INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC02 January 1992

TDA3866

FEATURES

- Quasi-split sound processor for all standards e. g. B/G (FM sound) and L (AM sound)
- AF2 signal automatically muted (at B/G) by the input signal level
- AM signal processing for L standard and switching over the audio signal
- Stereo-matrix correction
- Layout-compatible with TDA3858 (32 pins) and TDA3857 (20 pins)
- AM output level typically 500 mV at m = 0.54 (+2.5 dB in comparison to TDA3856)

GENERAL DESCRIPTION

Separate symmetrical IF inputs for FM or AM sound.

Gain controlled wideband IF amplifier, input select switch. AGC generation due to peak sync for FM or mean signal level for AM. Reference amplifier for the regeneration of the vision carrier. Optimized limiting amplifier for AM suppression in the regenerated vision carrier signal and 90° phase shifter.

Intercarrier mixer for FM sound, output with low-pass filter.

Separate signal processing for 5.5 and 5.74 MHz intercarriers.

Wide supply voltage range, only 300 mW power dissipation at 5 V.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage (pin 21)	4.5	5	8.8	V
IP	supply current	-	60	72	mA
V _{i IF}	IF input sensitivity (-3 dB)	_	70	100	μV
Vo	audio output signal for FM standard B/G (RMS value)	-	1	-	V
	audio output signal for AM standard L (RMS value)	-	0.5	-	V
THD	total harmonic distortion				
	for FM	_	0.5	-	%
	for AM	_	1	-	%
S/N (W)	weighted signal-to-noise ratio				
	for FM	_	68	-	dB
	for AM	-	56	_	dB

ORDERING AND PACKAGE INFORMATION

EXTENDED TYPE		PACKAGE				
NUMBER	PINS	PIN POSITION	MATERIAL	CODE		
TDA3866	24	shrink DIL	plastic	SOT234 ⁽¹⁾		

Note

1. SOT234-1; 1997 January 8.

TDA3866

Quasi-split sound processor for all standards

PIN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Quasi-split sound processor for all standards

TDA3866

PINNING

AMIF1

AMIF2

 $\mathbf{C}_{\mathsf{AGC}}$

 C_{AM} MODE

FM2R1

FM2R2

AF2

AF1

FM1R1

FM1R2

VC-R1

VC-R2

 $\mathbf{C}_{\mathsf{AFAM}}$

FM1I

 C_{AF1} ICO

 C_{AF2} FM2I

GND

VP

Cref

FMIF1

FMIF2

SYMBOL

	FIN CONFIGURATION
DESCRIPTION	
AM IF difference input 1 for L standard (32.4 MHz)	
AM IF difference input 2 for L standard	
charge capacitor for AGC (FM and AM)	
charge capacitor for AM AGC	
3-state input for standard select	
reference circuit for FM2 (5.74 MHz)	AMIF1 1 24 FMIF2
reference circuit for FM2 (5,74 MHz)	AMIF2 2 23 FMIF1
AF2 output (AF out of 5.74 MHz)	CAGC 3 22 Cref
AF1 output (AF out of 5.5 MHz or AM)	
reference circuit for FM1 (5.5 MHz)	MODE 5 20 GND
reference circuit for FM1 (5.5 MHz)	FM2R1 6 19 FM21
reference circuit for the vision carrier (38.9 MHz)	FM2R2 7 TDA3866 18 CAF2
reference circuit for the vision carrier (38.9 MHz)	AF2 8 17 KO
DC-decoupling capacitor for AM demodulator (AF-AM)	AF1 9 16 CaF1
intercarrier input for FM1 (5.5 MHz)	FM1R1 10 15 FM1I
DC-decoupling capacitor for FM1 demodulator (AF1)	FM1R2 11 14 CAFAN
intercarrier output signal (5.5/5.74 MHz)	VC-R1 12 13 VC-R2
DC-decoupling capacitor for FM2 demodulator (AF2)	
intercarrier input for FM2 (5.74 MHz)	
ground (0 V)	
+5 +8 V supply voltage	
charge capacitor for reference voltage	
IF difference input 1 for B/G standard (38.9 MHz)	Fig.2 Pin configuration.
IF difference input 2 for B/G standard (38.9 MHz)	

PIN CONFIGURATION

FUNCTIONAL DESCRIPTION

The quasi-split sound processor is for all standards. Dependent on the voltage on pin 5 either FM mode (B/G) or AM mode (L) is selected.

