
INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC02 January 1992

FEATURES

- Quasi-split sound processor for all FM standards e.g. B/G
- Reduction of spurious video signals by tracking function and AFC for the vision carrier reference circuit; (indispensable for NICAM)
- AF2 signal automatically muted (at B/G) by the input signal level

GENERAL DESCRIPTION

Symmetrical IF input and gain controlled wideband IF amplifier.

AGC generation due to peak sync Reference amplifier for the regeneration of the vision carrier.

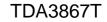
Optimized limiting amplifier for AM suppression in the regenerated vision carrier signal and 90° phase shifter.

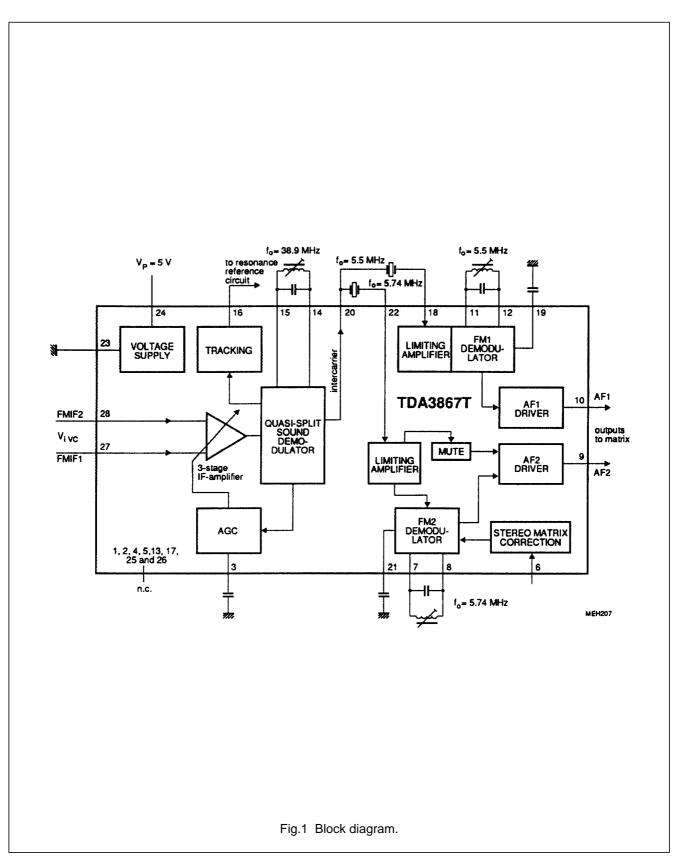
Intercarrier mixer for FM sound, output with low-pass filter.

Separate signal processing for 5.5 and 5.74 MHz intercarriers.

Wide supply voltage range, only 300 mW power dissipation at 5 V.

QUICK REFERENCE DATA


SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage (pin 24)	4.5	5	8.8	V
IP	supply current (pin 24)	-	60	72	mA
V _{i IF}	IF input sensitivity (-3 dB)	-	70	100	μV
Vo	audio output signal (RMS value)	-	1	-	V
THD	total harmonic distortion		0.5	-	%
S/N (W)	weighted signal-to-noise ratio				
	for FM	-	68	-	dB
	for FM with 6 kHz sinus vision modulation	-	56	-	dB


ORDERING AND PACKAGE INFORMATION

EXTENDED		PACK	AGE	
TYPE NUMBER	PINS	PIN POSITION	MATERIAL	CODE
TDA3867T	28	mini-pack	plastic	SOT136A ⁽¹⁾

Note

1. SOT136-1; 1997 January 8.

FMIF1 FMIF2 26

27

28

not connected

January 1992

		DESCRIPTION
n.c. 1		not connected
n.c. 2		not connected
C _{AGC} 3		charge capacitor for AGC
n.c. 4		not connected
n.c. 5		not connected
MATR 6		input for stereo matrix correction
FM2R1 7		reference circuit for FM2 (5.74 MHz)
FM2R2 8		reference circuit for FM2 (5,74 MHz)
AF2 9		AF2 output (AF out of 5.74 MHz)
AF1 10	C	AF1 output (AF out of 5.5 MHz)
FM1R1 11	1	reference circuit for FM1 (5.5 MHz)
FM1R2 12	2	reference circuit for FM1 (5.5 MHz)
n.c. 13	3	not connected
VC-R1 14	4	reference circuit for the vision carrier (38.9 MHz)
VC-R2 15	5	reference circuit for the vision carrier (38.9 MHz)
TRACK 16	6	DC output level for tracking
n.c. 17	7	not connected
FM1I 18	8	intercarrier input for FM1 (5.5 MHz)
C _{AF1} 19	9	DC-decoupling capacitor for FM1 demodulator (AF1)
ICO 20	C	intercarrier output signal (5.5/5.74 MHz)
C _{AF2} 21	1	DC-decoupling capacitor for FM2 demodulator (AF2)
FM2I 22	2	intercarrier input for FM2 (5.74 MHz)
GND 23	3	ground (0 V)
V _P 24	4	+5 to +8 V supply voltage
n.c. 25	5	not connected

