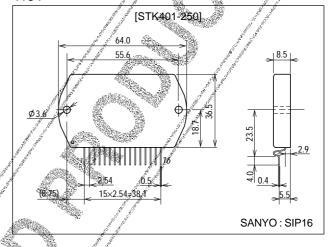


STK401-250

2ch AF Power Amplifier (Split Power Supply) (30W + 30W min, THD = 0.08%)

Overview

The STK401-250 is a 2-channel audio power amplifier IC that supports $6/3\Omega$ output load impedances. It is fully pin compatible with the 3-channel output devices (STK400-×00 series) and 2-channel output devices (STK401-×00 series). In addition, it supports $6/3\Omega$ output load impedance.


Features

- Pin compatible with the 3-channel output devices (STK400-×00 series) and 2-channel output devices (STK401-×00 series)
- Output load impedance $R_L=6/3\Omega$ supported
- Pin configuration grouped into individual blocks of inputs, outputs and supply lines to minimize the adverse effects of pattern layout on operating characteristics.
- Few external components

Package Dimensions

unit:mm

4134

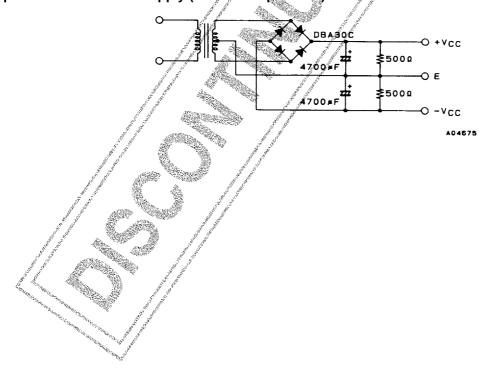
- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Specifications

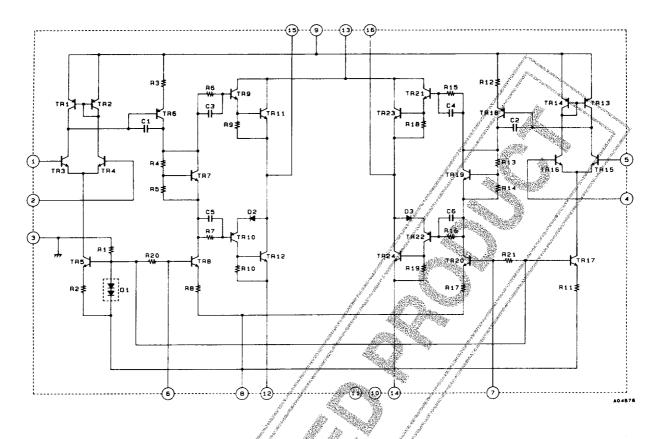
Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions		Ratings	Unit
Maximum supply voltage	V _{CC} max			±39	V
Thermal resistance	θ ј-с	Per power transistor	, st	1.8	°C/W
Junction temperature	Tj		A Part of	150	°C
Operating substrate temperature	Tc		11	125	°C
Storage temperature	Tstg			-30 to +125	°C
Available time for load short-circuit	t _S	V_{CC} =±26V, R_L =6 Ω , f=50Hz, P_O =30W		() 1	S

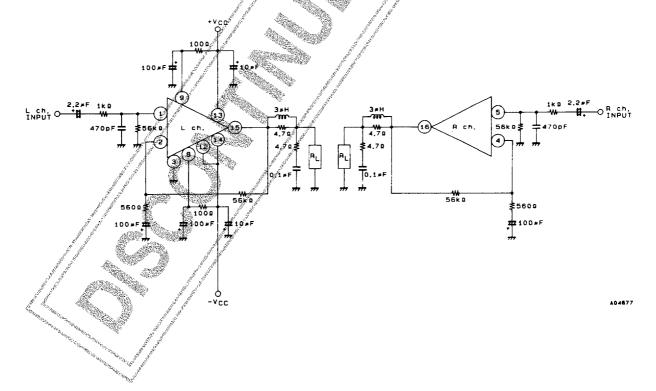
Operating Characteristics at Ta = 25° C, R_L= 6Ω (noninductive load), Rg= 600Ω , VG=400B