B/G standard (FM mode): Pins 23 and 24 are active, AGC detector uses peak sync level. Sound carrier SC1 (5.5 MHz) provides AF1, sound carrier SC2 (5.74 MHz) provides AF2. With no sound carrier SC2 on pin 19, AF2 output is muted (in mid-position of the standard select switch FM mode without muting of AF2 is selected).

The mute circuit prevents false signal recognition in the stereo decoder at high IF signal levels when no second sound carrier exists (mono) and an AF signal is present in the identification signal frequency range.

With 1 mV on pin 19, under measurement conditions, AF2 is switched on (see limiting amplifier). Weak input signals at pins 23 and 24 generate noise on pin 19, which is present in the intercarrier signal and passes through the 5.74 MHz filter. Noise on pin 19 inhibits muting. No misinterpretation due to white noise occurs in the stereo decoder; when non-correlated noise masks the identification signal frequencies, which may be present in sustained tone signals. The stereo decoder remains switched to mono.

The series capacitor C_s in 38.9 MHz resonant circuit provides a notch at the sound carrier frequency in order to provide more attenuation for the sound carrier in the vision carrier reference channel. The ratio of parallel/series capacitor depends on the ratio of VC/SC frequency and has to be adapted to other TV transmission standards if necessary, according to the formula $C_S = C_P (f_{VC}/f_{SC})^2 - C_P.$

The result is an improved "intercarrier buzz" (up to 10 dB improvement in sound channel 2 with 250 kHz video modulation for B/G stereo) or suppression of 350 kHz video modulated beat frequency in the digitally-modulated NICAM subcarrier.

The picture carrier for quadrature demodulation in the intercarrier mixer is not exactly 90 degrees due to the shift variation in the integrated phase shift network. The tuning of the LC reference circuit to provide optimal video suppression at the intercarrier output is not the same as that to provide optimal intercarrier buzz suppression. In order to optimize the AF signal performance, a fine tuning for the optimal S/N at the sound channel 2 (from 5.74 MHz) may be performed with a 250 kHz square wave video modulation. Measurements at the demodulators: For all signal-to-noise measurements the generator must meet the following specifications;

phase modulation errors < 0.5 degree for B/W-jumps intercarrier signal-to-noise ratio as measured with "TV-demodulator AMF2" (weighted S/N) must be > 60 dB at 6 kHz sine wave modulation of the B/W-signal.

Signal-to-noise ratios are measured with $\Delta f = \pm 50$ kHz deviation and f_{mod} = 1 kHz; with a deviation of ±27 kHz the S/N ratio is deteriorated by 5.3 dB.

L standard (AM mode): Pins 1 and 2 are active, AGC detector uses mean signal level. The audio signal from the AM demodulator is output on AF1, with AF2 output muted.

TDA3866

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _P	supply voltages (pin 21)	_	8.8	V
V _n	input and output voltage (pins 1, 2, 5, 8, 9, 15, 17, 19, 23 and 24)		V _P	V
P _{tot}	total power dissipation	0	635	mW
T _{stg}	storage temperature range	-25	150	°C
T _{amb}	operating ambient temperature range	0	70	°C
V _{ESD}	electrostatic handling ⁽¹⁾	±500	-	V
	all pins except 1, 2, 23 and 24			
	pins 1, 2, 23 and 24	+400	-	V
	pins 1, 2, 23 and 24	-500	-	V

Note

1. Equivalent to discharging a 200 pF capacitor through a 0 Ω series resistor.

TDA3866

CHARACTERISTICS

 $V_P = 5 V$ and $T_{amb} = 25 \text{ °C}$, measurements taken in Fig.3 with $f_{VC} = 38.9 \text{ MHz}$, $f_{SC1} = 33.4 \text{ MHz}$ and $f_{SC2} = 33.158 \text{ MHz}$. Vision carrier (VC) modulated with different video signals, modulation depth 100 % (proportional to 10 % residual carrier).