IF difference input 1 (B/G standard, 38.9 MHz)

IF difference input 2 (B/G standard, 38.9 MHz)

Quasi-split sound processor with two FM demodulators

PINNING

Philips Semiconductors

PIN CONFIGURATION

n.c. n.c. C _{AGC} n.c. n.c. n.c. MATR FM2R1 FM2R2 AF2 AF1 FM1R1 FM1R2 n.c. VC-R1	1 2 3 4 5 6 7 8 9 10 11 12 13 14	MEH20	28 27 26 25 24 23 22 21 20 19 18 17 16 15	FMIF2 FMIF1 n.c. n.c. VP GND FM21 CAF2 ICO CAF1 FM11 n.c. TRACK VC-R2
Fi	g.2 F	² in configu	ratic	ın.

Philips Semiconductors

Quasi-split sound processor with two FM demodulators

FUNCTIONAL DESCRIPTION

The quasi-split sound processor is suitable for all FM standards (e. g. B/G).

The AGC detector uses peak sync level. Sound carrier SC1 (5.5 MHz) provides AF1, sound carrier SC2 (5.74 MHz) provides AF2. With no sound carrier SC2 on pin 22, AF2 output is muted. The mute circuit prevents false signal recognition in the stereo decoder at high IF signal levels when no second sound carrier exists (mono) and an AF signal is present in the identification signal frequency range.

With 1 mV on pin 22, under measurement conditions, AF2 is switched on (see limiting amplifier). Weak input signals at pins 27 and 28 generate noise on pin 22, which is present in the intercarrier signal and passes through the 5.74 MHz filter. Noise on pin 22 inhibits muting. No misinterpretation due to white noise occurs in the stereo decoder; when non-correlated noise masks the identification signal frequencies, which may be present in sustained tone signals. The stereo decoder remains switched to mono. The series capacitor C_s in the 38.9 MHz resonant circuit provides a notch at the sound carrier frequency in order to provide more attenuation for the sound carrier in the vision carrier reference channel. The ratio of parallel/series capacitor depends on the ratio of VC/SC frequency and has to be adapted to other TV transmission standards if necessary, according to

$$C_{S} = C_{P} (f_{VC}/f_{SC})^{2} - C_{P}$$

The result is an improved "intercarrier buzz" (up to 10 dB improvement in sound channel 2 with 250 kHz video modulation for B/G stereo) or suppression of 350 kHz video modulated beat frequency in the digitally-modulated NICAM subcarrier. The picture carrier for quadrature demodulation in the intercarrier mixer is not exactly 90 degrees due to the shift variation in the integrated phase shift network. The tuning of the LC reference circuit to provide optimal video suppression at the intercarrier output is not the same as that to provide optimal intercarrier buzz suppression. In order to optimize the AF signal performance, a fine tuning for the optimal S/N at the sound channel 2 (from 5.74 MHz) may be performed with a 250 kHz square wave video modulation.

Measurements at the demodulators: For all signal-to-noise measurements the generator must meet the following specifications;

phase modulation errors < 0.5 degree for B/W-jumps intercarrier signal-to-noise ratio as measured with "TV demodulator AMF2" (weighted S/N) must be > 60 dB at 6 kHz sine wave modulation of the B/W-signal.

Signal-to-noise ratios are measured with $\Delta f = \pm 50$ kHz deviation and $f_m = 1$ kHz; with a deviation of ± 27 kHz the S/N ratio is deteriorated by 5.3 dB.

