INTEGRATED CIRCUITS

DATA SHEET

TDA3617Multiple voltage regulator

Product specification Supersedes data of 1999 Jul 14 File under Integrated Circuits, IC01

Multiple voltage regulator

TDA3617

FEATURES

General

- Three V_P-state controlled regulators (regulators 1, 2 and 3)
- · Very good stability and noise behaviour
- Separate control pins for switching regulators 1, 2 and 3
- Supply voltage range from -18 to +50 V
- Low quiescent current (when regulators 1, 2 and 3 are switched off)
- · High ripple rejection
- Hold output for indicating regulator 1 and/or 2 and/or 3 out-of-regulation.

Protections

- Reverse polarity safe (down to –18 V without high reverse current)
- Able to withstand voltages up to 18 V at the outputs (supply line may be short circuited)
- · ESD protection on all pins

- Thermal protection
- Load dump protection
- Foldback current limit protection for regulators 1, 2 and 3
- DC short-circuit safe to ground and V_P for all regulator outputs.

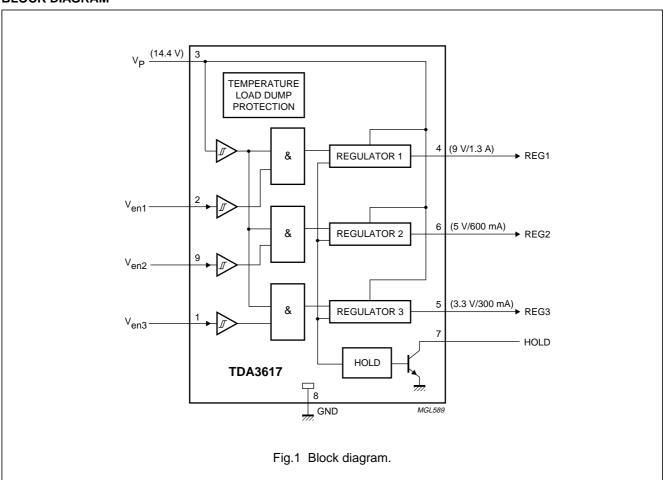
GENERAL DESCRIPTION

The TDA3617 is a multiple output voltage regulator with three independent regulators. It contains:

- 1. Three fixed voltage regulators with foldback current protection (regulators 1, 2 and 3)
- 2. A supply pin that can withstand load dump pulses and negative supply voltages
- 3. Independent enable inputs for regulators 1, 2 and 3
- 4. Local temperature protection for regulator 3
- A hold output that can be used to interface with a microprocessor. The hold indicates that the selected output voltages are available and within their ranges.

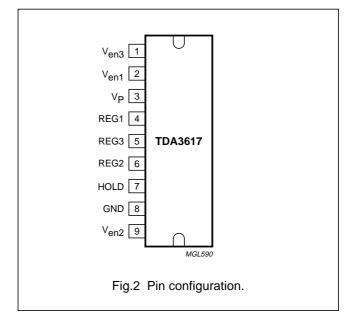
QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply				•	•	
V _P	supply voltage					
	operating		9.5	14.4	17.5	V
	jump start	t ≤ 10 minutes	-	-	30	V
	load dump protection	for 50 ms; $t_r \ge 2.5$ ms	-	-	50	V
I _{q(tot)}	total quiescent current	standby mode	_	5	40	μΑ
T _j	junction temperature		_	_	175	°C
Voltage regul	ators					-
V _{REG1}	output voltage regulator 1	1 mA ≤ I _{REG1} ≤ 1.3 A	8.55	9.0	9.45	V
V _{REG2}	output voltage regulator 2	1 mA ≤ I _{REG2} ≤ 600 mA	4.75	5.0	5.25	V
V _{REG3}	output voltage regulator 3	1 mA \leq I _{REG3} \leq 300 mA	3.14	3.3	3.46	V


ORDERING INFORMATION

TYPE	PACKAGE				
NUMBER NAME		DESCRIPTION	VERSION		
TDA3617J	DBS9P	plastic DIL-bent-SIL power package; 9 leads (lead length 7.7 mm)	SOT157-4		

