INTEGRATED CIRCUITS

Product specification Supersedes data of September 1994 File under Integrated Circuits, IC01 1995 Dec 13

TDA3601Q TDA3601AQ

FEATURES

- Six fixed voltage regulators
- Three microprocessor-controlled regulators
- Two V_P-state controlled regulators
- One fixed voltage regulator (can operate during load dump or thermal shutdown)
- V_{P1} supply pin (low current pin)
- V_{P2} supply pin (high current pin)
- RESET output (TDA3601Q) or RESET output (TDA3601AQ)
- Internally fixed timer of 100 μs
- Externally fixed delay timer
- High ripple rejection
- Flexible leads.

QUICK REFERENCE DATA

PROTECTION

- Current limit protection for regulator 1
- Foldback current limit protection (regulators 2 to 6)
- Load dump protection
- Thermal protection
- Regulator outputs DC short-circuit-safe to ground, V_{P} and other regulator outputs
- Capable of handling high energy on any of the output pins
- Reverse polarity safe.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Entire dev	ice				1	1
V _{P1}	supply voltage range	operating	11	13.2	18	V
		load dump; notes 1 and 2	_	_	50	V
V _{P2}	supply voltage range	operating	11	13.2	18	V
		non-operating	_	_	30	V
		load dump; note 1	_	_	50	V
I1 _{tot}	total quiescent current, V _{P1}	V _{P2} = 0; note 3	_	1	1.4	mA
T _c	crystal temperature		_	_	150	°C
Voltage re	gulators			-		
V _{R1}	output voltage regulator 1	$0.5 \text{ mA} \le I_{R1} \le 20 \text{ mA}$	4.75	5	5.25	V
V _{R2}	output voltage regulator 2	$5 \text{ mA} \le I_{R2} \le 200 \text{ mA}$	1.9	2.1	2.3	V
V _{R3}	output voltage regulator 3	$5 \text{ mA} \le I_{R3} \le 150 \text{ mA}$	4.75	5	5.25	V
V _{R4}	output voltage regulator 4	$5 \text{ mA} \le I_{R4} \le 150 \text{ mA}$	9	9.5	10	V
V _{R5}	output voltage regulator 5	$5 \text{ mA} \le I_{R5} \le 200 \text{ mA}$	9	9.5	10	V
V _{R6}	output voltage regulator 6	$5 \text{ mA} \le I_{R6} \le 200 \text{ mA}$	9.3	9.75	10.2	V

Notes

- 1. Load dump, during 50 ms, $t_r > 2.5$ ms.
- 2. Regulator 1 operating, 0.5 mA $\leq I_{R1} \leq$ 20 mA.
- 3. V_{P1} = 13.2 V; V_{P2} = R4-sel = R5-sel = 0; I_{R1} = 0.

TDA3601Q TDA3601AQ

BLOCK DIAGRAM

TDA3601Q TDA3601AQ

ORDERING INFORMATION

TYPE NUMBER		PACKAGE		
ITPE NUMBER	NAME	DESCRIPTION	VERSION	
TDA3601Q	DBS13P	plactic DIL bant SIL power package: 12 loads (load longth 12 mm)	SOT141-6	
TDA3601AQ	DB313F	plastic DIL-bent-SIL power package; 13 leads (lead length 12 mm)	301141-0	

GENERAL DESCRIPTION

The circuit contains five fixed voltage regulators with foldback current protection and one fixed voltage regulator (REGULATOR 1) that also operates during a load dump. In addition, a RESET function (TDA3601Q) or RESET function (TDA3601AQ), timer functions and a logic multiplexer are implemented.

PINNING

SYMBOL	PIN	DESCRIPTION		
C _{RESET}	1	reset timing capacitor		
R5-sel	2	regulator 5 select		
R4-sel	3	regulator 4 select		
REG1	4	regulator 1 output (5 V)		
V _{P1}	5	supply voltage		
REG4	6	regulator 4 output (9.5 V)		
REG5	7	regulator 5 output (9.5 V)		
REG6	8	regulator 6 output (9.75 V)		
REG3	9	regulator 3 output (5 V)		
REG2	10	regulator 2 output (2.4 V)		
V _{P2}	11	supply voltage		
GND	12	ground		
RES	13	RESET output (TDA3601Q)		
RES	13A	RESET output (TDA3601AQ)		

TDA3601Q

TDA3601AQ

Multiple output voltage regulators

FUNCTIONAL DESCRIPTION

The TDA3601Q is a multiple output voltage regulator with six fixed voltage regulators. Three, logical switch controlled, voltage regulators (numbers 4 to 6) are available, and one non-switchable voltage regulator (number 1). In addition, there are two further regulators (numbers 2 and 3), which are controlled by supply voltages V_{P1} and V_{P2} (Schmitt trigger).