TDA3867T

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _P	supply voltages (pin 24)	_	8.8	V
V _n	input and output voltage (pins 9, 10, 18, 20, 22, 27 and 28)	0	V _P	V
P _{tot}	total power dissipation	0	635	mW
T _{stg}	storage temperature range	-25	150	°C
T _{amb}	operating ambient temperature range	0	70	°C
V _{ESD}	electrostatic handling ⁽¹⁾			
	all pins except 27 and 28	±500	_	V
	pins 27 and 28	+400	_	V
		-500	-	V

Note

1. Equivalent to discharging a 200 pF capacitor through a 0 Ω series resistor.

TDA3867T

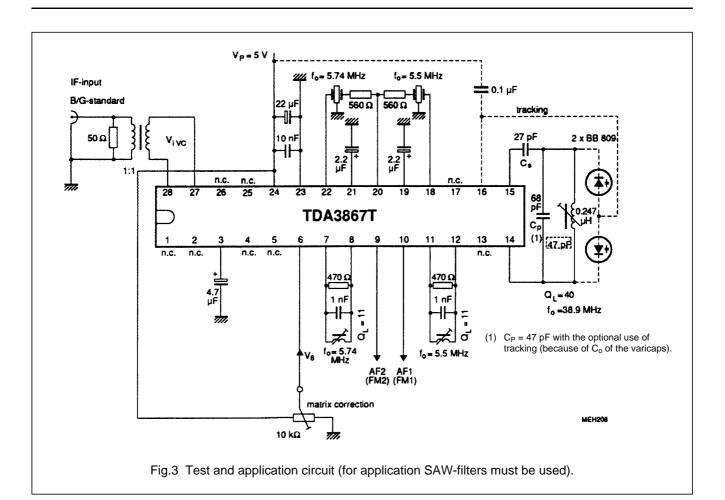
CHARACTERISTICS

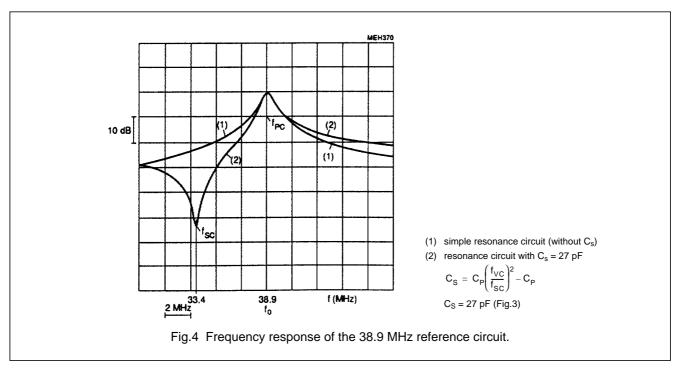
 V_{P1} = 5 V and T_{amb} = 25 °C, measurements taken in Fig.3 with f_{VC} = 38.9 MHz, f_{SC1} = 33.4 MHz and f_{SC2} = 33.158 MHz.

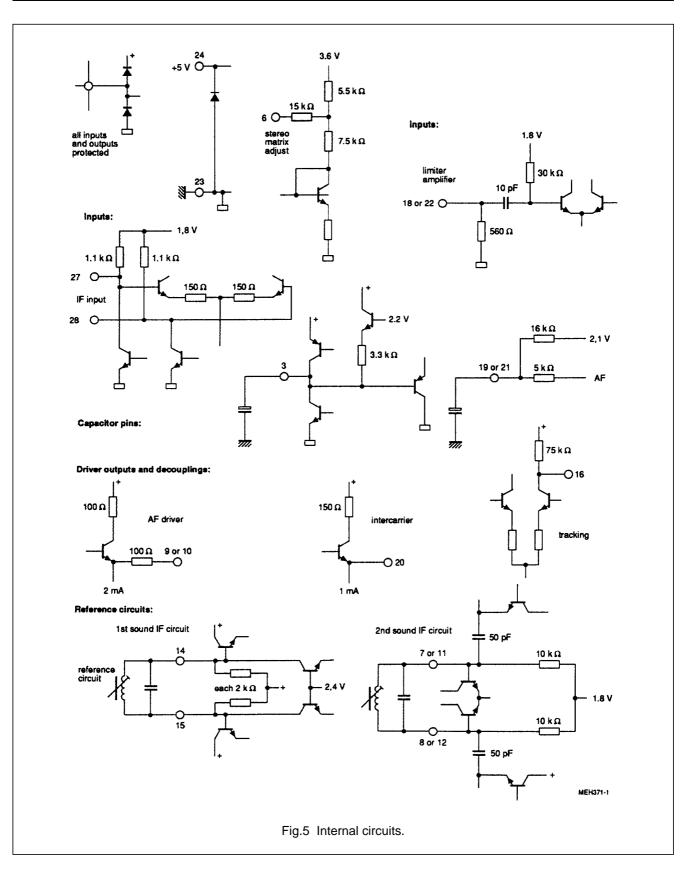
Vision carrier (VC) modulated with different video signals, modulation depth 100 % (proportional to 10 % residual carrier).