Multiple voltage regulator


TDA3617

BLOCK DIAGRAM

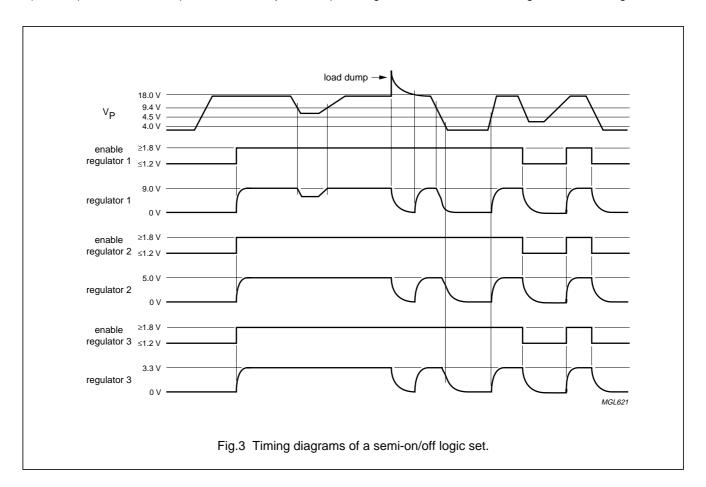
PINNING

SYMBOL	PIN	DESCRIPTION
V _{en3}	1	enable regulator 3 input
V _{en1}	2	enable regulator 1 input
V_P	3	supply voltage
REG1	4	regulator 1 output
REG3	5	regulator 3 output
REG2	6	regulator 2 output
HOLD	7	hold output
GND	8	ground
V _{en2}	9	enable regulator 2 input

Multiple voltage regulator

TDA3617

FUNCTIONAL DESCRIPTION


The TDA3617 is a multiple output voltage regulator with three independent switchable regulators. When the supply voltage is available ($V_P > 4.5 \text{ V}$), regulators 1, 2 and 3 can be operated by means of three independent enable inputs.

Schmitt trigger functions are included to switch the regulators off at low battery voltage ($V_P < 4 \text{ V}$). A hysteresis is included to avoid random switching.

All output pins are fully protected. The regulators are protected against load dump (the regulators switch off at $V_P > 20 \text{ V}$) and short circuit (foldback current protection).

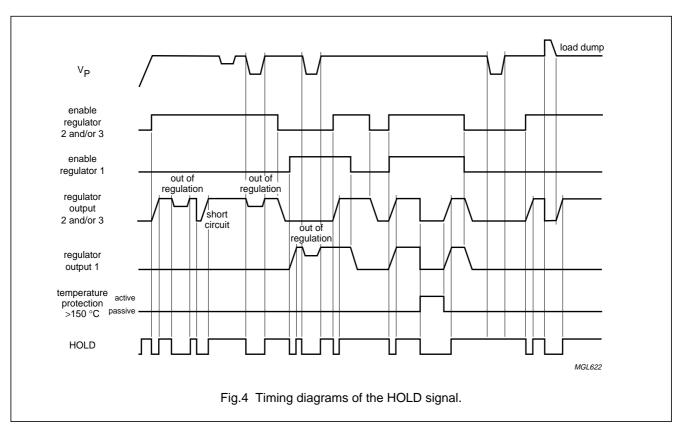

The TDA3617 has a hold circuit which indicates when one of the regulators is out-of-regulation. The hold function is disabled when all the enable inputs are LOW (TDA3617 in standby mode). The HOLD output (open-collector output) can be wired OR-ed with other hold outputs of other regulator parts (e.g. TDA3618). When all the regulators of the TDA3617 are disabled (switched off), the HOLD output will be high ohmic. Because of this feature, the hold will not influence the hold information when wired OR-ed with other regulator parts.

Figure 3 shows the total timing of a semi-on/off logic set. Figure 4 shows the total timing of the HOLD signal.

Multiple voltage regulator

TDA3617

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _P	supply voltage				
	operating		_	17.5	V
	jump start	t ≤ 10 minutes	_	30	V
	load dump protection	for 50 ms; $t_r \ge 2.5$ ms	_	50	V
V _{bat(rp)}	reverse polarity battery voltage	non-operating	_	-18	V
P _{tot}	total power dissipation		_	62	W
T _{stg}	storage temperature	non-operating	-55	+150	°C
T _{amb}	ambient temperature	operating	-40	+85	°C
Tj	junction temperature	operating	_	175	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-c)}	thermal resistance from junction to case		2	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	50	K/W

QUALITY SPECIFICATION

In accordance with "SNW-FQ-611-E".

