AF Power Amplifier (Split Power Supply) (35 W min, THD = 0.08%) ### **Features** - \bullet Compact packaging supports slimmer set designs (up to 70~W) - Series designed for 20 up to 100 W (200 W) and pincompatibility (120 to 200 W have 18 pins) - Simpler heat sink design facilitates thermal design of slim stereo sets - Current mirror circuit application reduces distortion to 0.08% - Supports addition of electronic circuits for thermal shutdown and load-short protection circuit as well as pop noise muting which occurs when the power supply switch is turned on and off ## Package Dimensions unit: mm 4062 # **Specifications** Maximum Ratings at $Ta = 25^{\circ}C$ | Parameter | Symbol | Conditions | Ratings | Unit | |---------------------------------|---------------------|--|-------------|------| | Maximum supply voltage | V _{CC} max | | ±45 | V | | Thermal resistance | θj-c | | 2.1 | °C/W | | Junction temperature | , Tj | | 150 | °C | | Operating substrate temperature | Tc | | 125 | °C | | Storage temperature | Tstg | and the state of t | -30 to +125 | °C | | Available time for load shorted | (45 (5*) | $V_{QC} = \pm 30 \text{ V}, R_L = 8 \Omega, f = 50 \text{ Hz}, P_O = 35 \text{ W}$ | 2 | s | Note: Use a constant-voltage power supply as the test power supply unless otherwise specified. ## Recommended Operating Conditions at Ta = 25°C | Parameter | Symbol | Conditions | Ratings | Unit | |----------------------------|-------------------|------------|---------|------| | Recommended supply voltage | √ V _{CC} | | ±30 | V | | Load resistance | R_L | | 8 | Ω | ^{*} Use the transformer power supply shown on the next page when measuring the available time for load shorted and the output noise voltage. ### STK4030V # Operating Characteristics at Ta = 25°C, V_{CC} = ± 30 V, R_L = 8 Ω , VG = 40 dB, Rg = 600 Ω , 100 k LPF on, R_L (non-inductive) | Parameter | Symbol | Conditions | Ratings | | | Unit | |---------------------------|---------------------------------|--|-------------|--|--|---------| | | | | min | typ | max |] Uilli | | Quiescent current | I _{cco} | V _{CC} = ±36 V | 15 | 1 | 120 | mA | | Output power | P _O (1) | THD = 0.08%, f = 20 Hz to 20 kHz | 35 | A Comment of the Comm | ş | W | | | P _O (2) | V_{CC} = ±27 V, THD = 0.2%, R_L = 4 Ω , f = 1 kHz | 40 / | 1 | and the same of th | | | Total harmonic distortion | THD | P _O = 1.0 W, f = 1 kHz | A A | A) | 0.08 | % | | Frequency response | f _L , f _H | $P_0 = 1.0 \text{ W}, \frac{+0}{-3} \text{ dB}$ | 11/1 | 20 to 50 k | | Hz | | Input resistance | ri | P _O = 1.0 W, f = 1 kHz | | 55 | | kΩ | | Output noise voltage | V _{NO} * | $V_{CC} = \pm 36 \text{ V}, \text{ Rg} = 10 \text{ k}\Omega$ | | 1.2 | mVrms | | | Neutral voltage | V _N | V _{CC} = ±36 V | <i>÷</i> 70 | 0 | 470 | mV | ### **Equivalent Circuit** Specified Transformer Power Supply (RP-25 Equivalent) ## **Equivalent Circuit** ## Application Circuit: 35W min Single Channel AF Power Amplifier # Sample Printed Circuit Pattern for Application Circuit (Copper-foiled side) Unit (resistance: Ω , capacitance: F) #### **Description of External Parts** R_1, C_1 : Input filter circuit • Reduces high-frequency noise. C₂ : Input coupling capacitor • DC current suppression. A reduction in reactance is effective because of increases in capacitor reactance at low frequencies and 1/f noise dependence on signal source resistance which result in output noise worsening. R₂ : Input bias resistor • Biases the input pin to zero. • Effects V_N stability (refer to NF circuit). • Due to differential input, input resistance is more or less determined by this resistance value R_4, R_5 : NFB circuit (AC NF circuit). Use of resistor with 1% error is suggested. $C_3(R_2)$ C₃ : AC NF capacitor R₄, R₅ : Used for VG setting • VG settings are obtained using R₄ and R₅ according to the following equation: $\log 20 \cdot \frac{R_5}{R_4}$ 40 dB is recommended. • Low-frequency cutoff frequency settings are obtained using R₄ and C₃ according to the following equation: $$f_L = \frac{1}{2\pi \cdot R_4 \cdot C_3} \quad [Hz]$$ When changing the VG setting, you should change R_4 which requires a recheck of the low cutoff frequency setting. When the VG setting is changed using R_5 , the setting should ensure R_2 equals R_5 so that V_N balance stability is maintained. If the resistor value is increased more than the existing value, V_N balance may be disturbed and result in deterioration of V_N temperature characteristics. R₃: Differential constant-current bias resistor. R₆, R₇ : For oscillation suppression and phase compensation applications (For use with differential stage applications) R₇, C₄ : For oscillation suppression and phase compensation applications (A Mylar capacitor is recommended for C₄ for use with output stage applications) C₆, C₉ : For oscillation suppression and phase compensation applications Power stage (Must be connected near the pin) C₆: Positive (+) power C₉: Negative (-) power C₈ For oscillation suppression and phase compensation applications (Oscillation suppression before power step clip) For escillation suppression and distortion improvement applications R_8, C_{10} : Ripple filter circuit on positive (+) side. R₉, C₁₃ Ripple filter circuit on negative (–) side. C_{11} , C_{12} : For oscillation suppression applications Used for reducing power supply impedance to stable IC operation and should be connected near the IC pin. We recommend that you use an electrolytic capacitor. ### Sample Application Circuit (Protection circuit and muting circuit) - No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss. - Anyone purchasing any products described or contained herein for an above-mentioned use shall: - Acceptiful responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use: - Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally. - Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties. This catalog provides information as of October, 1996. Specifications and information herein are subject to change without notice.