Vision carrier amplitude (RMS value) $V_{i VC} = 10 \text{ mV}$; vision to sound carrier ratios are VC/SC1 = 13 dB and VC/SC2 = 20 dB. Sound carriers (SC1, SC2) modulated with f = 1 kHz and deviation $\Delta f = \pm 50 \text{ kHz}$ and deviation $\Delta f = \pm 50 \text{ kHz}$ and deviation $\Delta f = \pm 50 \text{ kHz}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VP	supply voltage.range (pin 24)		4.5	5	8.8	V
I _P	supply current (pin 24)	V _P = 5 V	48	60	72	mA
IF amplifie	er (pins 27-28)	•	•			
R _I	input resistance		1.75	2.2	2.65	kΩ
CI	input capacitance		1.0	1.5	2.2	pF
VI	DC potential, voltage (pins 27 and 28)		_	1.75	_	V
V _{i IF}	maximum input signal (RMS value)	$V_0 = +1 \text{ dB}$	70	100	-	mV
	input signal sensitivity (RMS value)	-3 dB intercarrier signal reduction on pin 20	-	70	100	μV
ΔG_v	IF gain control range		60	63	-	dB
В	IF bandwidth	–3 dB	50	70	_	MHz
V ₃	voltage range for gain control (pin 3)	G _{min} – G _{max}	1.7	-	2.6	V
Resonanc	e amplifier (pins 14-15)		•			
Vo	vision carrier amplitude (peak-to-peak value)	f _o = 38.9 MHz	-	270	-	mV
R ₁₄₋₁₅	operating resistance		-	4	-	kΩ
L	inductance	Fig.3 and 4	-	0.247	_	μH
С	capacitance	C _S = 27 pF	-	68	-	pF
QL	Q-factor of resonant circuit	Q ₀ = 90	-	40	-	
V _{14, 15}	DC voltage (pins 14 and 15)		-	V _P -1	-	V
Intercarrie	er mixer output (pin 20)	•	•			
Vo	output signal for 5.5 MHz (RMS value)		71	95	125	mV
	output signal for 5.74 MHz (RMS value)		32	43	56	mV
В	IF bandwidth	–1 dB	_	8.5	-	MHz
		–3 dB	_	10	_	MHz
V _{VID} /V ₂₀	residual video AM on intercarrier	note 1	-	3	10	%
V _{VC}	residual vision carrier (RMS value)	1st/2nd harmonic; (38.9/77.8 MHz)	-	0.5	1	mV
R ₂₀	output resistance (emitter follower)	1 mA emitter current	-	30	-	Ω
lo	allowable AC output current (pin 20)		-	-	±0.7	mA
I ₂₀	allowable DC output current		-	-	-2	mA
V ₂₀	DC voltage		_	1.75	-	V


