

STK740-441

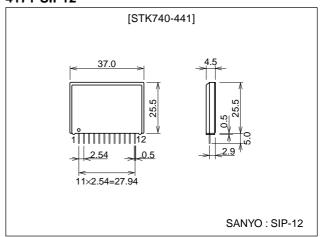
3.3V/5A Single Output Separate Excitation Chopper Regulator

Overview

The STK740-441 is a separate-excitation step-down chopper regulator hybrid IC for the secondstage circuit and optimal as a 3.3V local power supply for use in logic circuit that includes both 5V and 3.3V systems. This IC incorporates in the package all the necessary circuits for a chopper regulator including power switch, error amplifier, soft start, shutdown type output short protection, low-voltage malfunction prevention, on/off, and snubber circuits. Therefore, external components required are input and output capacitors and choke coil only and this allows this IC to be used to construct a large-current (5A) chopper regulator as if a 3-pin regulator were used.

Applications

• 3.3V local power supply for the logic circuit where both 5V and 3.3V systems are constructed togeter.


Features

- Adoption of Sanyo IMST; Insulated Metal Substrate Technology, allows the circuit to be operated without using a heat sink (see "No Fin Output Current Derating" chart in the page 6).
- Slim package reduces mounting space.
- Typical efficiency of 88% at DC 5V input, 2.5A output.
- Fine adjustment of output voltage enable.
- 50 kHz operating frequency.
- Low-R_{ON} resistance power MOSFET adopted.
- Low-V_F Schottky barrier diode adopted.

Package Dimensions

unit:mm

4171-SIP12

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Series Construction

This product is listed in a product series due to its property such as output voltage, output current, package, and other similar items. Since some prducts listed in the table below is under development, please refer to your Sanyo sales representative for details.

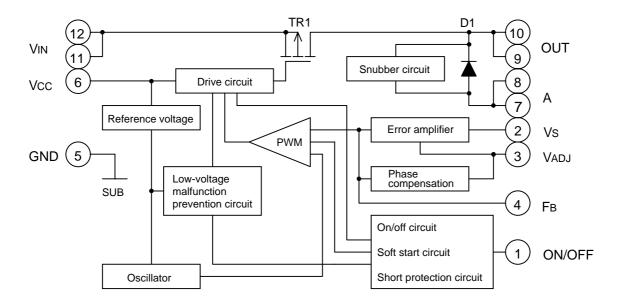
Type number	Input voltage	Output voltage	Output current	Package dimensions (output pins not included)
* STK740-411	4 to 8V	2.5V	5A	26 × 37 × 4.5mm,12pins
* STK740-420	4 to 8V	2.5V	10A	$25.5 \times 46.6 \times 8.5 \text{mm,12pins}$
STK740-441	4 to 8V	3.3V	5A	$26\times37\times4.5\text{mm,12pins}$
STK740-450	4 10 6 V	3.37	10A	$25.5 \times 46.6 \times 8.5 \text{mm,12pins}$
STK740-471			5A	$26 \times 37 \times 4.5$ mm,12pins
STK740-470	8 to 18V	5.0V	5A	$25.5 \times 46.6 \times 8.5 \text{mm,12pins}$
STK740-480	0 10 187	5.07	10A	25.5 × 46.6 × 8.5mm,12pins
STK740-490			15A	$25.5 \times 46.6 \times 8.5$ mm,12pins

^{* :} Under planning

Specifications

Maximum Ratings at Ta = 25°C, Tc = 25°C, unless otherwise specified.

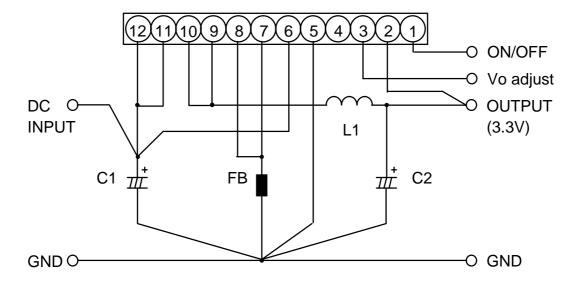
Parameter	Symbol	Conditions	Ratings	Unit
Operating IC substrate temperature	Tc max		+105	°C
Operating temperature	Topr		-10 to +85	°C
Storage temperature	Tstg		-30 to +115	°C
DC input voltage	V _{IN} max	Pins 6, 11, and 12	10	V


Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Operating IC substrate temperature	Tc		0 to +85	°C
DC input voltage	V _{IN}	In the recommended circuit	4.5 to 6.5	V
Load current	lo	In the recommended circuit	1 to 5	А

Electrical Characteristics at Tc = 25 °C, in the specified circuit, $V_{IN} = 5V$, $I_O = 1A$, unless othrwise specified

Parameter	Symbol	Conditions	Ratings			Unit
i arameter	Symbol	Conditions	min	typ	max	01111
Output voltage	Vo		3.2	3.3	3.4	V
Load regulation	ΔVΟ	Io=1A to 5A			50	mV
Efficiency	η	Io=2.5A		88		%
Operating frequency	fosc		45	50	55	kHz
Cutoff current	ICUT	6pin, latch mode		1.6		mA
On/off circuit	Voff	1pin		0.22	0.32	V
Output voltage temperature coefficient	T _{CVO}	Tc=+25 to +85°C		±1.7		mV/°C


