
 APPLICATION NOTE
ST9/SCI INTERFACING A SMART CARD

IN ISO PROTOCOL (7816-3)
Pierre Guillemin

AN423 / 03,92

INTRODUCTION:
Smart Cards, with very popular applications, take now a great place in today’s life.
Telephone cards, banking payment cards, PAY TVand health cards are many practical
means for payment or for preserving confidential information.
Smart Cards provide also a high security level against access to the enclosed data.
This high security level is partly given by a particular protocol of transmission
described by the International Standard Organisation (ISO).
The ST9 8/16 bit Microcontroller, using its Serial Communications Interface (SCI) and
software interrupt routines, is able to manage easily this transmission protocol.
This application note describes how to use the ST9 SCI peripheral in order to interface
to a Smart Card and gives a complete example of “answer to reset”, writing data to a
Smart Card and reading data from a Smart Card in the both direct or inverse
convention. Please note the goal of this application note is to explain how to manage
the Smart Card I/O line protocol and not to realize a complete card Reader/Writer.

SMART CARD ISO STANDARD SURVEY:
ISO/CEI 7816-3 - Identification cards - Integrated circuit(s) cards with contacts part
3: Electronics signals and transmission protocols - specifies the DC electrical charac-
teristics, the character format and the command protocol for the Smart Card.
This ISO standard describes two types of data transfer between Smart Card and card
Reader/Writer:
- asynchronous protocol with two data coding conventions
- synchronous protocol

1/41

ASYNCHRONOUS PROTOCOL:
Character format:
Each character (described in figure 1) is composed of:
- one start bit
- 8 bits of data
- one even parity bit
- a guardtime slot including two stop bits
The data speed transmission depends on the clock signal frequency input into the
Smart Card on the CLK contact.
The nominal bit duration sent on the I/O line is called the “elementary time unit” or
“etu” by the ISO standard. This bit duration is directly proportional to the input clock
during the “answer to reset”, but may be requested to be modified (by the Smart Card)
for the following data exchange. The parameters of this modification are given during
the “answer to reset”.

Figure 1. Data frame format



ST9 ISO SMARTCARD INTERFACE

2/41

I/O Line management:
The I/O line (Input/output line) is used to exchange data in input mode (reception
mode) or in output mode (transmission mode). This line must have two states:
- stand-by state or high level state
- working state or low level state
Furthermore, the I/O line (as shown in figure 2) is used to generate or to detect data
parity errors in reception or transmission:
- the transmitter must sample the I/O line during the guardtime duration (exactly at

11 0.2 etu after the falling edge of the start bit).
- the transmission is presumed valid if the I/O line stays at a high level during the

guardtime slot
- the transmission is wrong if the I/O line is pulled down during at least one etu

(two etu max) during the guardtime slot.
- the receiver, in order to signal a reception error, must pull down the I/O line (from

10.5 0.2 etu during one etu minimum to two etu maximum)
Data coding:
The ISO 7816 - 3 standard gives the possibility of two kinds of data coding. The direct
convention or the inverse convention. The type of convention is fixed by the Smart
Card and is declared in the first character of the “answer to reset”.
In direct convention, the logical “1” level is 5 Volt and the least significant bit (LSB) is
transmitted first.
In inverse convention, the logical “1” level is 0 Volt and the most significant bit (MSB)
is transmitted first.

Figure 2. Data transmission diagram



ST9 ISO SMARTCARD INTERFACE

3/41

SYNCHRONOUS PROTOCOL:
In synchronous protocol, a succession of bits are sent on the I/O line, synchronized
with the clock signal on CLK pin. In synchronous protocol, the data frame format
described previously is not available.
INTERFACING SMART CARDS USING ST9/SCI IN SYNCHRONOUS MODE
The synchronous mode of the ST9/SCI uses the same character frame format as the
asynchronous mode. As a result, the SCI will not support the synchronous mode of
the ISO standard. So the followingdescription of Smart Card interfaceusing a ST9/SCI
must be reduced to the asynchronous data transfer protocol.
Hardware And Testing Background:
The Smart Card has been simulated by a Smart Card emulation system (EVAL
ST16XYZ development tool from SGS-THOMSON) with data speed transfer of 9600
Baud and 19200 Baud. The response to “data speed transfer” or “clock modification
requests” issued from the Smart Card between the “answer to reset” and the following
data transfer is not detailed in this application note.
ST9 Resources:
The ST9/SCI peripheral is compatible with the electrical characteristics and the data
frame format specified by the ISO standard. In order to react rapidly to error signal
occurrence in transmission or to pull down the I/O line in the case of parity error
detection (in reception), the SCI interrupts must not be delayed during the read/write
operation with the Smart Card. So the SCI priority level must be at the highest priority
level during the exchange of data with the Smart Card.
To manage data exchange with the Smart Card, the following SCI interrupts are used:
- Receiver error interrupt
- Receiver data interrupt
- Transmitter data interrupt (shift register empty).



ST9 ISO SMARTCARD INTERFACE

4/41

In data transmission (to the Smart Card), the error signal occuring during the
guard-time slot will be detected by an external interrupt input programmed for falling
edge detection. This external interrupt can be located on an SCI I/O pin, for example
INT4.(see fig. 2, 3)
In data reception (from the Smart Card), the error signal will be triggered during the
guard-time slot by a Timer Watchdog programmation with the associated end of count
interrupt on channel A0.
During data transfer, the interrupts occur sequentially, so the three interrupt sources
may be located on the same interrupt priority level.
The two types of data coding (direct or inverse convention) do not involve hardware
resources. Direct convention (in which the logical “1” is the Vcc level and the LSB bit
is sent first) is very close to the SCI serial format. The inverse convention can be
supported both in transmission and reception by a simple software routine.
Figure 3 summarizes the hardware resources used to interface the SCI to a Smart
Card: SCI, Timer/Watchdog, External interrupt:

Figure 3. Hardware interface



ST9 ISO SMARTCARD INTERFACE

5/41

SCI Initialization:
For both data transmission and data reception, SCI is configured in the following
mode:
- 8 bits data length
- even parity enabled (in direct convention)
- 2 stop bits enabled in Rx and Tx mode
- Rx error interrupt enabled
- Rx data interrupt enabled
- Tx shift register empty interrupt enabled
- Baud rate generator delivers a clock for 9600 Baud or 19200 Baud from the ST9

Internal clock (INTCLK)
- SCI in 16x mode (asynchronous mode)
The associated SCI I/O lines (SIN, SOUT, INT4, P73) used to interface to the Smart
Card are programmed in the following modes:
- SIN, P7.0: Input, Tristate, TTL
- OUT, P7.1: In Rx mode: Bidirectionnal, Open drain, TTL

In Tx mode: Alternate function, Open drain, TTL
- INT4, P7.2: Input, Tristate, TTL
- Smart Card RST, P7.3: Output, Open drain, TTL

DATA EXCHANGE IN DIRECT CONVENTION:
I/O line management in Rx mode:
In receive mode, data reception is managed by the receive data interrupt without the
use of any other interrupt, therefore reception could be performed in DMA mode. The
software routines used to perform data reception according to the ISO standard are
the following:
- SCI_INIT ; SCI initialization
- Rx_ANSWER ; Data reception loop from Smart Card
- Rx_DATA ; Receive data interrupt service routine
- Rx_ERROR ; Receive error interrupt service routine
- WDT_IT ; TWD end of count interrupt service routine
- START_WDT ; Macro for starting the TWD
- RE_INIT_SCI ; Macro for Re-initialization of SCI
Please refer to appendix A and B for a complete description of these reception
routines.



ST9 ISO SMARTCARD INTERFACE

6/41

If a parity error is detected during reception of data, the receiver (ST9/SCI) must pull
down the I/O line in the guardtime slot with a duration between one etu minimum and
two etu maximum.
With the SCI of the ST9, in the case of parity error detection, the associated interrupt
is taken into account from the middle of the 1st stop bit. So the interrupt service routine
servicing the parity error detection is able:
- to pull down the I/O line during the second part of the first stop bit
- to program the Timer Watchdog in end of count interrupt mode in order to gener-

ate a low level pulse on the I/O line. The duration of this pulse must be inside in
the range [1 etu..2 etu].

The interrupt service routine associated to the Timer Watchdog programmation must
pull up the I/O line for the next character reception and re-initialize the SCI. This SCI
re-initialization is necessary because the error signal generated on the I/O line during
one etu is taken as a start bit in the SCI input circuitry.
Figure 4 shows the principle of the I/O line management in Rx mode.

Figure 4. RX data with parity error detected



ST9 ISO SMARTCARD INTERFACE

7/41

I/O line management in Tx mode :
When outputting a character, the SCI must sample the I/O line during the guard-time
slot in order to check the status of the data transmission. In the case of a bad
transmission, the I/O line is pulled down by the receiver from 10.5 0.2 etu during one
etu up to two etu.
Due to the external connection between SIN and SOUT, each character output on the
I/O line is input into the SCI via the SIN pin. So using the receiver data interrupt (which
occurs during the 2nd part of the first stop bit), and the transmitter shift register empty
interrupt, a window is defined during which the external interrupt INT4 is enabled. A
fallingedge occuring on the I/O line, due to data reception error, will be detected during
the INT4 window.
The interrupt service routine associated to the Rx data interrupt in Tx mode is used
to enable the External interrupt on channel C0 (INT4). The interrupt service routine
associated to the Tx shift register empty interrupt disables the INT4 interrupt and
re-initializes the SCI in the case of Tx error detection. The Tx error interrupt service
routine clears the INT4 pending bit and sets a Tx error flag.
Figure 5 shows the principle of the I/O line management in Tx mode.

Figure 5. TX data with parity error detection



ST9 ISO SMARTCARD INTERFACE

8/41

The software routines used to perform data transmission according to the ISO
standard are the following:
- Tx_ORDER ; data transmission loop to Smart Card
- Tx_DATA ; Transmitter shift register empty interrupt
- Tx_ERROR ; Transmitter error detection
- RE_INIT_SCI ; Macro for re-initialization of the SCI

INVERSE CONVENTION:
In inverse convention, the logical “1” value is coded with a low level (0 Volt) and the
MSB bit is sent first. A simple software routine, complementing the character and
exchanging the bit position by rotation, can be used to convert data from one
convention to the other.
Even parity is used in direct convention. Changing the data coding in inverse
convention involves a parity change: even parity in direct convention becomes odd
parity in inverse convention.
The convention to be used is defined by the content of the first byte of the “answer to
reset”. In the case of inverse convention transfer, the SCI parity must be changed.



ST9 ISO SMARTCARD INTERFACE

9/41

SOFTWARE DESCRIPTION AND PERFORMANCE:
Software Description:
The ISO interface software annexed in appendix B is written for an ST9030 device
running with a 24 MHz crystal internally divided by two, without any core clock
prescaling. The data transfer from/to Smart Card is made at 9600 Baud. The example
program consists of:
- generating Smart Card reset (Pull RST line from 0 V to Vcc)
- receiving Smart Card “answer to reset” (13 characters)
- sending WRITE command to Smart Card (5 characters)
- receiving procedure byte from Smart Card (1 character)
- sending data to be written from RAM space to the Smart Card (63 characters)
- receiving execution command status (2 characters)
- sending READ command to Smart Card (5 characters)
- receiving data from Smart Card + status (66 characters)
After a block comparison between received data and predicted data, the program is
re-started (Smart Card reset) if no errors occur. In any other case, the program
execution is locked in an infinite loop.
In order to test error management, parity errors are generated in reception and
transmission by changing SCI parity between two consecutive characters.
The architecture of this software example is built around interrupt management
routines and two data exchange routines which can easily be modified for other
software organisations.
Appendix A and appendix B give a complete description (flow chart and software) of
these routines.
Please note that the command sent to the Smart Card and described in the example
software is dependant on the Smart Card software and must be modified in order to
test this software with another Smart Card.