	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Limiting a	mplifiers (pins 18 and 22)	•				
Vi	minimum input signal (RMS value)	–3 dB AF signal	-	300	450	μV
	maximum input signal (RMS value)		200	_	-	mV
R _{18, 22}	input resistance		_	560	-	Ω
V _{18, 22}	DC voltage		_	0	_	V
Vi	level detector threshold for no muting (RMS value, pin 22)	only 5.74 MHz channel	-	1	-	mV
ΔV_i	hysteresis of level detector		-	5	-	dB
Tracking a	automatic frequency control (AFC) of the v	ision carrier reference circu	uit.	•	•	
Vo	tracking output voltage range (pin 16)	note 5	V _{P1} -3.3	_	V _{P1} –1	V
F _{TR}	tracking reducing factor for black picture white test picture			9 4	-	
_	50 % grey picture			6	-	ļ
S	AFC steepness (open loop) for black picture		_	-8	_	mV/kHz
	white test picture		_	-3	_	mV/kHz
	50 % grey picture		_	-5.5	_	mV/kHz
$\Delta f = \pm 50 \text{ k}$	ents with FM IF input signals of 5.5 MHz a Hz) on pins 18 and 22 without ceramic filte	ers, $R_S = 50 \Omega$.				
$\Delta f = \pm 50 \text{ k}$	Hz) on pins 18 and 22 without ceramic filte sis of 50 μs and V ₅ = V _P (B/G standard). C intercarrier signals	ers, $R_S = 50 \Omega$.				
$\Delta f = \pm 50 \text{ k}$ De-empha V _{IC}	Hz) on pins 18 and 22 without ceramic filtensis of 50 μ s and V ₅ = V _P (B/G standard). Constrained intercarrier signals (RMS values, pins 7-8 and 11-12)	ers, $R_S = 50 \Omega$.	circuits at p	oins 7-8 a	and 11-1: 	2. mV
$\Delta f = \pm 50 \text{ k}$ De-empha V _{IC}	Hz) on pins 18 and 22 without ceramic filters is of 50 μs and V ₅ = V _P (B/G standard). Constraints intercarrier signals (RMS values, pins 7-8 and 11-12) DC voltage (pins 7, 8, 11 and 12)	ers, $R_S = 50 \Omega$.	circuits at p	oins 7-8 a 100 1.8	and 11-1: - -	2. mV V
$\Delta f = \pm 50 \text{ k}$ De-empha V _{IC}	Hz) on pins 18 and 22 without ceramic filtensis of 50 μ s and V ₅ = V _P (B/G standard). Constrained intercarrier signals (RMS values, pins 7-8 and 11-12)	ers, $R_S = 50 \Omega$.	circuits at p	oins 7-8 a	and 11-1: 	2. mV
$\Delta f = \pm 50 \text{ k}$ De-empha V _{IC}	Hz) on pins 18 and 22 without ceramic filters is of 50 μs and $V_5 = V_P$ (B/G standard). Constraints intercarrier signals (RMS values, pins 7-8 and 11-12) DC voltage (pins 7, 8, 11 and 12) AF output signals	ers, $R_S = 50 \Omega$.	circuits at p	oins 7-8 a 100 1.8	and 11-1: - -	2. mV V
$\Delta f = \pm 50 \text{ k}$ De-empha V _{IC} V_{DC} V _o	Hz) on pins 18 and 22 without ceramic filters is of 50 μs and $V_5 = V_P$ (B/G standard). Constrained intercarrier signals (RMS values, pins 7-8 and 11-12) DC voltage (pins 7, 8, 11 and 12) AF output signals (RMS values, pins 9 and 10) difference of AF signals	ers, $R_S = 50 \Omega$. Ω_L -factor = 11 for resonant pin 6 open-circuit;	circuits at p - - 0.75	oins 7-8 a 100 1.8	and 11-1: - - 1.20	2. mV V V
$\Delta f = \pm 50 \text{ k}$ De-empha V _{IC} V _{DC} V _o ΔV_o	Hz) on pins 18 and 22 without ceramic filte sis of 50 μs and $V_5 = V_P$ (B/G standard). G intercarrier signals (RMS values, pins 7-8 and 11-12) DC voltage (pins 7, 8, 11 and 12) AF output signals (RMS values, pins 9 and 10) difference of AF signals between channels (pins 9 and 10)	ers, $R_S = 50 \Omega$. Ω_L -factor = 11 for resonant pin 6 open-circuit;	circuits at p - - 0.75 -	bins 7-8 a 100 1.8 0.95 -	and 11-1: - 1.20	2. mV V V dB