Multiple voltage regulator

TDA3617

CHARACTERISTICS

 V_P = 14.4 V; T_{amb} = 25 °C; measured in test circuit of Fig.6; unless otherwise specified.

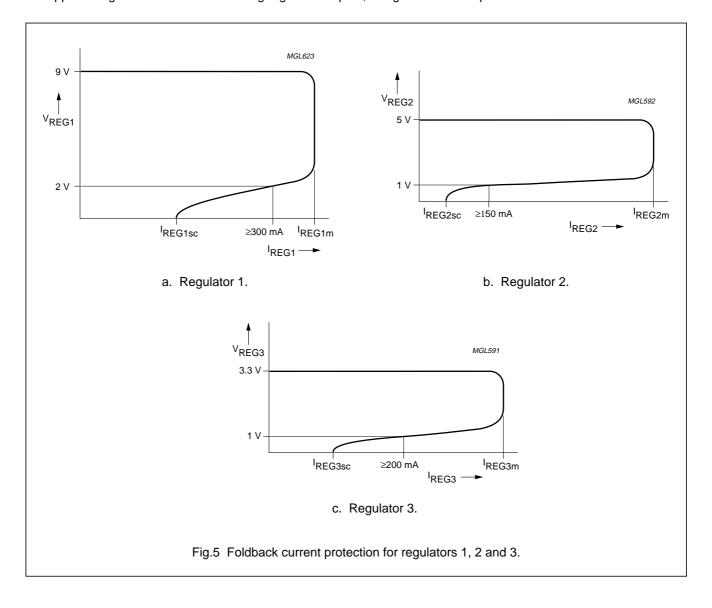
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V _P	supply voltage					
	operating		9.5	14.4	17.5	V
	regulators on	note 1	6	_	_	V
	jump start	t ≤ 10 minutes	_	_	30	V
	load dump protection	for 50 ms; $t_r \ge 2.5$ ms	_	_	50	V
I _{q(tot)}	total quiescent current	V _P = 12.4 V; note 2	_	5	40	μΑ
		V _P = 14.4 V; note 2	_	5	_	μΑ
Power sup	ply Schmitt trigger for regula	ators 1, 2 and 3				
V_{thr}	rising voltage threshold	V _{en} = 3 V	6.2	6.8	7.5	V
V _{thf}	falling voltage threshold	V _{en} = 3 V	4.0	4.5	5.0	V
V _{hys}	hysteresis		1.5	2.3	3.0	٧
Enable inp	ut (regulators 1, 2 and 3)	•	•		•	
V _{i(off)}	off-level input voltage		-0.2		+1.2	٧
V _{i(on)}	on-level input voltage		_	1.8	_	V
ILI	input leakage current	V _{en} = 5 V	5	30	50	μΑ
Hold buffer	,		'			
I _{sinkL}	LOW-level sink current	V _{HOLD} ≤ 0.8 V	2	_	_	mA
I _{LO}	output leakage current	V _{HOLD} = 5 V		0	5	μΑ
	1 (I _{REG1} = 5 mA)					1.
V _{REG1(off)}	output voltage regulator off			1	400	mV
V _{REG1}	output voltage	1 mA ≤ I _{REG1} ≤ 1.3 A	8.55	9.0	9.45	V
		$10.5 \text{ V} \le \text{V}_{\text{P}} \le 17.5 \text{ V}$	8.55	9.0	9.45	V
ΔV_{REG1}	line regulation	$10.5 \text{ V} \le \text{V}_{\text{P}} \le 17.5 \text{ V}$	_	20	50	mV
ΔV_{REGL1}	load regulation	1 mA ≤ I _{REG1} ≤ 1.3 A	_	35	70	mV
I _{qREG1}	quiescent current	I _{REG1} = 1.3 A	_	45	110	mA
SVRR1	supply voltage ripple rejection	$f = 3 \text{ kHz}; V_i = 2 \text{ V (p-p)}$	60	70	-	dB
V _{REG1d}	drop-out voltage	I _{REG1} = 1.3 A; note 3	_	0.5	1	V
I _{REG1m}	current limit	V _{REG1} > 7.5 V; note 4	1.3	1.4	_	Α
I _{REG1sc}	short-circuit current	$R_L \le 0.5 \Omega$; note 5	250	500	_	mA
α_{ct}	cross talk noise	note 6	_	25	150	μV
Schmitt tri	gger for hold of regulator 1					
V _{thr}	rising threshold voltage of regulator 1	V _P rising	_	V _{REG1} – 0.15	V _{REG1} - 0.075	V
V_{thf}	falling threshold voltage of regulator 1	V _P falling	8.1	V _{REG1} – 0.35	-	V
V _{hys}	hysteresis voltage		0.1	0.2	0.3	V