Regulator 1 is not affected by load dump or thermal shutdown. Regulators 2 to 6 are supplied by V_{P2} ; they can therefore be switched of by an ignition switch, for example. An internal bandgap voltage reference, which provides a reference voltage for each independent regulator, is supplied by V_{P1} . This supply voltage V_{P1} also supplies regulator 1.

A V_{P2} sense circuit outputs a logical high when the V_{P2} voltage rises through V_{thr} , which remains high until the V_{P2} voltage falls through V_{thf} .

The supply voltage V_{P1} is sensed by an out-of-regulation Schmitt trigger.

When this voltage drops below 5.95 V typical, the reset output is disabled, to prevent a microprocessor being disturbed by a too-low supply voltage. An out-of-regulation condition is indicated by a logical low and an in-regulation condition indicated by a logical high.

The 'Power On' switch low will disable regulator 2 and 3 outputs. In addition, the logic switch will be disabled, so that regulators 4 to 6 are switched off. When both V_{P2} -sense and out-of-regulation are high, the 'Power On' will be high, so that the logic multiplexer and regulators 2 and 3 are enabled. Regulators 4 to 6 can now be selected by the multiplexer.

Re-triggerable one-shot circuits produce a RESET (open collector output) when V_{P1} is available (40 ms delay signal), or when both V_{P1} and V_{P2} are available (100 μ s pulse). RESET will be held in a constant high state when the supply voltage V_{P1} is less than 5.5 V (5.95 V typical).

The TDA3601 has a RESET output, but the TDA3601A has an inverted RESET output (RESET).

LIMITING VALUES

In accordance with the Absolute maximum System (IEC 134).

SYMBOL	PARAMETER CONDITIONS		MIN.	MAX.	UNIT
V _{P1} , V _{P2}	supply voltage	operating	-	18	V
		non-operating	-	30	V
		load dump protected; during 50 ms; $t_r > 2.5$ ms; note 1	-	50	V
P _{tot}	total power dissipation	T _{case} < 30 °C	-	15	W
T _{stg}	storage temperature range	non-operating	-55	150	°C
T _{vj}	virtual junction temperature	operating	-40	150	°C
V _{pr}	reverse polarity	non-operating	_	6	V

Note

1. Regulator 1 operating, 0.5 mA $\leq I_{R1} \leq$ 20 mA.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-c}	thermal resistance from junction to case	8	K/W
R _{th j-amb}	thermal resistance from junction to ambient in free air	40	K/W

QUALITY SPECIFICATION

Quality according to UZW-BO/FQ-0601.

TDA3601Q TDA3601AQ

CHARACTERISTICS

 V_{P1} = V_{P2} = 13.2 V, T_{amb} = 25 °C, C_{out} = 10 $\mu F;$ unless otherwise specified (see Fig.5).

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply	1			•		
V _{P1}	supply voltage range	operating	11	13.2	18	V
V _{P1}	supply voltage range	load dump; notes 1and 2	-	-	50	V
V _{P2}	supply voltage range	operating	11	13.2	18	V
V _{P2}	supply voltage range	load dump; note 1	_	-	50	V
I _{P1}	quiescent current	V _{P2} = 0; note 3	_	1.1	1.4	mA
Schmitt tr	iggers				·	
V _{P2} -SENSE	THRESHOLD					
V _{thr}	rising threshold voltage		7.6	8	8.4	V
V _{thf}	falling threshold voltage		6.2	6.5	6.8	V
V _{hy}	hysteresis		1.35	1.5	1.65	V
OUT-OF-RE	GULATION THRESHOLD					
V _{thr}	rising threshold voltage		6.8	7.35	7.9	V
V _{thf}	falling threshold voltage		5.5	5.95	6.4	V
V _{hy}	hysteresis		1.2	1.4	1.6	V
Reset circ	uits (for timing, see Fig.3)				·	
t _{rst1}	reset delay time	C _{rst} = 100 nF	20	40	100	ms
t _{rst}	reset hold time		50	100	150	μs
V _{rl}	reset low	I _{sync} = 1 mA	_	0.15	0.8	V
I _{cr}	delay current (pin 1 to C _{rst})		-	-5	-	μA
t _r	reset rise time	note 4	-	-	1	μs
t _f	reset fall time	note 4	-	-	1	μs
V _{CAP}	voltage pin 1	$C_{rst} = 0$	5.5	6.0	_	V
R _{sp}	spike-on reset	on-state; note 5	-	0	100	mV
Regulator	s					
SELECTOR	CONTROL INPUTS R4-SEL AND R5	SEL				
V _{sl}	input low voltage		-0.5	-	0.8	V
V _{sh}	input high voltage		2	-	-	V
I _{hs}	input high current	V _{RXsel} > 2 V	_	-	1	μA
I _{ls}	input low current	V _{RXsel} < 0.8 V	-1	-	-	μA

