

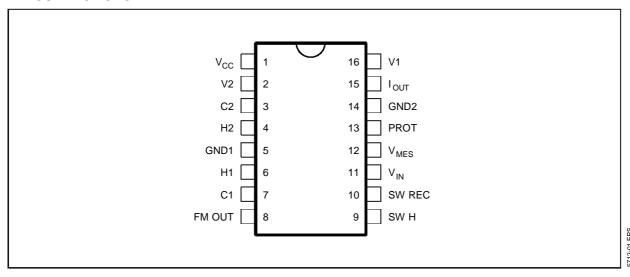
## STV5712


## ADVANCED FM AUDIO PLAY-BACK AND RECORD AMPLIFIER FOR VCR

#### **PLAY-BACK MODE**

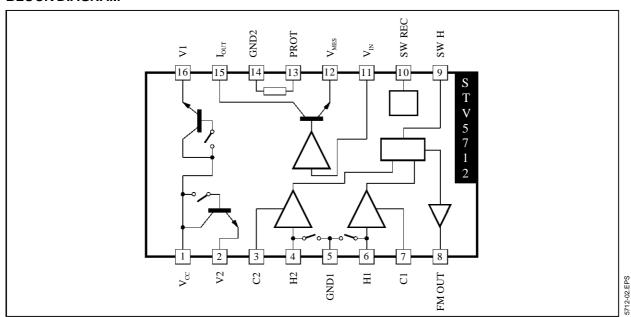
- LOW NOISE 68dB AMPLIFIERS FOR 2 HEADS
- AUTOMATIC OFFSET CANCELLATION BETWEEN THE 2 SELECTED HEADS
- ONE PLAY-BACK OUTPUT
- MODE SELECTION BY LOGIC INPUT

#### **RECORD MODE**


- ONE INTEGRATED I/I CONVERTER WITH ACCURATE CONTROL OF TRANSCON-DUCTANCE
- RECORD AMPLIFIER WITH AUTOMATIC PROTECTION AGAINST SHORT CIRCUIT
- 5V SUPPLY VOLTAGE



#### **DESCRIPTION**


The STV5712 is an advanced two head FM audio record and play-back amplifier for VCR.

### **PIN CONNECTIONS**



April 1996 1/8

#### **BLOCK DIAGRAM**



#### **FUNCTIONAL DESCRIPTION**

STV5712 is intended for 2 heads FM audio VCR applications.

High performance technology allows very low noise levels (current and voltage). In play-back mode a special feature suppresses the DC offset when switching two channels. Optimized play-back output stage gives to the STV5712 large capability to directly drive a coaxial cable in order to reduce number of external components.

Only one power supply is necessary for play-back and record modes. The mode can be chosen through a logic input. Aspecial care has been taken to avoid current peaks through the rotary transformers.

During play-back mode, record output is grounded via an internal transistor and during record mode preamplifiers are turned off.

There is one output current for the two heads, the DC current and the AC characteristics can be very precisely controlled with accurate external resistors. If recommended resistances are used, a  $\pm 5\%$  transconductance accuracy is guaranted.

The recording amplifier includes a protection system which protects the IC and the application board against overheating in case of short circuit on the recording transconductance components.

STV5712 is fully protected against ESD.

### **ABSOLUTE MAXIMUM RATINGS**

| Symbol          | Parameter            | Value | Unit |
|-----------------|----------------------|-------|------|
| V <sub>CC</sub> | Power Supply Voltage | 6     | V    |
| TJ              | Junction Temperature | + 150 | °C   |

## THERMAL DATA

| Symbol                | Parameter                                | Value | Unit |
|-----------------------|------------------------------------------|-------|------|
| R <sub>th (j-a)</sub> | Junction-ambient Thermal Resistance Typ. | 100   | °C/W |

712-02.TBL



# **ELECTRICAL OPERATING CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise specified) **Power Consumption**

| Parameter            | Play-Back |      | Record (1) |      |  |
|----------------------|-----------|------|------------|------|--|
| r al allietei        | Тур.      | Max. | Тур.       | Max. |  |
| V <sub>CC</sub> = 5V | 25mA      | 35mA | 60mA       | 80mA |  |

**Note :** 1.  $R1 = 5.6\Omega$ 

## Play-back Mode

V<sub>CC</sub> = 5V, no load on Pin V<sub>OUT</sub>

| Symbol           | Parameter      | Test Conditions | Min. | Тур. | Max. | Unit |
|------------------|----------------|-----------------|------|------|------|------|
| I <sub>CC1</sub> | Supply Current |                 |      | 25   | 35   | mA   |
| Vcc              | Supply Voltage |                 | 4.75 | 5    | 5.25 | V    |