Vision carrier amplitude (RMS value) $V_{i VC} = 10 \text{ mV}$; vision to sound carrier ratios are VC/SC1 = 13 dB and VC/SC2 = 20 dB. Sound carriers (SC1, SC2) modulated with f = 1 kHz and deviation $\Delta f = 50 \text{ kHz}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage range (pin 21)		4.5	5	8.8	V
I _P	supply current (pin 21)		48	60	72	mA
IF source c	ontrol (pin 5)		•			
V ₅	input voltage in order to obtain standards					
	B/G (FM) with automatic muting	pin 5 connected	2.8	_	VP	V
		pin 5 open-circuit	_	2.8	_	V
	B/G (FM) without muting	pin 5 connected	1.3	_	2.3	V
		22 k Ω to GND (alternative measure)	-	1.8	-	V
	L (AM sound)	pin 5 connected	0	_	0.8	V
I ₅	input current	$V_5 = V_P$	-	_	100	μA
		$V_5 = 0$	_	_	-300	μA
IF input not	t activated (pins 1-2 or 23-24)				•	
R _I	input resistance		-	-	100	Ω
V _{DC}	DC input voltage (pins 1, 2, 23 and 24)	internally set LOW	-	—	0.1	V
α _{1,2-23,24}	crosstalk attenuation of IF input switch	note 1	50	56	-	dB
IF amplifier	(pins 1-2 or 23-24)					
R _I	input resistance		1.75	2.2	2.65	kΩ
CI	input capacitance		1.0	1.5	2.2	pF
VI	DC potential, voltage (pins 1, 2, 23, 24)		-	1.75	-	V
VilF	maximum input signal (RMS value)	$V_o = +1 \text{ dB}$	70	100	_	mV
	input signal sensitivity B/G standard (RMS value, pins 23-24)	-3 dB intercarrier signal reduction on pin 17	-	70	100	μV
	input signal sensitivity L standard (RMS value, pins 1-2)	-3 dB intercarrier signal reduction on pin 9	-	70	100	μV
ΔG_v	IF gain control range		60	63	-	dB
В	IF bandwidth	–3 dB	50	70	_	MHz
V ₃	voltage range for gain control (pin 3)	G _{min} – G _{max}	1.7	_	2.6	V

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Resonance	amplifier (pins 12-13)		-			
Vo	vision carrier amplitude (peak-to-peak value)	f _o = 38.9 MHz	-	270	-	mV
R ₁₂₋₁₃	operating resistance		-	4	-	kΩ
L	inductance	Fig.3 and 5	_	0.247	-	μH
С	capacitance	C _S = 27 pF	_	68	-	pF
QL	Q-factor of resonant circuit	Q _o = 90	_	40	-	
V _{12, 13}	DC voltage (pins 12 and 13)		_	V _P –1	-	V
	mixer output (pin 17)			_	•	
Vo	output signal for 5.5 MHz (RMS value)		71	95	125	mV
	output signal for 5.74 MHz (RMS value)		32	43	56	mV
В	IF bandwidth	-1 dB	-	8.5	-	MHz
		–3 dB	_	10	_	MHz
V _{VID} /V ₁₇	residual video AM on intercarrier	note 2	-	3	10	%
V _{VC}	residual vision carrier (RMS value)	1st/2nd harmonic; (38.9/77.8 MHz)	-	0.5	1	mV
R ₁₇	output resistance (emitter follower)	1 mA emitter current	-	30	-	Ω
lo	allowable AC output current (pin 17)		_	_	±0.7	mA
I ₁₇	allowable DC output current		_	_	-2	mA
V ₁₇	DC voltage		-	1.75	-	V
Limiting an	nplifiers (pins 15 and 19)	·	•		•	
Vi	minimum input signal (RMS value)	–3 dB AF signal	-	300	450	μV
	maximum input signal (RMS value)		200	_	-	mV
R _{15, 19}	input resistance		_	560	-	Ω
V _{15, 19}	DC voltage		-	0	-	V
V _i	level detector threshold for no muting (RMS value, pin 19)	only 5.74 MHz channel	-	1	-	mV
ΔV _i	hysteresis of level detector		_	5	_	dB