ST9 ISO SMARTCARD INTERFACE

10/41

Three commands are sent to the Smart Card:
- Reset order (100µs width low pulse)
- WRITE command
- READ command.
Each command (except Reset order) send to the Smart Cardhas the following format:
- Application class (1 byte)
- Instruction code (1 byte)
- Address field A1,A2 (2 bytes)
- data length (1 byte 0 = 256)
In the example software, the data (63 bytes) is in RAM Data space starting at 0080h.
- WRITE command format (WRITE_CDE): 10h, b4h, 00, 80h, 63
- READ command format (READ_CDE): 10h, d4h, 00, 80h, 63
The command field is terminated by a procedure byte (PB) and the execution of the
command is terminated by two return messages ME1, ME2.

Command field PB Data field ME1 ME2

In this example, the answer to reset format is:

TS 78h 11 00 00 ffh MA 00 00 00 ME1 ME2

with:
TS: Initial character = 3bh in direct convention

3fh in inverse convention

MA: Mask Option (historical character) = 04 in direct convention
00 in inverse convention



ST9 ISO SMARTCARD INTERFACE

11/41

12 × 1
9600

= 1.25ms

SOFTWARE PERFORMANCE:
CPU time required by interrupt servicing:
The following table summarizes the software duration of the interrupt service routines.
The times are given for a 12 MHz ST9 internal clock (CPUCLK).

clock cycles times (µs) comments

Rx_ERROR
194 17 Parity error

136 11 Framing/overrun error

TWD_IT 122 10

Tx_DATA
96 8 Without Tx error detection

136 11 Tx error detected

Tx_ERROR 62 5

In the worst case, ie when transmitting a byte with parity error detection, three
interrupts service routines are taken into account and executed (Rx_DATA, Tx_ER-
ROR, Tx_DATA). The duration of these three routines is 306 clock cycles and takes
25.5 µs at 12 MHz internal clock.
The ratio between the SCI interrupt servicing time and the time necessary to send a
character at 9600 Baud is:

- time required to transmit a byte =
1 start bit + 8 data bits + 1 parity bit + 2 stop bits = 12 bits:

- time required to execute the Rx_DATA, Tx_ERROR, Tx_DATA, interrupt service
routines is 306 clock cycles = 25.5µs at 12 MHz internal clock.

Therefore the time Ratio is 49
Thus the interrupt service routines consume less than 2% of the CPU time.



ST9 ISO SMARTCARD INTERFACE

12/41

Minimum operating clock frequency:
This example program has been tested with an ST9030 with a 12MHz internal clock.
The theoretical calculation according to the length of the interrupt service routine gives
the following minimum operating clock frequency:
The first interrupt routine (Rx_DATA) is taken into account from the middle of the 1st
stop bit (see fig 5) and therefore the three interrupt routines must be executed (306
clock cycles) within 1.5 etu (156µs at 9600 Baud).
The minimum operating clock frequency (CPUCLK) allowing the execution of these
3 interrupt routines within 1.5 etu at 9600 Baud is less than 2MHz (1.96MHz).

SUMMARY
With twosmall exceptions (SCI interrupts in highest priority level duringdata exchange
between Smart Card and card Reader and the ISO standard limited to asynchronous
protocol), the SCI of the ST9 is able to easily interface to Smart Card in the ISO
protocol.
As described, the program and time overhead on the ST9 core due to interrupt service
routine treatment is very low. Furthermore, this overhead may be decreased by using
the SCI DMA feature in data reception.

Bibliography/References:
1 - Internationnal Norm: ISO/CEI 7816-3: Identification cards - Integrated circuit(s)
cards with contacts Part 3: Electronic signal and transmission protocols.
2 - ST9 family 8/16 bit MCU Technical Manual: SGS-THOMSON Microelectronics
3 - ST9 application note: Initialization of the ST9: Pierre GUILLEMIN and Alan
DUNWORTH, Central applications laboratory, SGS-THOMSON Microelectronics
4 - Standard definition of ST9 register and register-bits, Central applications Labora-
tory, SGS-THOMSON microelectronics
Appendix A: Program Flow of software routines
Appendix B: ST9 interfacing ISO protocol software



ST9 ISO SMARTCARD INTERFACE

13/41

- initialization of ST9 core
- mode register
- central interrupt control register

- external interrupt vector and priority
- stack initialization

- I/O initialization

- SCI initialization
- clear SCI flag (application status)
- start SCI

- copy table of results in data memory

do
- clear Rx buffer in Ram space

————-> Answer to reset reception

- generate Smart Card reset
- init answer to reset pointer and counter

if first data received in inverse convention
- update SCI flag (inverse convention)

- change SCI parity to odd parity
- transcode received data to direct convention

else
- update SCI flag (direct convention)

end if

- store received data
- call Reception routine
- wait loop for end of last byte reception

————> Send WRITE command to Smart Card

- update command pointer and counter

- call Transmission routine

Example of Main Program

APPENDIX A: PROGRAM FLOW OF SOFTWARE ROUTINES



ST9 ISO SMARTCARD INTERFACE

14/41

———-> Reception of procedure byte
- update pointer and counter
- call Reception routine

———-> Send data to be written into Smart Card

- update data pointer and counter
- call Transmission routine

———-> Reception of status from Smart Card

- update pointer and counter
- call Reception routine

————> Send READ command to Smart Card

- update READ command pointer and counter
- call Transmission routine

———-> Receive READ data from Smart Card

- update READ command and pointer
- call Reception routine

———-> Compare received data with predided results

if comparison not OK

infinite loop
end if

end do (infinite loop)