Parameter	Symbol	Conditions	Ratings typ	, r nax	Unit
Output power	P _O 1	V _{CC} =±26V, f=20Hz to 20kHz, THD=0.08%	35	//	W
Output power	P _O 2	V_{CC} =±22V, f=1kHz, THD=0.2%, RL=3 Ω	35,	r ^e	W
Total harmonic distortion	THD1	V _{CC} =±26V, f=20Hz to 20kHz; P _O =1.0W	all the state of t	0.08	%
	THD2	V _{CC} =±26V, f=1kHz, P _O ≠5.0W	<i>f</i> 7 0.007		%
Frequency response	fL, fH	V _{CC} =±26V, P _O =1,0W, ⁺⁰ ₋₃ dB	Ž0 to 50k		Hz
Input impedance	rį	V _{CC} =±26V, f=1kHz, P _O =1.0W	<i>A</i> 55		kΩ
Output noise voltage	V_{NO}	V_{CC} =±31V, Rg=‡0k Ω		1.2	mVrms
Quiescent current	Icco	V _{CC} =±31V 20	60	100	mA
Neutral voltage	V_{N}	V _{CC} =±31V -70	0	+70	mV

Note.


All tests are measured using a constant-voltage supply unless otherwise specified.

Available time for load short-circuit and output noise voltage are measured using the transformer supply specified below. The output noise voltage is the peak value of an average-reading meter with an rms value scale (VTVM). A regulated AC supply (50Hz) should be used to eliminate the effects of AC primary line flicker noise.


Specified Transformer Supply (RP-25 or Equivalent)

Equivalent Circuit

Sample Application Circuit

Series Configuration

These devices form a series of pin-compatible devices with different number of output channels, output ratings and total harmonic distortion. Some of these devices are under development. Contact your Sanyo sales representative if you require more detailed information.

STK400-000, STK400-200 series (3-channel, same output rating)			STK401-000, STK401-200 series (2-channel)					Supply voltage [V] ¹					
Type No.	THD [%]	Type No.	THD [%]	Rated output	Type No.	THD [%]	Type No.	THD [%]	Rated output	V _{CC} max1	W42.	Mar.	V _{CC} ²
STK400-010		STK400-210		10W×3	STK401-010		STK401-210		10W×2	gent - gent	±26.0	*±17:5	±14.0
STK400-020		STK400-220		15W×3	STK401-020		STK401-220		15W×2	Age and a sep-	±29.0	±20.0	±16.0
STK400-030		STK400-230		20W×3	STK401-030		STK401-230		20W×2 §	1 -	±34.0	±23.0	± 19.0
STK400-040		STK400-240		25W×3	STK401-040		STK401-240		25W×2	- 42	±36.0	±25.0	±21.0
STK400-050		STK400-250		30W×3	STK401-050		STK401-250		30W×2	- \$5.	±39.0	±26.0	±22.0
STK400-060		STK400-260		35W×3	STK401-060		STK401-260		35W×2	49.	± 41.0	±28.0	±23.0
STK400-070	0.4	STK400-270		40W×3	STK401-070		STK401-270		- 40W×2	- 70	±44.0 🎺	±30.0	±24.0
STK400-080	0.4	STK400-280	0.08	45W×3	STK401-080	0.4	STK401-280	0.08	45W×2	94.0	±45,0	±31.0	±25.0
STK400-090		STK400-290		50W×3	STK401-090		STK401-290		50W ×2		±47.0	±32.0	±26.0
STK400-100		STK400-300		60W×3	STK401-100		STK401-300		60W×2		±51.0	±35.0	±27.0
STK400-110		STK400-310		70W×3	STK401-110		STK401-310		.70W×2	≥ ±56.0	j" j# -	±38.0	-
					STK401-120		STK401-320		80W×2	±61.0	£ -	±42.0	-
					STK401-130		STK401-330		100W×2	±65,0 🧳	-	±45.0	-
					STK401-140		STK401-340		120W×2	±74.0	-	±51.0	-