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
FM1 and FM	/ /2 demodulators	1		_ I		
$\Delta f = \pm 50 \text{ kH}$	nts with FM IF input signals of 5.5 MHz and s z) at pins 15 and 19 without ceramic filters, I s 50 μs and V ₅ = V _P (B/G standard). Q _L -fact	R _S = 50 Ω.				ion
V _{IC}	intercarrier signals (RMS values, pins 6-7 and 10-11)		-	100	-	mV
V _{DC}	DC voltage (pins 6-7 and 10-11)		-	1.8	-	V
Vo	AF output signals (RMS values, pins 8 and 9)		0.75	0.95	1.20	V
ΔV_{o}	difference of AF signals between channels (pins 8 and 9)		-	-	1	dB
R _{8, 9}	output resistance		-	100	-	Ω
V _{8,9}	DC voltage		-	2.1	-	V
I _{8, 9}	allowed AC current of emitter output (peak value)	note 3	-	-	±1.5	mA
I _{8, 9}	maximum allowed DC output current		-	_	-2	mA
THD	total harmonic distortion		_	0.5	1.0	%
Vo	AF output signal (RMS value)	THD = 1.5 %	1.25	_	-	V
α_{AM}	AM suppression	1 kHz, m = 0.3	48	54	-	dB
S/N(W)	weighted signal-to-noise ratio	CCIR 468-3	64	68	-	dB
В	AF bandwidth	–3 dB	0.02	_	100	kHz
α_{CR}	crosstalk attenuation (pins 9-8)		60	70	-	dB
V _{16, 18}	DC voltage (pins 16 and 18)		-	1.7	_	V
AM mode, in	nput signal at pins 1-2	SC = 32.4 MHz; $f_{mod} = 1 \text{ kHz}, m = 0.54;$ $V_{i \text{ AM}} = 10 \text{ mV rms}$				
Vo	AF output signal on pin 9 (RMS value)		400	500	600	mV
R ₉	output resistance (pin 9)		_	100	-	Ω
lo	maximum AC output current (peak value)	note 3	_	_	±1.5	mA
lg	maximum DC output current		_	_	-2	mA
V ₉	DC voltage		_	2.1	_	V
THD	total harmonic distortion	Fig.4	_	1	2	%
S/N(W)	weighted signal-to-noise ratio	CCIR 468-3	50	56	-	dB
В	AF bandwidth	–3 dB	0.02	_	100	kHz
V ₁₄	DC voltage (pin 14)		-	2	-	V

TDA3866

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Audio frequ	uency performance for FM operation in B/G	standard ($V_5 = V_P$) unless	otherwise	specifie	d.	
Measureme	ents on AF outputs (pins 8 and 9)					
Vo	signals attenuation of AF signal switches					
	mute: AF2 on pin 8	$V_5 = 0$	70	_	-	dB
	AM mode: not required signal AF1 on pin 9 (from FM)	5.5 MHz on pin 18; $V_5 = 0; V_i = 10 \text{ mV}$	70	-	-	dB
	FM mode: not required signal AF1 on pin 9 (from AM)	signal for L standard (pins 1-2); $V_5 = V_P$	70	-	-	dB
dV _{8,9}	DC level deviation (pins 8 and 9)	when switching to FM or AM sound or Mute	-	5	25	mV
S/N(W)	weighted signal-to-noise ratio on output pin 9	CCIR 468-3 de-emphasis 50 μs				
	black picture	f _i = 5.5 MHz	59	63	-	dB
	2T/20T pulses with white bar	f _i = 5.5 MHz	57	61	-	dB
	6 kHz sine wave, B/W-modulated	f _i = 5.5 MHz	52	56	-	dB
	250 kHz square wave B/W-modulated	f _i = 5.5 MHz	50	56	-	dB
	on output pin 8					
	black picture	f _i = 5.742 MHz	57	61	-	dB
	2T/20T pulses with white bar	f _i = 5.742 MHz	55	59	_	dB
	6 kHz sine wave, B/W-modulated	f _i = 5.742 MHz	50	54	_	dB
	250 kHz square wave B/W-modulated	f _i = 5.742 MHz	50	56	-	dB
RR	ripple rejection	all standards; $f_R = 70 \text{ Hz}$ V _R = 200 mV (p-p)	30	40	-	dB

Notes to the characteristics

- 1. Crosstalk attenuation of IF input switch, measured at $R_{12-13} = 470 \Omega$ (instead of LC circuit); input signal $V_{i (rms)} = 20 \text{ mV}$ (pins 23-24). AGC voltage V_3 set to a value to achieve $V_{o (rms)} = 20 \text{ mV}$ (pins 12-13). After switching ($V_5 = 0 \text{ V}$) measure attenuation. IF coupling with OFWG3203 and OFWL9350 (Siemens).
- 2. Spurious intercarrier AM: m = (A-B)/A (wherein A = signal at sync; B = signal with 100% picture modulation.)
- 3. For larger current: $R_L > 2.2 \text{ k}\Omega$ (pin 8 or 9 to GND) in order to increase the bias current of the output emitter follower.

TDA3866

APPLICATION INFORMATION

TDA3866

Quasi-split sound processor for all standards

TDA3866

Quasi-split sound processor for all standards

PACKAGE OUTLINE

SDIP24: plastic shrink dual in-line package; 24 leads (400 mil)

SOT234-1

TDA3866

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact

with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status					
Objective specification This data sheet contains target or goal specifications for product development.					
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
Limiting values					
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.					
Application information					
Where application information is given, it is advisory and does not form part of the specification.					

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.