## FM OUT

|                                        |                                                                                      |                                                                              |     |      | r   |            |
|----------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----|------|-----|------------|
| G <sub>PB</sub>                        | Pre-amplification Gain                                                               | Sinus wave 1.6MHz<br>400mV <sub>PP</sub> on output,<br>Input on Pin H1 or H2 | 63  | 68   | 73  | dB         |
| $\Delta G_PB$                          | Gain Difference of Output Signal on<br>Pin FM OUT between Channel 1<br>and Channel 2 | Sinus wave 1.6MHz<br>0.1mV <sub>PP</sub> on inputs H1 or H2                  |     |      | 1.2 | dB         |
| en                                     | Equivalent Input Voltage Noise<br>Level                                              | Input grounded via switching transistor on Pins H1, H2                       |     | 0.34 | 0.5 | nV/√Hz     |
| i <sub>N</sub>                         | Equivalent Input Current Noise                                                       | Pins H1, H2                                                                  |     | 3.6  | 5.0 | pA/√Hz     |
| CRT                                    | Crosstalk                                                                            | Sinus wave 1.6MHz<br>100μV <sub>PP</sub> , All switches combinated           |     | -45  | -40 | dB         |
|                                        | Bandwidth Cut-off Frequency                                                          | -3dB attenuation $50\Omega$ in parallel on the input                         |     |      |     |            |
| F <sub>LCPB</sub><br>F <sub>HCPB</sub> |                                                                                      | Low<br>High                                                                  |     | 8    | 0.1 | MHz<br>MHz |
| C <sub>IN</sub>                        | Input Capacitance Pins H1, H2                                                        |                                                                              |     | 45   |     | pF         |
| Rin                                    | Pre-amplifier Input Resistance Pins<br>H1, H2                                        | At 1.6MHz                                                                    |     | 600  |     | Ω          |
| $Z_{PB}$                               | Output Impedance                                                                     | DC                                                                           |     | 30   | 50  | Ω          |
| $V_{DCPB}$                             | DC Level at Pin FMOUT                                                                |                                                                              | 1.8 | 2.4  | 3   | V          |
| $\Delta V_{DC}$                        | Head Switch Offset                                                                   |                                                                              |     |      | 150 | mV         |
| SH <sub>PB1</sub>                      | Second Harmonic                                                                      | Sinus wave 1.6MHz<br>100μV <sub>PP</sub> on input 500Ω//100pF                |     | -45  | -40 | dB         |
|                                        | •                                                                                    | •                                                                            |     |      |     |            |

## **ELECTRICAL OPERATING CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise specified) (continued) **Record Mode**

 $V_{CC}$  = 5V, Load resistor  $50\Omega$  on Pin IouT

Transconductance network defined by :  $R1 = 5.6\Omega$  1% Pins PROT/V<sub>MES</sub>

 $R2 = 1k\Omega \qquad 1\% \text{ Pins V}_{MES}/V_{IN}$   $R3 = 750\Omega \qquad 1\% \text{ Pins V}_{IN}$ 

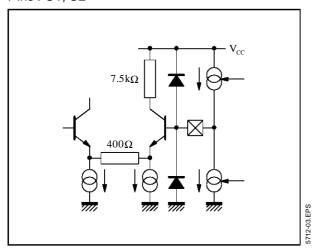
| Symbol           | Parameter      | Test Conditions | Min. | Тур. | Max. | Unit |
|------------------|----------------|-----------------|------|------|------|------|
| I <sub>CC2</sub> | Current Supply | $V_{CC} = 5V$   |      | 60   | 80   | mA   |

 $I_{\text{OUT}}$ 

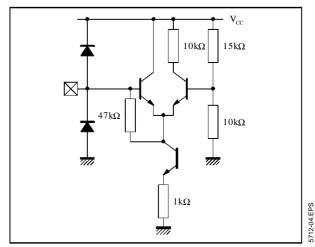
| I <sub>max</sub>                         | Max. Record Current                     |                                                                      |     | 70  |     | $mA_PP$    |
|------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|-----|-----|-----|------------|
| I <sub>BIAS</sub>                        | Biasing Current of the record amplifier |                                                                      | 33  | 40  | 47  | mA         |
| TR                                       | Transconductance                        | $V_{IN} = 200 \text{mV}_{PP}$                                        |     | 220 |     | mA/V       |
| Z <sub>OUT</sub>                         | Output Resistance                       |                                                                      | 7   | 100 |     | kΩ         |
| $SH_REC$                                 | Second Harmonic                         | Output Current 40mA <sub>PP</sub> at 1.6MHz                          |     | -43 | -38 | dB         |
| F <sub>LCREC</sub><br>F <sub>HCREC</sub> | Bandwidth Cut-off Frequency             | -3dB attenuation<br>Output current 60mA <sub>PP</sub><br>Low<br>High | 5   |     | 0.1 | MHz<br>MHz |
|                                          | Maximum Input Current on Pin PROT       | 5V on Pin PROT                                                       | 150 | 250 | 400 | mA         |
|                                          | Maximum Saturation Voltage on Pin PROT  | Input current 50mA                                                   |     | 100 | 150 | mV         |
|                                          | Input Resistance                        | Equivalent value of R3 resistor                                      | 500 | 700 | 900 | Ω          |