$\begin{array}{l} \Delta f=\pm 50 \text{ k}\\ \text{De-empha}\\ \text{V}_{\text{IC}}\\ \\ \text{V}_{\text{DC}}\\ \text{V}_{\text{O}}\\ \\ \Delta \text{V}_{\text{O}}\\ \\ \\ R_{9,10} \end{array}$	Hz) on pins 18 and 22 without ceramic filte sis of 50 μs and V ₅ = V _P (B/G standard). C intercarrier signals (RMS values, pins 7-8 and 11-12) DC voltage (pins 7, 8, 11 and 12) AF output signals (RMS values, pins 9 and 10) difference of AF signals between channels (pins 9 and 10) output resistance	ers, $R_S = 50 \Omega$. Ω_L -factor = 11 for resonant pin 6 open-circuit;	circuits at p - - 0.75 - - -	0ins 7-8 a 100 1.8 0.95 - 100	and 11-1: - 1.20 1 -	2. mV V V dB
$\begin{array}{l} \Delta f=\pm 50 \text{ k}\\ \text{De-empha}\\ \text{V}_{\text{IC}}\\ \hline\\ \text{V}_{\text{DC}}\\ \text{V}_{\text{O}}\\ \hline\\ \Delta \text{V}_{\text{O}}\\ \hline\\ R_{9,\ 10}\\ \hline\\ \text{V}_{9,\ 10}\\ \end{array}$	Hz) on pins 18 and 22 without ceramic filte sis of 50 μs and $V_5 = V_P$ (B/G standard). G intercarrier signals (RMS values, pins 7-8 and 11-12) DC voltage (pins 7, 8, 11 and 12) AF output signals (RMS values, pins 9 and 10) difference of AF signals between channels (pins 9 and 10) output resistance DC voltage allowed AC current of emitter output	ers, $R_S = 50 \Omega$. Ω_L -factor = 11 for resonant pin 6 open-circuit; note 2	circuits at p - - 0.75 - - -	0ins 7-8 a 100 1.8 0.95 - 100	and 11-1: - 1.20 1 - - - -	2. mV V V dB Ω V
$\begin{array}{l} \Delta f=\pm 50 \text{ k}\\ \text{De-empha}\\ \text{V}_{\text{IC}}\\ \hline\\ \text{V}_{\text{DC}}\\ \text{V}_{\text{O}}\\ \hline\\ \Delta \text{V}_{\text{O}}\\ \hline\\ R_{9,\ 10}\\ \hline\\ \text{V}_{9,\ 10}\\ \end{array}$	Hz) on pins 18 and 22 without ceramic filte sis of 50 μ s and V ₅ = V _P (B/G standard). C intercarrier signals (RMS values, pins 7-8 and 11-12) DC voltage (pins 7, 8, 11 and 12) AF output signals (RMS values, pins 9 and 10) difference of AF signals between channels (pins 9 and 10) output resistance DC voltage allowed AC current of emitter output (peak value)	ers, $R_S = 50 \Omega$. Ω_L -factor = 11 for resonant pin 6 open-circuit; note 2	circuits at p 0.75	bins 7-8 a 100 1.8 0.95 - 100 2.1 -	and 11-12 - 1.20 1 - ±1.5	2. mV V V dB Ω V mA
$\begin{array}{l} \Delta f=\pm 50 \text{ k}\\ \text{De-empha}\\ \text{V}_{\text{IC}}\\ \\ \hline \\ \text{V}_{\text{DC}}\\ \\ \hline \\ \text{V}_{\text{O}}\\ \\ \hline \\ \Delta V_{\text{O}}\\ \\ \hline \\ R_{9,\ 10}\\ \\ \hline \\ I_{9,\ 10}\\ \end{array}$	Hz) on pins 18 and 22 without ceramic filte sis of 50 μ s and V ₅ = V _P (B/G standard). G intercarrier signals (RMS values, pins 7-8 and 11-12) DC voltage (pins 7, 8, 11 and 12) AF output signals (RMS values, pins 9 and 10) difference of AF signals between channels (pins 9 and 10) output resistance DC voltage allowed AC current of emitter output (peak value) maximum allowed DC output current	ers, $R_S = 50 \Omega$. Ω_L -factor = 11 for resonant pin 6 open-circuit; note 2	circuits at p 0.75	bins 7-8 a 100 1.8 0.95 - 100 2.1 - -	and 11-1: - 1.20 1 - ±1.5 -2	2. mV V V dB Ω V mA mA
$\begin{array}{l} \Delta f = \pm 50 \text{ k}\\ \text{De-empha}\\ \text{V}_{\text{IC}}\\ \hline \\ \text{V}_{\text{DC}}\\ \hline \\ \text{V}_{0}\\ \hline \\ \Delta V_{0}\\ \hline \\ \\ \Delta V_{0}\\ \hline \\ \\ \frac{R_{9, 10}}{V_{9, 10}}\\ \hline \\ \\ \text{I}_{9, 10}\\ \hline \\ \hline \\ \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$	Hz) on pins 18 and 22 without ceramic filte sis of 50 μ s and V ₅ = V _P (B/G standard). G intercarrier signals (RMS values, pins 7-8 and 11-12) DC voltage (pins 7, 8, 11 and 12) AF output signals (RMS values, pins 9 and 10) difference of AF signals between channels (pins 9 and 10) output resistance DC voltage allowed AC current of emitter output (peak value) maximum allowed DC output current total harmonic distortion	ers, $R_S = 50 \Omega$. Ω_L -factor = 11 for resonant pin 6 open-circuit; note 2 note 3	circuits at p - 0.75 - - - - - - - - - - - - -	bins 7-8 a 100 1.8 0.95 - 100 2.1 - -	and 11-1: - 1.20 1 - ±1.5 -2	2. mV V V dB Ω V mA %