Example of Main Program



ST9 ISO SMARTCARD INTERFACE

15/41

begin
- select SCI page register
- update SCI flag Tx ongoing

- init SOUT in AF/OD
- disable Rx error IT

do
- update counter of number of repetition (Tx_rpt)

if inverse convention
transcode data

end if

do
load SCI Tx buffer register
wait for Rx data IT
wait for Tx IT (Tx ok or Tx error)

if Tx error set
wait for Tx data IT
clear SCI flag status

else

break
end if

until [Tx_rpt = 0 or Tx error]

if Tx error set
exit loop (two data in error == application Pb)

end if

until [end of transmission]

- update SCI flag end of transmission
- init SOUT in Bid / OD

end begin

Tx_ORDER Routine:



ST9 ISO SMARTCARD INTERFACE

16/41

begin
- enabled Rx error interrupt
do

- wait for Rx interrupt
if SCI flag = parity error

- update Rx counter
- wait for TWD end of count IT

else
if inverse convention

- transcode received data
end if
- store received data

end if
until [last byte received Rx counter = 0]

end begin

Rx_ANSWER Routine:

begin
- save context: page pointer register
- select SCI data register page

- read SCI Rx buffer (received data)
- clear Rx pending bit

if Tx ongoing
- select page 0 register

- clear INT4 pending bit
- enable INT4

end if
- restore context

end begin

Rx_DATA Interrupt Service Routine



ST9 ISO SMARTCARD INTERFACE

17/41

begin
- save context
- select Port 7 page register

- select working register group F
- pull up the I/O line (SOUT= 1)
- re-initialization of SCI
- restore context

end begin

TWD Interrupt Service Routine

begin
- save context
- select SCI data register page

if parity error detected
- select port 7 page
- pulled down the I/O line SOUT = 0
- start TWD

- select SCI data register page
- read received data
- clear Interruptstatus regsiter
- update SCI flag

end if

if frame or overrun error
- update SCI flag
- read received data
- clear Interruptstatus register

end if
- restore context

end begin

Rx_ERROR Interrupt Service Routine



ST9 ISO SMARTCARD INTERFACE

18/41

begin
- save context
- select external interrupt register page

- disable INT4 interrupt
- update SCI flag Tx error detected
- restore context

end begin

Tx_ERROR Transmitter Error Interrupt Service Routine

begin
- save context
- select page 0 data register

- clear INT4 pending bit
- disable INT4

if Tx_error detected
- SCI re-initialization

else
- clear SCI interrupt status register

end if
- restore context

end begin

Tx_DATA Transmit Data Interrupt Service Routine



ST9 ISO SMARTCARD INTERFACE

19/41

APPENDIX B: ST9 INTERFACING ISO PROTOCOL SOFTWARE

.title “SCI Transmission in CAM ISO protocol 20 December 1990”

.pl 66 ; Number of lines per page

; .list

; .list me ; Enable macro expansion control

; .list bex ; Enable continuation of code on next line

; .nlist line ; Disable source line number control

; .nlist loc ; Disable current location counter control

; .nlist code ; Disable binary code control

; .nlist src ; Disable source line control

; .nlist com ; Disable comment control

; .nlist md ; Disable macro definition control

; .nlist mc ; Disable macro call control

; .nlist

;******************************* WARNING *********************************

; THIS PROGRAM MUST BE ASSEMBLED WITH:

;

; - THE INCLUDE FILE: SYMBOLS.INC 3.1

; - THE MACRO LIBRARY FILE: BITMACRO.INC

;***

;****************************

;*INTERRUPT VECTOR ADDRESSES*

;****************************

CORE_IT_VECT := 00h ; Core interrupt vectors

SCI_IT_VECT := 10h ; Timer 0 interrupt vectors

EXT_IT_VECT := 20h ; External interrupt vectors

CDE_TABLE := 30h ; Table of CAM commands

SCI Transmission in CAM ISO Protocol



ST9 ISO SMARTCARD INTERFACE

20/41

;********************

;*Group number names*

;********************

BK0 := 0

BKC := 12

BKD := 13

BKE := 14

BKF := 15

BK_Rx := BK0 * 2 ; Group 0: SCI Rx and Tx buffer group

BK_F := BKF * 2 ; Group F: page registers

;******************* ********************************

;*STACK Declaration* *USER and SYSTEM STACK INTERNAL*

;******************* ********************************

SSTACK := (BKE * 16) - 1 ; System stack address group D C

USTACK := (BKC * 16) - 1 ; User stack address group B

;******************************

;* GLOBAL SYMBOLS DECLARATION *

;******************************

; Global labels declaration

.global RESET_START, SCI_INIT, Rx_ERROR, Tx_DATA, INIT_IO

.global DIV0, TOP_LEVEL_IT, ERROR_IT, INIT_IO, Rx_DATA, WDT_IT

.global Tx_ERROR, READ_CDE, SOUT_Rx, SOUT_Tx, RESULT_TABLE

.global CHG_CONV, RST_DR_T, RST_IV_T, Tx_ORDER, Rx_ANSWER

.global WRITE_CDE, WRITE_TABLE

; Global registers declaration

.global Rx_CPT, DATA, FLAG_SCI, DATA_BAD, TEMPO, Tx_PTR, Rx_PTR

.global TEMPO_H, Tx_rpt

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

21/41

;*************************************

;* Constants and register definitions*

;*************************************

BRG_9600 = 78 ; 12 MHz / 16 / 9600 Bds

BRG_19200 = 39 ; 12 MHz / 16 / 19200 Bds

tb_9600 = 300 ; bit duration at 9600 Bds (12 MHz)

tb_19200 = 150 ; bit duration at 19200 Bds (12 MHz)

DIV_BRG = BRG_9600 ; SCI Baud Rate Generator

tempo_bit = tb_9600 ; WDT Base time = 100 fs

TEMPO_RST = 50 ; RST CAM value 12 MHz INTCLK

TEMPO_bit = 50 ; Tempo bit

SCI_LEVEL := 4 ; SCI priority level

CONV_MASK = 00111100b ; Convention mask test

Nb_Tx_rpt = 2 ; number of repetition in Transmission

; declaration of receiver buffer for answer to reset and answer to Read cde

A_RST_AD == 00h ; Answer to Reset Reception buffer

; 1 st byte (63 bytes max)

READ_BUF_AD == 10h ; Answer to READ cde Reception buffer

; 1 st byte.