	400-400, STK4 annel, different	Supply voltage [V] ¹							
Type No.	THD [%]	Type No.	THD [%]	Rated output		V _C c max1	V _{CC} max2	V _{CC} 1	N _{CC2}
STK400-450		STK400-650		Cch	30W 🧷	1 - 🖏	±39.0	±26.0	/±22.0
311400-430		311400-030		Lch, Rch	15W/	A.7	±29.0	±20.0	±16.0
STK400-460		STK400-660	0.08	Cch	35W	48. 39	±41.0	±28.0	±23.0
3111400-400		311(400-000		Lch, Rch	/15W	65 T	±29.0	±20.0	±16.0
STK400-470		STK400-670		Cch	40W		±44.0	±30.0	±24.0
3111400-470		31K400-070		Lch, Rch	20W	X	±34.0	±23.0	±19.0
STK400-480		STK400-680		Cơn 🥖	45Ŵ	1000	±45:0	±31.0	±25.0
31K400-460				Lch, Rch	20W	-	±34.0	±23.0	±19.0
STK400-490	0.4	STK400-690		, Cch	50W	- /	/±47.0	±32.0	±26.0
3111400-490	0.4	311400-090		Lch, Rch	25W	V - / /	±36.0	±25.0	±21.0
STK400-500		STK400-700		Cch	60W	Zell get	±51.0	±35.0	±27.0
31K400-300				Lch, Rch	30W	1888 - All	±39.0	±26.0	±22.0
STK400-510		STK400-710		Cch	70W	±56.0	-	±38.0	-
31K400-310		31K400-710	r e	Lch, Rch	35W /	7 -	±41.0	±28.0	±23.0
STK400-520		STK400-720		Cch	80W	±61.0	-	±42.0	-
31K400-520		31K400#720		Lch, Rch	40W	-	±44.0	±30.0	±24.0
STK400-530		STK400-730		Cơn	100W	±65.0	-	±45.0	-
311400-330	á	⊕ 1 K400-7 30	ROGE .	Lch, Rch	∮_50W	-	±47.0	±32.0	±26.0

 $[\]frac{1.\ V_{CC}\ max1\ (R_L=6\Omega),\ V_{CC}\ max2\ (R_L=3\ to\ 6\Omega),\ V_{CC}\ l\ (R_L=6\Omega),\ V_{CC}\ 2\ (R_L=3\Omega)}{1.\ V_{CC}\ max1\ (R_L=6\Omega),\ V_{CC}\ l\ (R_L=6$

Heatsink Design Considerations

The heatsink thermal resistance, θc -a, required to dissipate the STK401-250 device total power dissipation, Pd, is determined as follows:

Condition 1: IC substrate temperature not to exceed 125°C. $Pd \times \theta c-a+Ta < 125$ °C(1)

Where Ta is the guaranteed maximum ambient temperature.

Condition 2: Power transistor junction temperature, Tj, not to exceed 150°C.

$$Pd\times\theta c-a+Pd/N\times\theta j-c+Ta<150^{\circ}C$$
(2)

where N is the number of power transistors and θ j-c is the power transistor thermal resistance per transistor. Note that the power dissipated per transistor is the total, Pd, divided evenly among the N power transistors.

Expressions (1) and (2) can be rewritten making θ c-a the subject.

$$\theta c$$
-a< (125–Ta)/Pd(1)'

$$\theta c-a < (150-Ta)/Pd-\theta j-c/N(2)$$

The heatsink required must have a thermal resistance that simultaneously satisfies both expressions.

The heatsink thermal resistance can be determined from (1)' and (2)' once the following parameters have been defined.

- Supply voltage : V_{CC}Load resistance : R_I
- Guaranteed maximum ambient temperature: Ta

 $\begin{array}{c} \text{R}_L = 6\Omega \\ \text{F} = 1 \text{kHz} \\ \text{VG} = 40 \text{dB} \\ \text{Rg} = 600\Omega \\ \text{Sol} \\ \text{Sol} \\ \text{Same output fatting)} \\ \text{Output power per channel, } P_0/\text{ch} - W \\ \end{array}$

The total device power dissipation when STK401-250 V_{CC} = $\pm 26V$ and R_L = 6Ω , for a continuous sine wave signal, is a maximum of 45.7W, as shown in the Pd-P_O graphs.