**Switching Levels** 

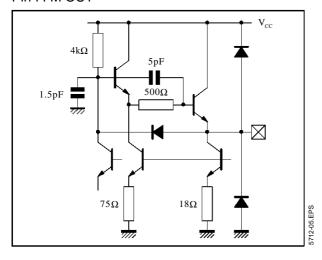
| Symbol            | Parameter                  | Test Conditions                                                          | Min. | Тур. | Max.            | Unit     |
|-------------------|----------------------------|--------------------------------------------------------------------------|------|------|-----------------|----------|
| V <sub>SWH1</sub> |                            | Head number 1 (high level)                                               | 2.4  |      | V <sub>CC</sub> | ٧        |
| $V_{\text{SWL1}}$ | Head Selection Pin SW      | Head number 2 (low level)                                                | 0    |      | 1.5             | <b>V</b> |
| I <sub>SWH1</sub> |                            | Input current (high level)                                               |      | 20   | 50              | μΑ       |
| I <sub>SWL1</sub> |                            | Output current (low level)                                               |      | 20   | 50              | μΑ       |
| $V_{\text{SWH2}}$ |                            | Record mode (high level)                                                 | 2.4  |      | Vcc             | V        |
| V <sub>SWL2</sub> | Mode Selection Pin SW REC  | Play-back mode (low level)                                               | 0    |      | 1.5             | V        |
| I <sub>SWH2</sub> |                            | Input current (high level)                                               |      | 20   | 50              | μΑ       |
| I <sub>SWL2</sub> |                            | Output current (low level)                                               |      | 20   | 50              | μΑ       |
| t <sub>ON1</sub>  | Selection Pin SW Transient | Delay time selection ON (output signal appears on Pin FM OUT)            |      | 250  | 500             | ns       |
| t <sub>OFF1</sub> | Response                   | Delay time selection OFF (output signal disappears on Pin FM OUT)        |      | 250  | 500             | ns       |
| t <sub>ON2</sub>  |                            | Delay time selection ON (output signal appears on Pin I <sub>OUT</sub> ) |      | 4    | 40              | μs       |
| t <sub>OFF2</sub> | Transient Response         | Delay time selection OFF (output signal appears on Pin FM OUT)           |      | 1.3  | 10              | ms       |




# **ELECTRICAL OPERATING CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise specified) (continued) **Power Supply**


| Symbol | Parameter                                   | Test Conditions                                                                                             | Min. | Тур. | Max. | Unit |
|--------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------|------|------|------|------|
| Vcc    | Positive Supply Voltage Pin V <sub>CC</sub> |                                                                                                             | 4.75 | 5    | 5.25 | V    |
| SVR    | Supply Voltage Rejection                    | 0.5mV <sub>PP</sub> on Pin V <sub>CC</sub><br>75μV <sub>PP</sub> on Pin H1, H2<br>Measurement on Pin FM OUT | 15   | 20   |      | dB   |