Multiple voltage regulator

TDA3617

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Regulator 2	2 (I _{REG2} = 5 mA)		· I	!		I.
V _{REG2(off)}	output voltage regulator off		_	1	400	mV
V _{REG2}	output voltage	1 mA ≤ I _{REG2} ≤ 600 mA	4.75	5.0	5.25	V
		8 V ≤ V _P ≤ 17.5 V	4.75	5.0	5.25	V
ΔV_{REG2}	line regulation	8 V ≤ V _P ≤ 17.5 V	_	2	50	mV
ΔV_{REGL2}	load regulation	1 mA ≤ I _{REG2} ≤ 600 mA	_	20	85	mV
I _{qREG2}	quiescent current	I _{REG2} = 0.4 A	_	10	40	mA
SVRR2	supply voltage ripple rejection	$f = 3 \text{ kHz}; V_i = 2 \text{ V (p-p)}$	60	70	_	dB
V _{REG2d}	drop-out voltage	$I_{REG2} = 600 \text{ mA}; V_P = 6 \text{ V};$ note 3	-	1	1.5	V
I _{REG2m}	current limit	V _{REG2} > 4 V; note 4	0.65	0.8	_	Α
I _{REG2sc}	short-circuit current	$R_L \le 0.5 \Omega$; note 5	100	300	_	mA
α_{ct}	cross talk noise	note 6	_	25	150	μV
Schmitt trig	gger for hold of regulator 2					
V _{thr}	rising threshold voltage of regulator 2	V _P rising	_	V _{REG2} – 0.15	V _{REG2} - 0.075	V
V_{thf}	falling threshold voltage of regulator 2	V _P falling	4.3	V _{REG2} – 0.35	-	V
V _{hys}	hysteresis voltage		0.1	0.2	0.3	٧
Regulator 3	3 (I _{REG3} = 5 mA)		_	•		
V _{REG3(off)}	output voltage regulator off		_	1	400	mV
V _{REG3}	output voltage	1 mA ≤ I _{REG3} ≤ 300 mA	3.14	3.3	3.46	V
		5 V ≤ V _P ≤ 17.5 V	3.14	3.3	3.46	V
ΔV_{REG3}	line regulation	5 V ≤ V _P ≤ 17.5 V	_	2	50	mV
ΔV_{REGL3}	load regulation	$1 \text{ mA} \le I_{REG3} \le 300 \text{ mA}$	_	20	50	mV
I_{qREG3}	quiescent current	I _{REG3} = 300 mA	_	10	15	mA
SVRR3	supply voltage ripple rejection	$f = 3 \text{ kHz}; V_i = 2 \text{ V (p-p)}$	60	70	_	dB
I _{REG3m}	current limit	V _{REG3} > 3 V; note 4	0.35	0.45	_	Α
I _{REG3sc}	short circuit current	$R_L \le 0.5 \Omega$; note 5	15	50	_	mA
α_{ct}	cross talk noise	note 6	_	25	150	μV
Schmitt trig	gger for hold of regulator 3					
V _{thr}	rising threshold voltage of regulator 3	V _P rising	-	V _{REG3} – 0.15	V _{REG3} - 0.075	V
V _{thf}	falling threshold voltage of regulator 2	V _P falling	2.7	V _{REG3} – 0.35	-	V
V _{hys}	hysteresis voltage		0.1	0.2	0.3	V