$\begin{array}{l} \Delta f = \pm 50 \text{ k} \\ \text{De-empha} \\ \text{V}_{\text{IC}} \\ \hline \\ \text{V}_{\text{DC}} \\ \hline \\ \text{V}_{0} \\ \hline \\ \Delta V_{0} \\ \hline \\ \Delta V_{0} \\ \hline \\ \frac{R_{9, 10}}{V_{9, 10}} \\ \hline \\ \hline \\ \text{THD} \\ \hline \\ V_{0} \\ \hline \end{array}$	Hz) on pins 18 and 22 without ceramic filte sis of 50 μ s and V ₅ = V _P (B/G standard). G intercarrier signals (RMS values, pins 7-8 and 11-12) DC voltage (pins 7, 8, 11 and 12) AF output signals (RMS values, pins 9 and 10) difference of AF signals between channels (pins 9 and 10) output resistance DC voltage allowed AC current of emitter output (peak value) maximum allowed DC output current total harmonic distortion AF output signal (RMS value)	ers, $R_S = 50 \Omega$. Ω_L -factor = 11 for resonant pin 6 open-circuit; note 2 note 3 THD = 1.5 %	circuits at p - 0.75 - - - - - - - 1.25	bins 7-8 a 100 1.8 0.95 - 100 2.1 - 0.5 -	and 11-1: - 1.20 1 - ±1.5 -2	2. mV V V dB Ω V mA mA % V
$\begin{array}{l} \Delta f = \pm 50 \text{ k} \\ \text{De-empha} \\ \hline V_{IC} \\ \hline V_{DC} \\ \hline V_{0} \\ \hline \Delta V_{0} \\ \hline \Delta V_{0} \\ \hline \Delta V_{0} \\ \hline \Delta V_{0} \\ \hline \\ \Delta V_{0} \\ \hline \\ \Delta V_{0} \\ \hline \\ \hline \\ \Delta V_{0} \\ \hline \\ $	Hz) on pins 18 and 22 without ceramic filte sis of 50 μ s and V ₅ = V _P (B/G standard). G intercarrier signals (RMS values, pins 7-8 and 11-12) DC voltage (pins 7, 8, 11 and 12) AF output signals (RMS values, pins 9 and 10) difference of AF signals between channels (pins 9 and 10) output resistance DC voltage allowed AC current of emitter output (peak value) maximum allowed DC output current total harmonic distortion AF output signal (RMS value) AM suppression	ers, $R_S = 50 \Omega$. Ω_L -factor = 11 for resonant pin 6 open-circuit; note 2 note 3 THD = 1.5 % 1 kHz, m = 0.3	circuits at p - 0.75 - - - - - - 1.25 48	bins 7-8 a 100 1.8 0.95 - 100 2.1 - 0.5 - 54	and 11-1: - 1.20 1 - ±1.5 -2	2. mV V V dB Ω V mA % V dB V dB
$\begin{array}{l} \Delta f = \pm 50 \text{ k} \\ \text{De-empha} \\ \text{V}_{\text{IC}} \\ \hline \\ \text{V}_{\text{DC}} \\ \hline \\ \text{V}_{0} \\ \hline \\ \Delta V_{0} \\ \hline \\ \Delta V_{0} \\ \hline \\ \\ \Delta V_{0} \\ \hline \\ \\ \frac{\alpha_{\text{AM}}}{S/N(\text{W})} \end{array}$	Hz) on pins 18 and 22 without ceramic filte sis of 50 μ s and V ₅ = V _P (B/G standard). C intercarrier signals (RMS values, pins 7-8 and 11-12) DC voltage (pins 7, 8, 11 and 12) AF output signals (RMS values, pins 9 and 10) difference of AF signals between channels (pins 9 and 10) output resistance DC voltage allowed AC current of emitter output (peak value) maximum allowed DC output current total harmonic distortion AF output signal (RMS value) AM suppression weighted signal-to-noise ratio	ers, $R_S = 50 \Omega$. Ω_L -factor = 11 for resonant pin 6 open-circuit; note 2 note 3 THD = 1.5 % 1 kHz, m = 0.3 CCIR 468-3	circuits at p - 0.75 - - - - - - - 1.25 48 64	bins 7-8 a 100 1.8 0.95 - 100 2.1 - 0.5 - 54 68	and 11-1 - 1.20 1 - ±1.5 -2 1.0 - - - - - - - - - - - - -	2. mV V V dB Ω V mA % V dB dB dB