## INPUT/OUTPUTS EQUIVALENT INTERNAL DIAGRAM

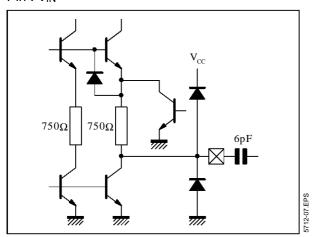

Pins: C1, C2



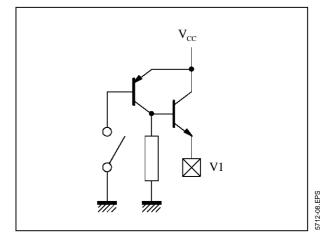
Pin: SW



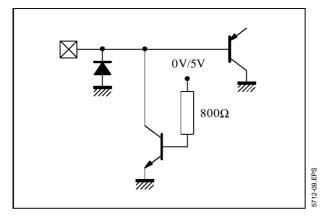
Pin: FM OUT



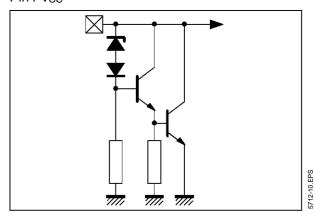

 $Pin: V_{MES} \\$ 



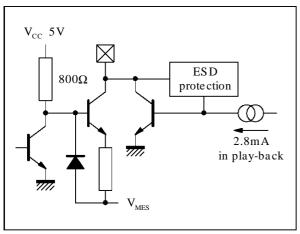

## INPUT/OUTPUTS EQUIVALENT INTERNAL DIAGRAM (continued)


Pin: V<sub>IN</sub>

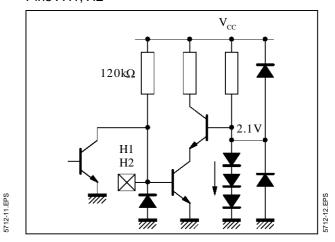



Pin s:  $V_1$ ,  $V_2$ 

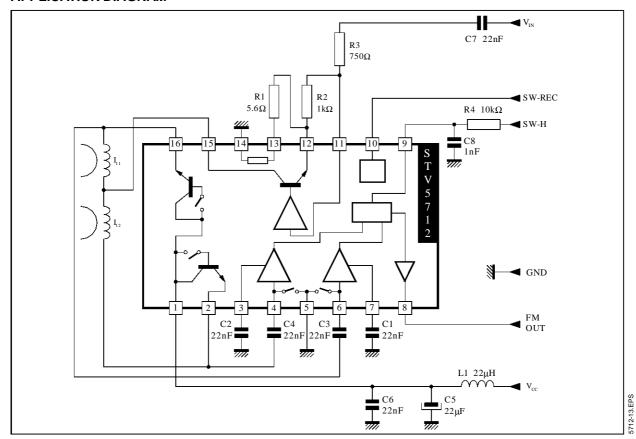



Pin: PROT



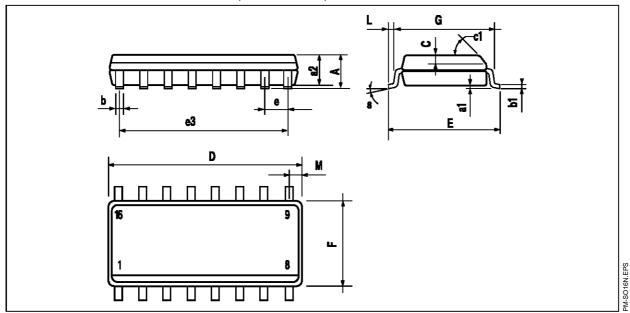

 $\mathsf{Pin}: \mathsf{V}_{\mathsf{CC}}$ 




Pin: Iout



Pins: H1, H2




## **APPLICATION DIAGRAM**



#### PACKAGE MECHANICAL DATA

16 PINS - PLASTIC MICROPACKAGE (SO NARROW)



| Dimensions |      | Millimeters |      |        | Inches |       |
|------------|------|-------------|------|--------|--------|-------|
|            | Min. | Тур.        | Max. | Min.   | Тур.   | Max.  |
| А          |      |             | 1.75 |        |        | 0.069 |
| a1         | 0.1  |             | 0.25 | 0.004  |        | 0.009 |
| a2         |      |             | 1.6  |        |        | 0.063 |
| b          | 0.35 |             | 0.46 | 0.014  |        | 0.018 |
| b1         | 0.19 |             | 0.25 | 0.007  |        | 0.010 |
| С          |      | 0.5         |      |        | 0.020  |       |
| c1         |      |             | 45°  | (typ.) |        |       |
| D          | 9.8  |             | 10   | 0.386  |        | 0.394 |
| E          | 5.8  |             | 6.2  | 0.228  |        | 0.244 |
| е          |      | 1.27        |      |        | 0.050  |       |
| e3         |      | 8.89        |      |        | 0.350  |       |
| F          | 3.8  |             | 4.0  | 0.150  |        | 0.157 |
| L          | 0.4  |             | 1.27 | 0.016  |        | 0.050 |
| М          |      |             | 0.62 |        |        | 0.024 |
| S          |      |             | 8° ( | Max.)  |        |       |

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

### © 1996 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of  $I^2C$  Components of SGS-THOMSON Microelectronics, conveys a license under the Philips  $I^2C$  Patent. Rights to use these components in a  $I^2C$  system, is granted provided that the system conforms to the  $I^2C$  Standard Specifications as defined by Philips.

## SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