RESET_AD == 100h

RESULT_AD == 110h

A_Rst_lg = 13 ; Answer to Reset length

OUT_CDE_LG = 5 ; Cde lenght

READ_CDE_LG = 63 ; READ command length

Read_lg = READ_CDE_LG + 3 ; Read command length

; (procedure byte + data + ME1 + ME2)

WRITE_CDE_LG = 63 ; WRITE command length

Rx_CPT := R0 ; Byte counter for reception

rx_cpt = r0

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

22/41

Tx_CPT := R0 ; Byte counter for transmission

tx_cpt = r0

DATA := R1 ; Receive data

data = r1

DATA_BAD := R2 ; Bad receive data

data_bad = r2

FLAG_SCI := R3 ; SCI protocol status

flag_sci = r3

P_er = (1 <- 0) ; Parity error received

OE_er = (1 <- 1) ; Overrun error “

FE_er = (1 <- 2) ; Framing error “

Tx_go = (1 <- 3) ; Tx ongoing

Tx_err = (1 <- 4) ; Tx error detected

; . = (1 <- 5) ;

; . = (1 <- 6) ;

DIR_INV = (1 <- 7) ; 1: Direct convention,

; 0: Inverse convention

TEMPO := RR4 ; Counter for soft time base.

tempo = rr4

TEMPO_H := R4

tempo_h = r4

Rx_PTR := RR6 ; Receive pointer

rx_ptr = rr6

Tx_PTR := RR6 ; Transmit pointer

tx_ptr = rr6

Tx_rpt := R8 ; Tx repeat counter

tx_rpt = r8

.defstr rst_cam “p7dr.3” ; Reset CAM I/O

.defstr sout_per “p7dr.1” ; SOUT parity error I/O

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

23/41

;*********************

;* Macro definitions *

;*********************

.library “c:\st9\inc\bitmacro.inc”

.mcall ifbit, ifnobit

.macro START_SCI

spp #SCI1_PG ; Select SCI register page

ld DATA_BAD,S_RXBR

clr S_ISR ; clear SCI status

ld S_BRGLR,#DIV_BRG ; Start SCI transfer

.endm

.macro RE_INIT_SCI

spp #SCI1_PG

ld S_BRGHR,#0 ; Stop SCI (SOUT = 0 = start bit)

ld DATA_BAD,S_RXBR ; Read SCI receive buffer

clr S_ISR ; Clear SCI status register

ld S_BRGLR,#DIV_BRG ; Restart SCI transfer (SOUT = 1)

.endm

.macro START_WDT tempo

spp #WDT_PG ; Select Watchdog Timer page

ld WCR,#wden ; Watch dog mode disabled

clr WDTPR ; Prescaler = 0

ldw WDTR,#tempo ; Time base = tempo * 333 ns

or WDTCR,#(stsp | sc) ; WDT start in single mode

.endm

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

24/41

;******************

;*START of PROGRAM*

;******************

START_PROG := 100h ; Start address program

;**

;*Declaration of the interrupt vector table *

;**

.text ; Start of program

.org CORE_IT_VECT ; Core interrupt vector

; *********************

.word RESET_START ; Power on interrupt vector

.word DIV0 ; Divided by 0 interrupt vector

.word TOP_LEVEL_IT ; Top level interrupt vector

.org SCI_IT_VECT ; SCI interrupt vectors

; *********************

.word Rx_ERROR ; Receiver error interrupt

.word ERROR_IT ; Unused address

.word Rx_DATA ; Receiver data interrupt

.word Tx_DATA ; Tx Holding or shift register e mpty IT

.org EXT_IT_VECT ; EXTERNAL INTERRUPT VECTOR

; *************************

.word WDT_IT ; A0: Watchdog Timer interrupt vector

.word ERROR_IT ; A1:

.word ERROR_IT ; B0:

.word ERROR_IT ; B1:

.word Tx_ERROR ; C0: INT 4:

; test if SOUT = 0 during guardtime

.word ERROR_IT ; C1:

.word ERROR_IT ; D0:

.word ERROR_IT ; D1:

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

25/41

.org CDE_TABLE ; CAM COMMAND TABLE

; *****************

READ_CDE: ; Read 63 bytes in RAM command

.byte 10h, 0B4h, 00, 80h, READ_CDE_LG

WRITE_CDE: ; Write 63 bytes in RAM command

.byte 10h, 0D4h, 00, 80h, WRITE_CDE_LG

RST_DR_T: ; Answer to reset in direct convention

.byte 3bh, 78h, 11h, 00, 00, 0ffh, 0ffh, 04h, 00, 00, 00, 90h, 00

RST_IV_T: ; Answer to reset in inverse convention

.byte 3fh, 78h, 11h, 00, 00, 0ffh, 0ffh, 00h, 00, 00, 00, 90h, 00

RESULT_TABLE:

.byte 0d4h, 90h, 00 ; procedure byte ME1 ME2 for WRITE cde

.byte 0b4h ; Procedure byte for READ cde

WRITE_TABLE: ; Data table for WRITE command

.byte 01h, 02h, 03h, 04h, 05h, 06h, 07h, 08h

.byte 09h, 0ah ,0bh, 0ch, 0dh, 0eh, 0fh, 10h

.byte 11h, 12h, 13h, 14h, 15h, 16h, 17h, 18h

.byte 19h, 1ah, 1bh, 1ch, 1dh, 1eh, 1fh, 20h

.byte 21h, 22h, 23h, 24h, 25h, 26h, 27h, 28h

.byte 29h, 2ah, 2bh, 2ch, 2dh, 2eh, 2fh, 30h

.byte 31h, 32h, 33h, 34h, 35h, 36h, 37h, 38h

.byte 39h, 3ah, 3bh, 3ch, 3dh, 3eh, 3fh

.byte 90h, 00h ; ME1, ME2 for READ cde

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

26/41

;**********************

;*Start of main module*

;**********************

.org START_PROG ; Start of code

RESET_START:

ld MODER,#11100000b ; CLOCK MODE REGISTER

; internal stack

; no prescaling

; external clock divided by 2

ld CICR,#10001111b ; CENTRAL INTERRUPT CONTROL REGISTER

; priority level = 7

; Nested Arbitration mode

; disable interrupt

; enable counters

; At reset, Global Counter Enable

; bit is active.

clr FLAGR

spp #EXINT_PG ; page 0 register

srp #BK_F ; working register in group F

clr eipr ; Disable all the external interrupts

; pending bits.

nop ; See WARNING (Tech. manual - Chapter 8)

ld eivr,#EXT_IT_VECT ; External interrupt vector.

; IAOS - TLIS = 00 = ... A0 interrupt

; will be on TWD End Of Count.

ld eiplr,#11101101b ; Priority level.

; A0 channel: WDT End Of Count IT level 4

; C0 channel: INT4 at level 4

; At reset,

; Global Counter Enable bit is active.

ld eitr,#00000000b ; INT4: falling edge sensitive

ld eimr,#ia0m ; Enable WDT end of count Interrupt

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

27/41

ld SSPLR,#SSTACK + 1 ; Load system stack pointer

ld USPLR,#USTACK + 1 ; Load user stack pointer

call INIT_IO ; P7.3 = 0 start reset CAM

call SCI_INIT

clr FLAG_SCI ; SCI protocol status

START_SCI ; init SCI Rx transfer

ei ; enable interrupts

;****************

;* MAIN PROGRAM *

;****************

srp #0

ldw rr10,#RESULT_AD - 3 ; destination in data memory

ldw rr12,#RESULT_TABLE ; source in program memory

ld r14,#Read_lg + 3

loop [r14] {

lddp (rr10)+, (rr12)+ ; copy table of results in data memory

}loop {

RESTART::

srp #BK_Rx ; SCI buffer pointer group

sdm ; Select RAM space

ld Rx_CPT,#0ffh ; Clear Rx buffer

ldw Rx_PTR,#A_RST_AD

loop [Rx_CPT] {

ld (rx_ptr),#0ffh

incw Rx_PTR

}

; RESET OF Smart Card

spp #SCI1_PG ; Select SCI register page

and S_IMR,#~rxe ; Disable Rx error It for 1st byte

spp #P7C_PG ; Port 7 registers page

srp #BK_F

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

28/41

bres rst_cam ; RST CAM = 0

ld TEMPO_H,#TEMPO_RST

loop [TEMPO_H] {

nop

} ; RST CAM = 0 during at least 100 us

bset rst_cam ; RST CAM = 1

srp #BK_Rx ; SCI buffer pointer group

spp #SCI1_PG

ld Rx_CPT,#A_Rst_lg ; Answer to Reset length

ldw Rx_PTR,#A_RST_AD ; Answer to Reset Rx buffer address

; In RAM space

; ANSWER TO RESET RECEPTION

; Direct convention or Inverse convention ?

wfi ; Wait for 1st byte

or S_IMR,#rxe ; Enable Rx error IT

ld data_bad,data

and data_bad,#CONV_MASK ; Test type of convention

if [data_bad == #0] {

and FLAG_SCI,#~DIR_INV ; Inverse convention

and S_CHCR,#~ep ; Odd parity

call CHG_CONV ; Change convention

} else {

or FLAG_SCI,#DIR_INV ; Direct convention

}

ld (rx_ptr)+,data

dec Rx_CPT ; Store received character

call Rx_ANSWER ; Complete Answer to Reset Reception

ld TEMPO_H,#30h

loop [TEMPO_H] { ; Wait for end of reception before

nop ; transmit command

}

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

29/41

RESET_OK:: ; End of Answer to Reset

; SEND WRITE OF 63 BYTES in RAM command

spm ; Command in PROGRAM memory

ld Tx_CPT,#OUT_CDE_LG ; Counter of transmitted bytes

ldw Tx_PTR,#WRITE_CDE ; Tx pointer on READ cde

call Tx_ORDER ; Tx cde loop

; RECEPTION OF PROCEDURE BYTE FOR WRITE COMMAND

sdm ; In RAM space

ld Tx_CPT,#1 ; only procedure byte

ldw Tx_PTR,#(A_RST_AD + A_Rst_lg)

; store after answer to reset

call Rx_ANSWER ; Receive answer loop

ld TEMPO_H,#30h

loop [TEMPO_H] { ; Wait for end of reception before

nop

} ; SEND 63 BYTES to Smart Card

spm ; Command in PROGRAM memory

ld Tx_CPT,#WRITE_CDE_LG ; Counter of transmitted bytes

ldw Tx_PTR,#WRITE_TABLE ; Pointer on Tx data

call Tx_ORDER ; Tx cde loop

; RECEPTION of Status messages from Smart Card FOR WRITE COMMAND

sdm ; In RAM space

ld Tx_CPT,#2 ; only ME1 ME2

ldw Tx_PTR,#(A_RST_AD + A_Rst_lg + 1)