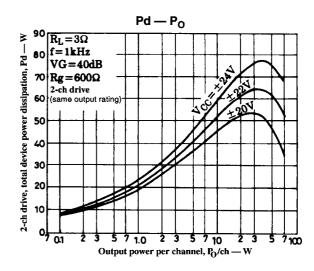
When estimating the power dissipation for an actual audio signal input, the rule of thumb is to select Pd corresponding to $(1/10) \times P_O$ max (within safe limits) for a continuous sine wave input. For example,

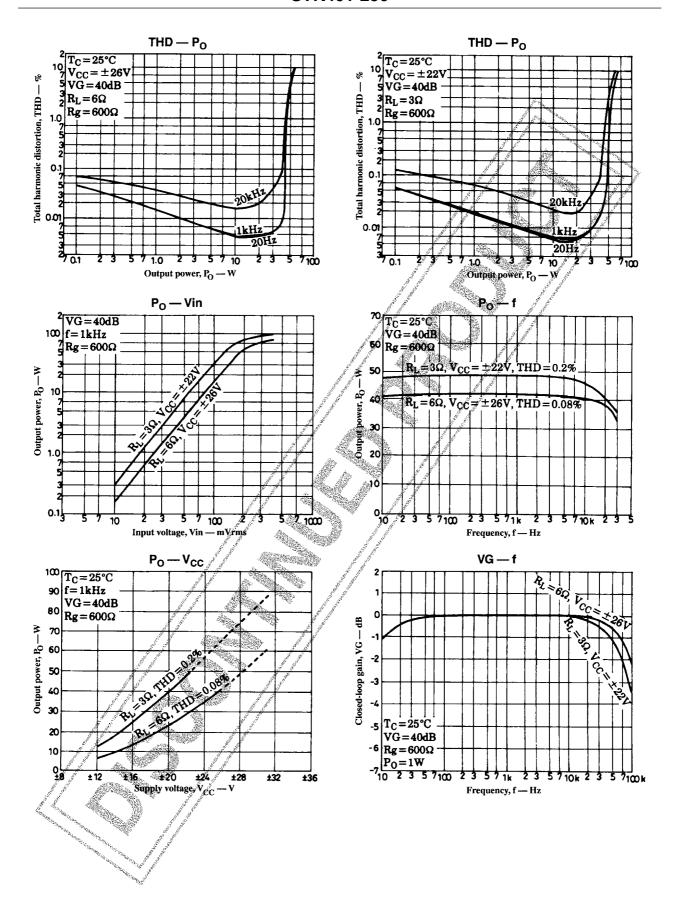
Pd=27.7W [for
$$(1/10) \times P_0$$
 max=3W]

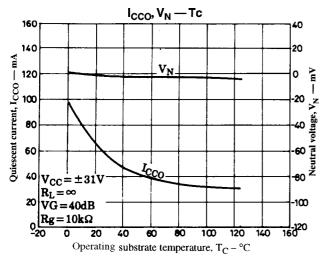
The STK401-250 has 4 power transistors, and the thermal resistance per transistor, θ j-c, is 1.8°C/W. If the guaranteed maximum ambient temperature, Tay is 50°C, then the required heatsink thermal resistance, θ c-a, is:

From expression (1) :
$$\theta c = (125-50)/27.7$$

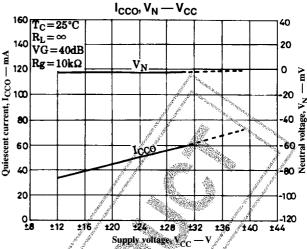
 < 2.70
From expression (2) : $\theta c = (150-50)/27.7-1.8/4$


Therefore to satisfy both expressions, the required heatsink must have a thermal resistance less than 2.70°C/W. Similarly, when STK401-250 V_{CC} =±22V and R_L =3 Ω ,


Pd=33.5W [for
$$(1/10) \times P_O \text{ max}=3W$$
]


From expression (1)':
$$\theta c-a < (125-50)/33.5$$

 < 2.23
From expression (2)': $\theta c-a < (150-50)/33.5-1.8/4$
 < 2.53


Therefore, to satisfy both expressions, the required heatsink must have a thermal resistance less than 2.23°C/W.

This heatsink design example is based on a constant-voltage supply, and should be verified within your specific set environment.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 1999. Specifications and information herein are subject to change without notice.