Notes

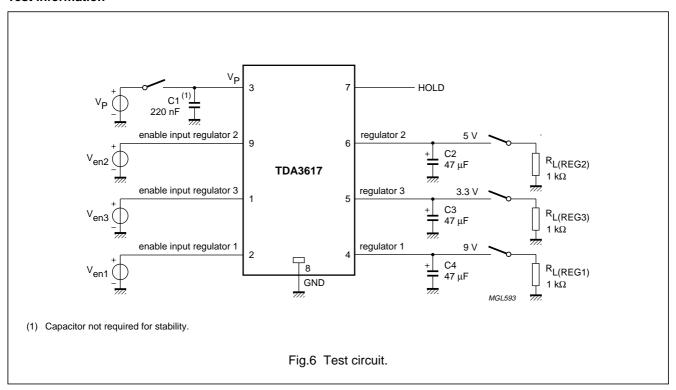

1. Minimum operating voltage, only if V_P has exceeded 4.5 V.

Multiple voltage regulator

TDA3617

2. The quiescent current is measured in the standby mode. Therefore, the enable inputs of regulators 1, 2 and 3 are LOW (V_{en} < 1 V).

- 3. The drop-out voltage of regulators 1 and 2 is measured between V_P and V_{REG2} respectively.
- 4. At current limit, I_{REGmn} is held constant (see Fig.5 for the behaviour of I_{REGmn}).
- 5. The foldback current protection limits the dissipated power at short circuit (see Fig.5).
- Perform the load regulation test with sine wave load of 10 kHz on the regulator output under test. Measure the RMS ripple voltage on each of the remaining regulator outputs, using a 80 kHz low-pass filter.



Multiple voltage regulator

TDA3617

TEST AND APPLICATION INFORMATION

Test information

Application information

Noise

Table 1 Noise figures

REGULATOR	NOISE FIGURE (μ V) ⁽¹⁾				
REGULATOR	$C_o = 10 \mu F$	$C_o = 47 \mu F$	C _o = 100 μF		
1	190	170	140		
2	120	110	80		
3	100	90	70		

Note

1. Measured at a bandwidth of 200 kHz.

The noise on the supply line depends on the value of the supply capacitor and is caused by a current noise (output noise of the regulators is translated to a current noise by means of the output capacitors). The noise is minimum when a high frequency capacitor of 220 nF in parallel with an electrolytic capacitor of 100 μ F is connected directly to pins 3 and 8 (supply and ground).

STABILITY

The regulators are stabilized with the externally connected output capacitors. The value of the output capacitors can be selected by referring to the graph illustrated in Fig.7.

When an electrolytic capacitor is used, its temperature behaviour can cause oscillations at $T_{amb} < -20~^{\circ}C$. In this case, use a tantalum capacitor.

The two examples on the next page show how an output capacitor value is selected.

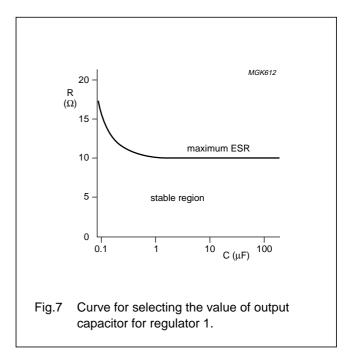
Multiple voltage regulator

TDA3617

Example 1

Regulators 1, 2 and 3 are stabilized with an electrolytic output capacitor of 220 μF (ESR = 0.15 Ω).

At T_{amb} = -30 °C the capacitor value is decreased to 73 μ F and the ESR is increased to 1.1 Ω . The regulator will remain stable at T_{amb} = -30 °C.