TDA3601Q TDA3601AQ

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
REGULATO	R 1 (I _{R1} = 1 MA UNLESS OTHER	WISE SPECIFIED)				
V _{R1}	output voltage	$0.5 \text{ mA} \le I_{R1} \le 20 \text{ mA}$	4.75	5	5.25	V
		$6.25 \text{ V} \le \text{V}_{P1} \le 18 \text{ V}$	4.75	5	5.25	V
V _{R1L}	output voltage	$18 \text{ V} \le \text{V}_{P} \le 50 \text{ V}$	4.75	5	5.25	V
ΔV_{R1}	line regulation	$6.25 \text{ V} \le \text{V}_{P} \le 18 \text{ V}$	_	-	50	mV
ΔV_{RL1}	load regulation	$0.5 \text{ mA} \le I_{R1} \le 20 \text{ mA}$	_	-	60	mV
RR1	ripple rejection	f _o = 120 Hz; V _{P1} = V _{P2} ; note 6	60	-	-	dB
V _{Rd1}	drop-out voltage	I _{R1} = 20 mA	_	-	1	V
I _{Rm1}	current limit		30	-	-	mA
$\Delta V / \Delta T$	thermal drift	-40 ≤ T ≤ 80 °C	_	tbn	-	mV/°C
REGULATO	R 2 (I _{R2} = 5 MA UNLESS OTHER	WISE SPECIFIED)				1
V _{R2}	output voltage	$5 \text{ mA} \le I_{R2} \le 200 \text{ mA}$	1.9	2.1	2.3	V
		$7 \text{ V} \le \text{V}_{P} \le 18 \text{ V}$	1.9	2.1	2.3	V
ΔV_{R2}	line regulation	$7 \text{ V} \le \text{V}_{P} \le 18 \text{ V}$	_	_	50	mV
ΔV_{RL2}	load regulation	$5 \text{ mA} \le I_{R2} \le 200 \text{ mA}$	_	_	70	mV
RR2	ripple rejection	f _o = 120 Hz; V _{P1} = V _{P2} ; note 6	60	_	_	dB
I _{Rm2}	current limit	V _{R2} > 1.75 V; note 7	250	_	_	mA
I _{Rsc2}	short-circuit current	$R_{L} \leq 0.5 \Omega$; note 7	_	tbn	_	mA
ΔV/ΔΤ	thermal drift	-40 ≤ T ≤ 80 °C	_	tbn	_	mV/°C
REGULATO	R 3 ($I_{R3} = 5 \text{ MA}$ UNLESS OTHER	RWISE SPECIFIED)	I			
V _{R3}	output voltage	$5 \text{ mA} \le I_{R3} \le 150 \text{ mA}$	4.75	5	5.25	V
		$7 \text{ V} \le \text{V}_{\text{P}} \le 18 \text{ V}$	4.75	5	5.25	V
ΔV_{R3}	line regulation	$7 \text{ V} \le \text{V}_{\text{P}} \le 18 \text{ V}$	_	_	50	mV
ΔV_{RL3}	load regulation	5 mA ≤ I _{R3} ≤ 150 mA	_	_	70	mV
RR3	ripple rejection	$f_0 = 120 \text{ Hz}; V_{P1} = V_{P2}; \text{ note } 6$	60	_	_	dB
I _{Rm3}	current limit	V _{R3} > 4.5 V; note 7	200	_	_	mA
I _{Rsc3}	short-circuit current	$R_{L} \leq 0.5 \Omega$; note 7	_	tbn	_	mA
$\Delta V / \Delta T$	thermal drift	-40 ≤ T ≤ 80 °C	_	tbn	_	mV/°C
REGULATO	R 4 (I _{R4} = 5 MA UNLESS OTHER	RWISE SPECIFIED)	I		1	
V _{R4}	output voltage	$5 \text{ mA} \le I_{R4} \le 150 \text{ mA}$	9	9.5	10	V
114		$11 \text{ V} \le \text{V}_{\text{P}} \le 18 \text{ V}$	9	9.5	10	V
ΔV_{R4}	line regulation	$11 \text{ V} \le \text{V}_{\text{P}} \le 18 \text{ V}$	-	-	50	mV
ΔV_{RL4}	load regulation	$5 \text{ mA} \le I_{R4} \le 150 \text{ mA}$		70	mV	
RR4	ripple rejection			_	_	dB
V _{Rd4}	drop-out voltage	$I_{B4} = 150 \text{ mA}$	_	_	1	V
I _{Rm4}	current limit	V _{R4} > 8.5 V; note 7	200	-	_	mA
I _{Rsc4}	short-circuit current	$R_{\rm L} \leq 0.5 \Omega$; note 7	_	tbn	_	mA
$\Delta V / \Delta T$	thermal drift	$-40 \le T \le 80 \ ^{\circ}C$		tbn	_	mV/°C