; store after answer to reset

call Rx_ANSWER ; Receive answer loop

ld TEMPO_H,#30h

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

30/41

loop [TEMPO_H] { ; Wait for end of reception before

nop

}

; SEND READ OF 63 BYTES

spm ; Command in PROGRAM memory

ld Tx_CPT,#OUT_CDE_LG ; Counter of transmitted bytes

ldw Tx_PTR,#READ_CDE ; Tx pointer on READ cde

call Tx_ORDER ; Tx cde loop

; RECEIVE READ COMMAND ANSWER

sdm ; In RAM space

ld Tx_CPT,#Read_lg ; Answer to READ cde length

ldw Tx_PTR,#READ_BUF_AD ; Read Rx buffer addres

call Rx_ANSWER ; Receive answer loop

; TEST RECEIVED DATA WITH PREDICTED RESULTS

READ_OK:: ; test results

srp #0

ifbit FLAG_SCI,#DIR_INV

ldw rr12,#RST_DR_T ; source in program memory

} else {

ldw rr12,#RST_IV_T ; source in program memory

}

ldw rr10,#RESET_AD ; destination in data memory

ld r14,#A_Rst_lg

loop [r14] {

lddp (rr10)+, (rr12)+ ; copy answer to reset of results

} ; in data memory

ldw rr10,#A_RST_AD

ldw rr12,#RESET_AD

ld r14,#(A_Rst_lg + 3 + Read_lg)

loop [r14] {

ld r15,(rr10)+

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

31/41

if [r15 != (rr12)+] {

loop { ; difference between results

LOCK:: ; and predicted data

}

}

}

} ; return for other answer to reset

;**

;* INITIALIZE SCI *

;**

proc SCI_INIT [PPR] {

spp #SCI1_PG ; Select SCI register page

srp #BK_F ; Select working register

ld s_brghr,#0 ; Init SCI

clr s_isr ; State register

ld s_ccr,#00h ; Clock configuration register

ld s_chcr,#(wl8 | pen | ep | sb20)

; Character configuration register

; 8 bit data

; Parity enabled

; Even parity

; 2 stop bit

ld s_ivr,#SCI_IT_VECT ; Interrupt vector register

ld s_imr,#(rxdi | txdi) ; Tx Shift register empty interrupt

; Rx data interrupt

ld s_idpr,#SCI_LEVEL ; SCI priority level

}

nop

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

32/41

;**

; Conversion: from Inverse convention to Direct convention

; or from Direct convention to Inverse convention

; Incoming data: data in Inverse convention or Direct convention

; Outgoing data: data in Direct convention or Inverse convention

; Modified value: data_bad, data tempo_h

; Duration: 268 cycles = 22,33 fsec at 12 MHz internal clock

proc CHG_CONV {

ld data_bad,data

cpl data_bad

ld tempo_h,#8

loop [tempo_h] {

rrc data_bad

rlc data

}

}

nop

;**

; Subroutine Tx_ORDER: Send data to Smart Card

; Incoming data: Tx_CPT: number of character of command

; Tx_PTR: command pointer in program or data memory

; Outgoing data: FLAG_SCI(Tx_err) if Tx error after Nb_Tx_rpt Tx

; Modified value: FLAG_SCI, Tx_CPT, Tx_PTR, data

; Called subroutine: SOUT_Tx, SOUT_Rx, CHG_CONV

proc Tx_ORDER {

spp #SCI1_PG ; Select SCI register page

or FLAG_SCI,#Tx_go ; Tx ongoing

call SOUT_Tx ; SOUT in AF OD

and S_IMR,#~rxe ; Disable Rx error It when Tx

loop [Tx_CPT] {

ld Tx_rpt,#Nb_Tx_rpt ; Number of repetition

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

33/41

ld data,(tx_ptr)+ ; Read data + increment pointer

ifnobit FLAG_SCI,#DIR_INV ; If Inverse convention

call CHG_CONV ; Change convention

}

loop [Tx_rpt] {

ld S_TXBR,data ; Load SCI Tx register

wfi ; Wait for Rx data ok

wfi ; Wait for Tx IT (Tx ok or

; Tx ERROR)

ifbit FLAG_SCI,#Tx_err ; Tx error ?

wfi ; Wait for Tx data IT

and FLAG_SCI,#~Tx_err ; Clear Tx error status

xor S_CHCR,#01000000b ; Restore parity

; $$$$$$$$$$$$$$

} else {

xor S_CHCR,#01000000b ; Change parity for test

; $$$$$$$$$$$$$$$$$$$$$$

break ; Exit repeat loop

}

}

ifbit FLAG_SCI,#Tx_err ; Two char. in error ?

break ; Exit Tx loop

}

}

call SOUT_Rx ; SOUT in BID OD

or S_IMR,#rxe ; Enable Rx error It

and FLAG_SCI,#~Tx_go ; End of Transmission

} ; End of Tx_ORDER subroutine

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

34/41

;**

; Subroutine Rx_ANSWER: receive data from Smart Card

; Incoming data: Rx_CPT: number of character of answer

; Rx_PTR: receive answer pointer in program or data memory

; Outgoing data: update recived buffer

; Modified value: FLAG_SCI, Rx_CPT, Rx_PTR, data,

; Called subroutine: CHG_CONV

proc Rx_ANSWER {

loop [Rx_CPT] {

wfi ; Wait for Rx IT

ifbit FLAG_SCI,#(P_er | FE_er)

and FLAG_SCI,#~(P_er | FE_er)

inc Rx_CPT ; Loop pseudo-macro

wfi ; Wait for WDT IT

} else {

ifnobit FLAG_SCI,#DIR_INV ; If Inverse convention

call CHG_CONV; Change convention

}

ld (rx_ptr)+,data ; Storage of the received data

xor S_CHCR,#01000000b ; Change parity for test

; $$$$$$$$$$$$$$$$$$$$$$

}

} ; Complete Answer ?