Block Diagram

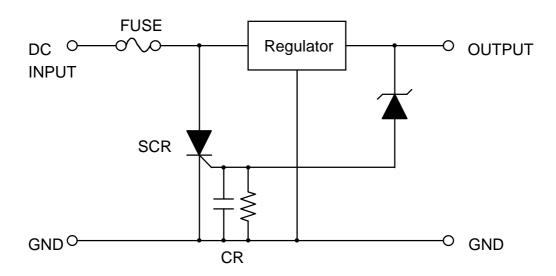
Pin Descriptions

Number	Pin name	Description		
1	ON/OFF	Remote on/off switching		
2	VS	Output voltage sensing		
3	V _{ADJ}	Output voltage fine adjustment		
4	F _B	Feedback (error amplifier output), phase compensation		
5	GND	Ground		
6	V _{CC}	Power supply for control block		
7, 8	А	Flywheel diode anode		
9, 10	OUT	Output		
11, 12	VIN	Input supply voltage		

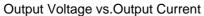
Test Circuit

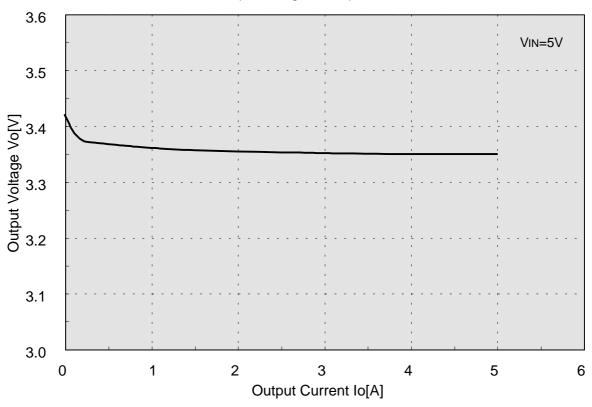
C1 : 220μF/10V (OS capacitor)

C2 : $2200\mu F/6.3V$

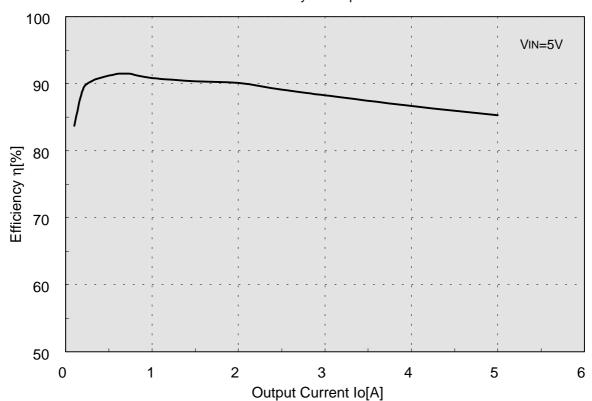

L1 : 30µH

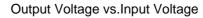
FB : Ferrite-bead core

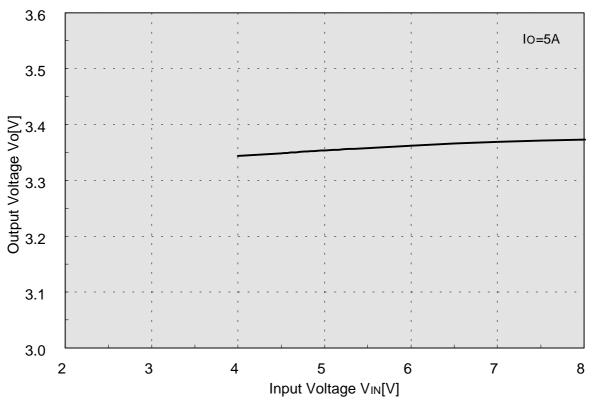

Overvoltage Protection Circuit

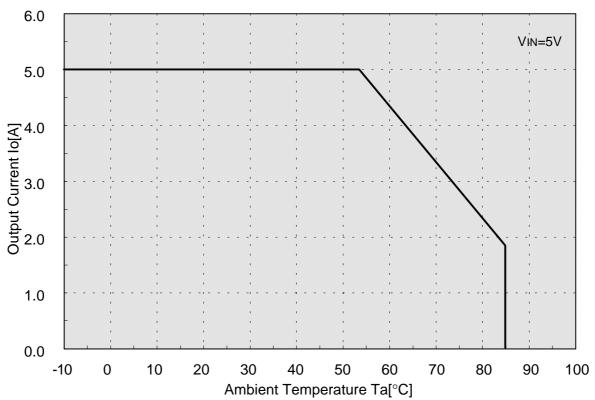

In a constant-voltage power supply circuit output voltage may generally exceed the stipulated rating (equivalent to input voltage) when the circuit is broken down or the IC and the printed circuit board is wrongly soldered. Therefore overvoltage protection circuit is recommended to use to minimize the damages caused by the overvoltage.

