$ V _P = 4.5 to 5.5 V;	80	91	100	dBμV
SRF	spurious signal on LO output with respect to LO output signal	$R_L = 50 \ \Omega; T_{amb} = -10 \text{ to } +80 \ ^\circ\text{C};$ V _P = 4.5 to 5.5 V; note 10	-	-	-10	dB
HLO	LO signal harmonics with respect to LO signal	$R_L = 50 \ \Omega; T_{amb} = -10 \text{ to } +80 \ ^\circ\text{C};$ V _P = 4.5 to 5.5 V;	-	-	-10	dB

Notes

- 1. Cross modulation measurement is achieved using the 3 equal signals method (see Fig.4).
- The gain is defined as the transducer gain (measured in Fig.8) plus the voltage transformation ratio of L7 to L8 (5 : 1, 15.4 dB).
- 3. The frequency shift is defined as a change in oscillator frequency for a variation of supply voltage. In one instance $V_P = 5$ to 4.75 V and in the other instance $V_P = 5$ to 5.25 V. In both cases, the frequency shift is below the specified value.
- 4. The frequency ripple susceptibility is measured at 500 kHz at the LO output (see Fig.5). The level of the ripple signal is increased until a difference of 53.5 dB is reached at the IF output.
- 5. The frequency drift is defined as the change in oscillator frequency for a variation of ambient temperature, on the one hand from $T_{amb} = 25$ °C to $T_{amb} = 0$ °C and on the other hand from $T_{amb} = 25$ °C to $T_{amb} = 50$ °C.
- 6. The capacitors in the oscillator circuits of Fig.8 are as follows:
 - a) Band A: C1, C5 and C7.
 - b) Band B: C4 and C9 and C11.
 - c) Band C: C2, C3, C6, C8 and C10 are NP0 types.
- 7. Switching on drift is the change in oscillator frequency between 5 seconds and 15 minutes after switching on.
- 8. The values have been corrected for hybrid and cable losses. The symmetrical output impedance of the circuit is $100 \ \Omega$.

- 9. The input level of a N + 5 1 MHz signal which gives a signal 30 dB below the oscillator carrier at the LO output.
- 10. Measured at 50 Ω with the following RF input voltages;
 - a) RF voltage level = 120 dB μ V at f_i < 180 MHz.
 - b) RF voltage level = 107.5 dB μ V at f_i = 180 to 225 MHz.
 - c) RF voltage level = 97 dB μ V at f_i = 225 to 860 MHz.

TDA5731M

Low power VHF, UHF and hyperband mixer/oscillator for TV and VCR 3-band tuners

TDA5731M

Components values for Fig.8

 Table 1
 Capacitors

(all SMD and NP0 except C28)

NUMBER	VALUE
C1	82 pF
C2	5.6 pF
C3	100 pF
C4	100 pF
C5	2.2 pF
C6	1 pF
C7	2.2 pF
C8	1 pF
C9	2.2 pF
C10	2.2 pF
C11	2.7 pF
C12	1 nF
C13	1 nF
C14	1 nF
C15	1 nF
C16	1 nF
C17	10 nF
C18	10 nF
C19	1 nF
C20	1 nF
C21	1 nF
C22	1 nF
C23	1 nF
C24	18 pF
C25	1 nF
C26	1 nF
C27	1 nF
C28	150 nF
C29	1 nF
C30	3 pF
C31	3 pF

Table 2 Resistors (all SMD)

NUMBER	VALUE
R1	47 kΩ
R2	24 kΩ
R4	24 kΩ
R5	47 kΩ
R6	15 Ω
R7	10 kΩ
R8	100 Ω
R10	15 kΩ
R11	27 kΩ

Table 3Diodes and coils

NUMBER	VALUE
Diodes	
D1	BB132
D2	BB134
D3	BB133
Coils ⁽¹⁾	
L1	7.5 turns (3 mm)
L2	2.5 turns (3.5 mm)
L3	1.5 turns (2.5 mm)
L4	1.5 turns (4 mm)
L5	2.2 μH (choke coil)

Note

1. Wire size for L1 to L4 is 0.4 mm

Transformers (L6 = 2×5 turns and L7 = 2 turns))

Coil type: TOKO 7kN; material: 113kN, screw core (03-0093), pot core (04-0026).

PACKAGE OUTLINE

TDA5731M

SOLDERING

Plastic small outline packages

BY WAVE

During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C.

A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.

BY SOLDER PASTE REFLOW

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be

applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C.

REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL)

Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to $300 \,^{\circ}$ C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 $^{\circ}$ C. (Pulse-heated soldering is not recommended for SO packages.)

For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.