} ; End of Rx subroutine

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

35/41

;**

; SCI RECEIVER DATA INTERRUPT ROUTINE

;**

Rx_DATA:

begin [PPR] {

spp #SCI1_PG ; SCI data register page

ld DATA,S_RXBR ; Read the received data

and S_ISR,#~(rxdp | oe | fe | pe) ; Reset Rx pending bit

ifbit FLAG_SCI,#Tx_go ; Tx ongoing

spp #EXINT_PG ; Return to page 0 register

and EIPR,#~ipc0m ; Clear INT4 pending bit

or EIMR,#ic0m ; Enable INT 4

}

}

iret ; Return from interrupt

;**

; SCI RECEIVER ERROR INTERRUPT ROUTINE

;**

Rx_ERROR:

begin [PPR] {

pushw RPP

spp #SCI1_PG ; SCI data register page

ifbit S_ISR,#(pe | fe); PARITY or FRAMING ERROR

spp #P7C_PG ; Select Port 7 page

srp #BK_F ; Working register group F

bres sout_per; SOUT = 0 on parity error

START_WDT tempo_bit ; Start TWD

; to generate Rx error signal

spp #SCI1_PG; SCI data register page

xor S_CHCR,#01000000b ; Restore parity for test

; $$$$$$$$$$$$$$$$$$$$$$$

ld DATA,S_RXBR

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

36/41

clr S_ISR

or FLAG_SCI,#(P_er | FE_er) ; Parity error flag

} else {

ifbit S_ISR,#oe ; OVERRUN ERROR

or FLAG_SCI,#OE_er ; Update status SCI

ld DATA,S_RXBR

clr S_ISR

}

}

popw RPP

}

iret ; Return from interrupt

;**

; WATCHDOG TIMER INTERRUPT ROUTINE

;**

WDT_IT:

begin [PPR] {

pushw RPP

spp #P7C_PG ; Select Port 7 page

srp #BK_F ; Working register group F

bset sout_per ; SOUT = 1

RE_INIT_SCI ; Rx_ERROR detected

popw RPP

}

iret

nop

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

37/41

;**

; SCI TRANSMITTER DATA INTERRUPT ROUTINE

;**

Tx_DATA:

begin [PPR] {

spp #EXINT_PG ; Select page 0 register

and EIPR,#~ipc0m ; Clear INT4 pending bit

and EIMR,#~ic0m ; Disable INT 4

ifbit FLAG_SCI,#Tx_err

RE_INIT_SCI ; after Tx_ERROR detected

} else {

spp #SCI1_PG

clr S_ISR ; Clear SCI status register

}

}

iret ; Return from interrupt

nop

;**

; INT4: Transmitter error detection

;**

Tx_ERROR:

begin [PPR] {

spp #EXINT_PG

and EIMR,#~ic0m ; Disable INT 4

or FLAG_SCI,#Tx_err ; Tx error detected

}

iret

nop

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

38/41

;**

; I/O port initialization

proc INIT_IO [PPR, RP0R, RP1R] {

; Port 7 initialization

spp #P7C_PG ; P7.0 = SIN: INPUT TRI TTL

; P7.1 = SOUT: BID OD TTL

; P7.2 = INT4: INPUT TRI TTL

; P7.3 = Rst CAM: OUT OD TTL

srp #BK_F

; 76543210

ld p7c0r,#00000101b

ld p7c1r,#00001000b

ld p7c2r,#00001111b

ld p7dr, #11110111b

;.........................end init P7

}

proc SOUT_Rx [PPR] {

spp #P7C_PG ; P7.1 = SOUT: BID OD TL

; 76543210

and P7C0R,#11111101b

and P7C1R,#11111101b

or P7C2R,#00000010b

}

nop

proc SOUT_Tx [PPR] {

spp #P7C_PG ; P7.1 = SOUT: AF OD TTL

; 76543210

or P7DR, #00000010b

or P7C0R,#00000010b

or P7C1R,#00000010b

or P7C2R,#00000010b

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

39/41

}

nop

;**

; SECTION CODE FOR THE CORE INTERRUPT ROUTINE

;**

;—————————————————————————————————————

; INTERRUPT ROUTINE FOR ZERO DIVISION

;—————————————————————————————————————

DIV0:

jx DIV0 ; debug loop

iret

;—————————————————————————————————————

; INTERRUPT ROUTINE FOR TOP_LEVEL_IT

;—————————————————————————————————————

TOP_LEVEL_IT:

jx TOP_LEVEL_IT ; debug loop

iret

;—————————————————————————————————————

; WRONG INTERRUPT ROUTINE

;—————————————————————————————————————

ERROR_IT::

jx ERROR_IT ; debug loop

iret

SCI Transmission in CAM ISO Protocol (Continued)



ST9 ISO SMARTCARD INTERFACE

40/41

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectron-
ics assumes no responsability for the consequences of use of such information nor for any infringement
of patents or other rights of third parties which may result from its use. No license is granted by implica-
tion or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications
mentioned in this publication are subject to change without notice. Thispublication supersedes and re-
places all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life
support devices or systems without the express written approval of SGS-THOMSON Microelectronics.

 1994 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I2C Components by SGS-THOMSON Microelectronics conveys a license under the Philips I2C Patent.
Rights to use these components in an I2C system is granted provided that the system conforms to the I2C Standard

Specification as defined by Philips.
SGS-THOMSON Microelectronics Group of Companies

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Nether-
lands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

THE SOFTWARE INCLUDED IN THIS NOTE IS FOR GUIDANCE ONLY. SGS-
THOMSON SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR
CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM
USE OF THE SOFTWARE.



ST9 ISO SMARTCARD INTERFACE

41/41