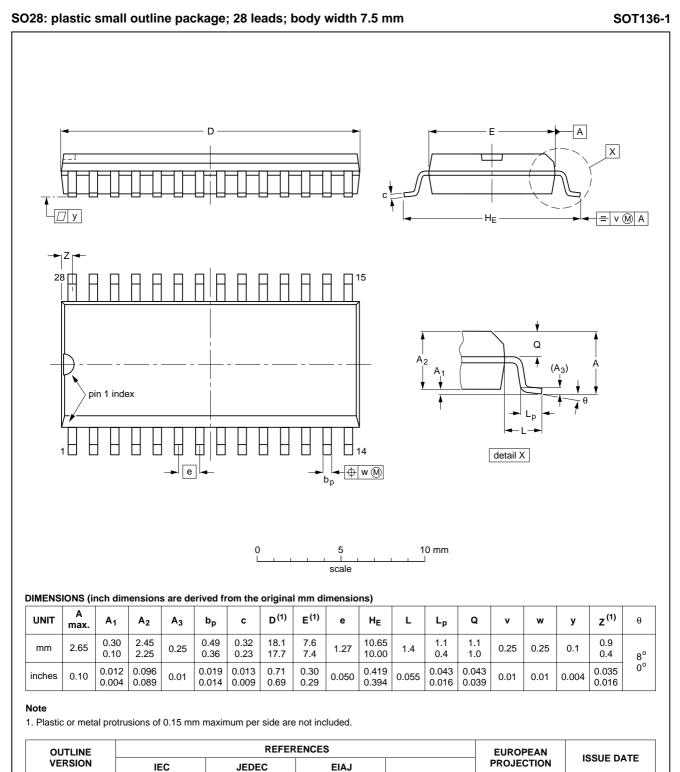

TDA3867T


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ΔG_{AF2}	minimum gain range due to V ₆	due to V ₆	-1.5	_	1.0	dB
	typical gain range	due to V ₆	-2.5	-	1.5	dB
V _{19, 21}	DC voltage (pins 19 and 21)		-	1.7	-	V
Audio free	quency performance in B/G standard unle	ess otherwise specified.	-			
Measurem	nents on AF outputs (pins 9 and 10)					
Vo	AF signal attenuation	$V_i = 400 \ \mu V;$				
	mute: AF2 on pin 9	5.74 MHz on pin 22	70	_	_	dB
dV ₉	DC level deviation	after mute switching	-	5	25	mV
S/N(W)	weighted signal-to-noise ratio	CCIR 468-3				
	on output pin 10	de-emphasis 50 µs				
	black picture	f _i = 5.5 MHz	59	63	-	dB
	2T/20T pulses with white bar	f _i = 5.5 MHz	57	61	-	dB
	6 kHz sine wave, B/W-modulated	f _i = 5.5 MHz	52	56	-	dB
	250 kHz square wave B/W-modulated	f _i = 5.5 MHz	50	56	-	dB
	on output pin 9					
	black picture	f _i = 5.742 MHz	57	61	_	dB
	2T/20T pulses with white bar	f _i = 5.742 MHz	55	59	-	dB
	6 kHz sine wave, B/W-modulated	f _i = 5.742 MHz	50	54	-	dB
	250 kHz square wave B/W-modulated	f _i = 5.742 MHz	50	56	_	dB
RR	ripple rejection	all standards; $f_R = 70 \text{ Hz}$ V _R = 200 mV (p-p)	30	40	-	dB

Notes to the characteristics

- 1. Spurious intercarrier AM: m = (A-B)/A (wherein A = signal at sync; B = signal with 100 % picture modulation.)
- 2. AF2 signal can be adjusted by V_6
- 3. For larger current: $R_L > 2.2 k\Omega$ (pin 9 or 10 to GND) in order to increase the bias current of the output emitter follower.
- 4. If not used, pin 6 should not be connected.
- 5. Automatic frequency control (AFC) of the vision carrier reference circuit (pins 14 and 15) for reducing spurious video signals in the stereo/dual sound modes. The factor of reducing F_{TR} at a deviation Δf_{VC} specifies the ratio of spurious signals with/without tracking function.

TDA3867T


95-01-24

97-05-22

 \bigcirc

Quasi-split sound processor with two FM demodulators

PACKAGE OUTLINE

SOT136-1

075E06

MS-013AE

TDA3867T

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250 \,^{\circ}$ C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

TDA3867T

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
more of the limiting values of the device at these or at	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification limiting values for extended periods may affect device reliability.
Application information	
	ing in given it is a duing a said days and four part of the analitication

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.