TDA3601Q TDA3601AQ

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
REGULATOR 5 (I _{R5} = 5 MA UNLESS OTHERWISE SPECIFIED)						1
V _{R5}	output voltage	$5 \text{ mA} \le I_{R5} \le 200 \text{ mA}$	9	9.5	10	V
		$11 \text{ V} \le \text{V}_{\text{P}} \le 18 \text{ V}$	9	9.5	10	V
ΔV_{R5}	line regulation	$11 \text{ V} \le \text{V}_{\text{P}} \le 18 \text{ V}$	_	_	50	mV
ΔV_{RL5}	load regulation	$5 \text{ mA} \le I_{R5} \le 200 \text{ mA}$	_	_	70	mV
RR5	ripple rejection	$f_0 = 120 \text{ Hz}; V_{P1} = V_{P2}; \text{ note } 6$	60	_	_	dB
V _{Rd5}	dropout voltage	I _{R5} = 200 mA	_	_	1	V
I _{Rm5}	current limit	V _{R5} > 8.5 V; note 7	250	_	_	mA
I _{Rsc5}	short-circuit current	$R_L \le 0.5 \Omega$; note 7	_	tbn	-	mA
$\Delta V / \Delta T$	thermal drift	-40 ≤ T ≤ 80 °C	_	tbn	-	mV/°C
REGULATOR	R 6 (I _{R6} = 5 MA UNLESS OTHERWISI	E SPECIFIED)	•			
V _{R6}	output voltage	$5 \text{ mA} \le I_{R6} \le 200 \text{ mA}$	9.3	9.75	10.25	V
		$11 \text{ V} \le \text{V}_{\text{P}} \le 18 \text{ V}$	9.3	9.75	10.25	V
ΔV_{R6}	line regulation	$11 \text{ V} \le \text{V}_{\text{P}} \le 18 \text{ V}$	_	_	50	mV
ΔV_{RL6}	load regulation	$5 \text{ mA} \le I_{R6} \le 200 \text{ mA}$	_	_	70	mV
RR6	ripple rejection	$f_0 = 120 \text{ Hz}; V_{P1} = V_{P2}; \text{ note } 6$	60	_	_	dB
V _{Rd6}	dropout voltage	I _{R6} = 200 mA	_	_	0.5	V
I _{Rm6}	current limit	V _{R6} > 8.5 V; note 7	300	_	_	mA
I _{Rsc6}	short-circuit current	$R_{bel} \le 0.5 \Omega$; note 7 – tbn -		-	mA	
$\Delta V / \Delta T$	thermal drift	$-40 \le T \le 80 \ ^{\circ}C$	_	tbn	-	mV/°C

Notes

- 1. During 50 ms, $t_r > 2.5$ ms.
- 2. Regulator 1 operating, 0.5 mA \leq I_{R1} \leq 20 mA.

3. $V_{P1} = 13.2 V$, $V_{P2} = R4$ -sel = R5-sel = 0, $I_{R1} = 0$.

- 4. External pull-up resistor of 10 k Ω to 5 V required, and $C_{\text{load}} \leq$ 10 pF.
- 5. Spike-on reset measured within a time frame of 75 msec.
- 6. $V_{P1} = V_{P2} = 13.2 \text{ V}$, ripple on $V_{P1} = V_{P2}$ of: 1 $V_{(p-p)}$, f₀ = 120 Hz.
- 7. Foldback current protection behaviour: see Fig.4.

TDA3601Q TDA3601AQ

Reset circuits

	INPUTS			OUTPUTS				
V _{P1}	V _{P2}	R4-SEL	R5-SEL	REG.1	REGS 2 & 3	REG.4	REG.5	REG.6
0	Х	Х	Х	0	0	0	0	0
1	0	Х	Х	1	0	0	0	0
1	1	0	0	1	1	0	0	0
1	1	1	0	1	1	1	0	1
1	1	0	1	1	1	0	1	1
1	1	1	1	1	1	0	0	1

Regulators truth table (see note 1)

Note

1. 0 = LOW/OFF;

1 = HIGH/ON;

X = don't care.

TDA3601Q TDA3601AQ

TEST AND APPLICATION INFORMATION

TDA3601Q TDA3601AQ

PACKAGE OUTLINE

TDA3601Q TDA3601AQ

Multiple output voltage regulators

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status					
Objective specification This data sheet contains target or goal specifications for product development.					
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
Limiting values					
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operatio of the device at these or at any other conditions above those given in the Characteristics sections of the specificatio is not implied. Exposure to limiting values for extended periods may affect device reliability.					
Application information					
Where application information is given, it is advisory and does not form part of the specification					

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.