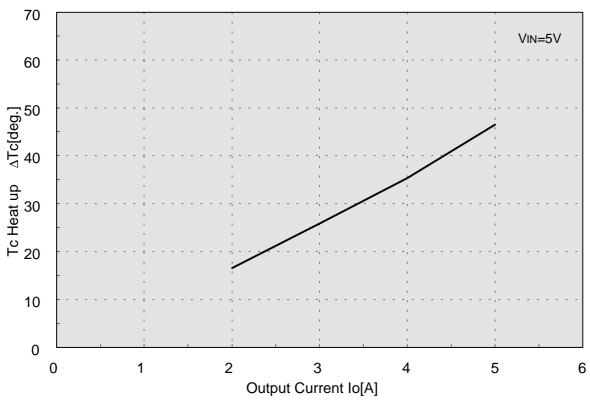
Sample the overvoltage protection circuit

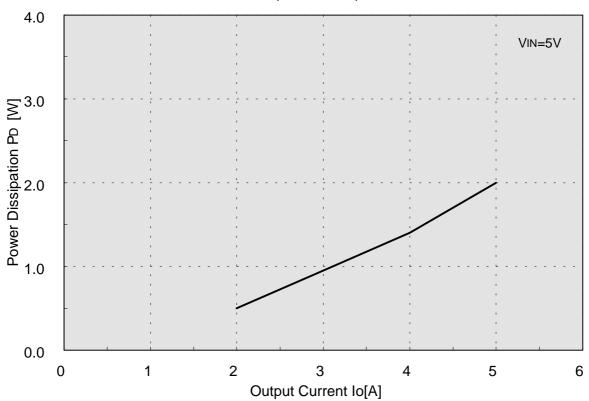


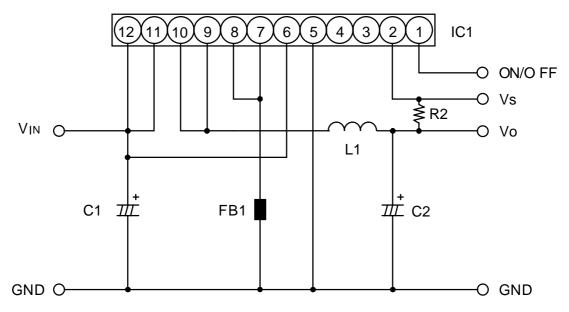

Sample Characteristics at Ta = 25°C, in the test circuit




Efficiency vs.Output Current



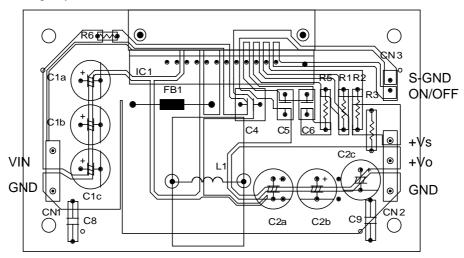

No Fin Output Current Derating


Power Dissipation vs Output Current

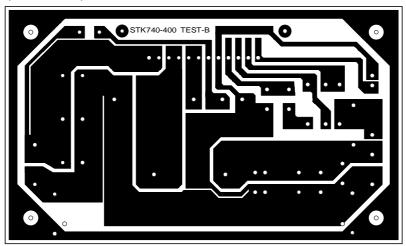
Eveluation Board

The evaluation board is provided to evaluate this hybrid IC

◆ Equivalent Circuit


♦ Parts Table

	Part name	Requirements	Number	Manufacturer	Notes
C1	Electrolytic capacitor	220μF/10V	1	Sanyo Electronic component co., ltd.	OS capacitor
C2	Electrolytic capacitor	2200μF/6.3V	1	Sanyo Electronic component co., ltd.	Low impedance (CG)
R2	Resistor	100Ω	1		
R3	Jumper		1		
R6	Jumper		1	Use a fuse resistor (20 to 30Ω) when needed	
FB1	Ferrite-bead core	BL02RN1-R62	1	Murata manufacturing co., ltd.	
L1	Choke coil	HK-10S100-4500	1	Toho zinc co., ltd.	45μH, 5A


♦ Notes on pattern designing

- 1 Place V_{CC} pin (pin 6) and V_{IN} pins (pin 11 and 12) lines separately and use an input capacitor (+) for connection.
- 2 Place GND pin (pin 5) and A pin (pins 7 and 8) lines separately.
- 3 Connect A pin (pins 7 and 8) with the input capacitor (–) through a Ferrite-bead core.
- 4 Connect GND pin (pin 5) with the input capacitor (–) or the output capacitor (–). However, connect with the output capacitor (–) unless otherwise specified.
- 5 Shorten the length of the line between the input capacitor (–) and the output capacitor (–) as well as possible.
- 6 Connect V_S pin (pin 2) with the output capacitor (+).

♦ Perspective Wiring Layout (from soldered side)

♦ Circuit Pattern (soldered side)

STK740-441

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 1999. Specifications and information herein are subject to change without notice.