Example 2

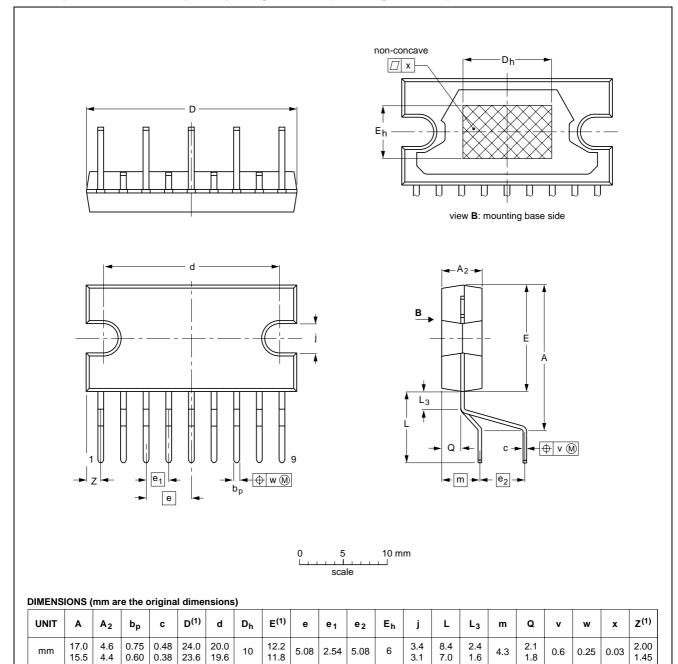
Regulators 1, 2 and 3 are stabilized with an electrolytic output capacitor of 10 μ F (ESR = 3.18 Ω).

At T_{amb} = -30 °C the capacitor value is decreased to 3.3 μF and the ESR is increased to 23 Ω . The regulator will be instable at T_{amb} = -30 °C.

Solution

Use a 47 nF HF capacitor in parallel with the output electrolytic output capacitor. As can be seen from the graph in Fig.7, the regulators will remain stable with an output capacitor of 47 nF onwards. The electrolytic output capacitor is only needed to minimize the output noise.

Product specification Philips Semiconductors


Multiple voltage regulator

TDA3617

PACKAGE OUTLINE

DBS9P: plastic DIL-bent-SIL power package; 9 leads (lead length 7.7 mm)

SOT157-4

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

19.6

0.60

0.38

OUTLINE		REFERENCES			EUROPEAN ISSUE DATI		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT157-4						97-12-16 99-12-17	

Multiple voltage regulator

TDA3617

SOLDERING

Introduction to soldering through-hole mount packages

This text gives a brief insight to wave, dip and manual soldering. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

Wave soldering is the preferred method for mounting of through-hole mount IC packages on a printed-circuit board.

Soldering by dipping or by solder wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joints for more than 5 seconds.

The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg(max)}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

Suitability of through-hole mount IC packages for dipping and wave soldering methods

PACKAGE	SOLDERING METHOD		
PACKAGE	DIPPING	WAVE	
DBS, DIP, HDIP, SDIP, SIL	suitable	suitable ⁽¹⁾	

Note

1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.

Multiple voltage regulator

TDA3617

DATA SHEET STATUS

DATA SHEET STATUS	PRODUCT STATUS	DEFINITIONS (1)
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Note

Please consult the most recently issued data sheet before initiating or completing a design.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Multiple voltage regulator

TDA3617

NOTES

Multiple voltage regulator

TDA3617

NOTES

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248. Fax. +43 1 60 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,

220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773

Belgium: see The Netherlands Brazil: see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America Czech Republic: see Austria

Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,

Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920

France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,

Tel. +33 1 4099 6161, Fax. +33 1 4099 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 2353 60, Fax. +49 40 2353 6300

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,

Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: PT Philips Development Corporation, Semiconductors Division,

Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),

Tel. +39 039 203 6838. Fax +39 039 203 6800

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811

Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, Tel. +48 22 5710 000, Fax. +48 22 5710 001

Portugal: see Spain

Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,

Tel. +27 11 471 5401, Fax. +27 11 471 5398 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP. Brazil.

Tel. +55 11 821 2333. Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.

60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,

Tel. +66 2 361 7910, Fax. +66 2 398 3447

Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,

ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

Uruguay: see South America Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 3341 299, Fax.+381 11 3342 553

For all other countries apply to: Philips Semiconductors,

Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,

The Netherlands, Fax. +31 40 27 24825

Internet: http://www.semiconductors.philips.com

© Philips Electronics N.V. 2000

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

753503/25/02/pp16

Date of release: 2000 Oct 13

Document order number: 9397 750 07409

SCA70

Let's make things better.

