
 APPLICATION NOTE

INITIALIZATION OF THE ST9

INTRODUCTION

The ST9 family offers the microprocessor designer a wide variety of architectural features configurable to
the user’s specific application requirements. Central to all these configurations is a multiple register based
microcomputer core to which may be added on-chip, powerful peripheral components including A/D
Convertors, Serial Communication Interface units (SCI’s), and 16-bit Multifunction timers with input
capture/output compare capabilities. The availability, on-chip, of these application-specificunits obviates
the need for external interface design as well as offeringhigh-speed and good reliability.

The particular peripherals incorporated on-chip may themselves be individually configured to offer a wide
variety of functional (architectural) alternatives. This configuration is typically implemented by simple
software routines included in the power-on- or system- reset routines. The sole difficulty which the user
may initially encounter stems, in fact, from the power and versatility of this approach to system design. The
large number of available options means that the user must specify a large number of system parameters
by initializing control register contents for the specific peripheral units.

The objective of this Application Note is to suggest to the user a programming structure andphilosophy to
aid in the initial configuration of the system. The approach is illustrated by a number of specific examples
selected from the wide range available for the ST9030, ST9040 families, but are applicable to all ST9s.

System Reset

After processor Reset the control and status registers, located on the group F pages (0-63) are forced to
preset values which define a default Reset configuration for the ST9 system. By way of example the internal
clock frequency (INTCLK) is set to the internal crystal oscillator (or externallyapplied clock frequency, if
supplied) divided by two without prescaling, and the individual pins of Parallel Ports 0,1, and 6 are set to
bidirectional Pullup mode (for systems with on-chip ROM). On releasing the external RESET signal the
processor PC is loaded with the contents of the Reset Vector stored in address locations 0 and 1. This
causes a jump to a Reset routine in which the designer may reconfigure the ST9 system as appropriate to
the requirements of his particular application, by loading suitable values into the system registers.

The number of registers to be initialized may be considerable for a representative ST9 system.Additionally,
the application-specific interrupt routines will, in general, involve the manipulation of substantial system
resources, e.g. read/write of data registers, and test/reset of status, mask, and control registers. The
associated programming task may appear daunting in prospect on firstacquaintancewith the ST9 system.
Conceptually, the organization of the associated software is relatively simple and straightforward as may
be recognized by grouping under four headings the programming steps involved in the initialization of ST9
peripherals and the organization of interrupt service routines.

Pierre Guillemin and Alan Dunworth

AN413 / 1292 1/44

a) ST9 Core System Configuration

Certain core system resources are common to all on-chip peripherals and may be specified in a common
routine which is invoked at System Reset. Such common resources include clock configuration, system
and user stack specification, global interrupt masking, processor priority setting, parallel port bit-by-bit
specification, and setting of external memory wait-cycles. The setting up of the interrupt vector table, and
certain global masking or enabling operations, may also be included under this heading.

b) Individual On-chip Peripheral Configuration

The configuration of on-chip peripherals, e.g. Multifunction Timers, A/D Converters, etc., involves the
loading of suitable bit-patterns into group F page registers. This enables the specification of input and
output signals, determination of theperipheral’s mode of operation, and the selection of internal or external
clock and control signals.

c) Individual On-chip Peripheral Initialization

The initialization of a particular on-chip peripheral may involve the setting or clearing of device-specific
enable and masking bits, specification of interrupt priority levels, clearing of status/flag values, and the
loading of data and/or limit registers.

d) Organization of Interrupt Service Routines

This will normally include context-saving and restoring of the PC and system status, plus the working-reg-
ister and page-pointer registers, together with the values of any working registers used in the routine. The
routine proper may include testingofstatus flag bits,and the reading and writing of data registers associated
with the particular device. Finally, the interrupt pending bits should be cleared, the context restored, and
individual masking and enabling bits restored to the appropriate values.

In practical programming terms there will normally be a single routine invoked on system RESET which
carries out the core system configurations listed under heading a) above. For each individual peripheral
there will typically be a single routine which carries out the configuration andinitialization operations listed
under headingsb) and c). There will also be one or more interrupt routines associated with each peripheral,
e.g. the A/D converter may require in general two interrupt routines, one for End of Conversion, and one
for out of range operation (i.e. Analog Watchdog operation) on channels 6 and 7.

An example of a core-system configuration is given in Appendix B, and Appendices C,D,E, and F give
configuration/initialization examples, and Interrupt routines for the Timer, A/D Convertor, SCI unit, and
Timer/Watchdog respectively.

There is not space in a short note to discuss these programmes in detail on a line by line basis. Instead
the approach will be to list, for each device, the resources which need to be taken into consideration when
configuring, initializing, and servicing the particular device. An example will then be given of the specific
use of each such resource. With this background, the interested user should be able to follow in detail
those listings most relevant to his particular application area.



INITIALIZATION OF THE ST9

2/44

ST9 BASIC SYSTEM CONFIGURATION

Tables A.1 and A.2 in Appendix A lists the registers which should be loaded with specified bit-patterns in
order to initialize the ST9 to a basic system configuration. A demonstration routine which carries this out
for a representative ST9 system is listed in Appendix B. The main routine, RESET_START, is invoked at
system Reset. Also shown in AppendixB are the Assembler Declarations and directives which enable the
Interrupt Vector Address Table to be set up in program memory.

The Vector Address Table

The ST9 implements an interrupt vectoring structure that allows the on-chip peripheral to identify the
location of the first instruction of the Interrupt Service Routine (ISR). Each interrupt module has a specific
Interrupt Vector Register (IVR) mapped on the register file pages. When the interrupt request is acknow-
ledged, the peripheral interrupt module provides, via the IVR, the vector to point to the address of the
Interrupt Service Routine in the Vector Table.

The Interrupt Vector table containing the list of addresses of the Interrupt Service Routine must be located
in the first 256 locations of program memory. The first 6 locations of Program memory are reserved as
follows:

Note that since the above locations are fixed by the hardware no associated IVR register is involved. For
certain interrupt modules more than one interrupt routine may be required. For example the A/D Convertor
has separate interrupts for the End of Conversion and Channel 6/7 analog underflow/overflowconditions.
In such cases the IVR register specifies the more significant, and the interrupt module hardware specifies
the less significant bits of the Vector Table address.

The following Assembler outline shows how the corresponding Vector table entries may be established.

ADC_IT_VECT:= 30h
.
.org ADC_IT_VECT
.word ADC_WDG
.word ADC_EOC
.

ADC_WDG:
; Code for the Analog Watchdog Routine is included here
; Note that in the example in Appendix B
; the System Reset routine is invoked for out of
; range conditions on Channels 6 and 7
.
iret

ADC_EOC:
; End of A/D conversion interrupt routine included here
iret

Address Content

0 Address high of Power on Reset routine

1 Address low of Power on Reset routine

2 Address high of Divide by Zero Trap Subroutine

3 Address low of Divide by Zero Trap Subroutine

4 Address high of Top Level ISR

5 Address low of Top Level ISR



INITIALIZATION OF THE ST9

3/44

PORT INITIALIZATION

The ST9 has up to a maximum of 64 lines dedicated to input/output. These lines, grouped into eight 8-bit
ports, can be independentlyprogrammed to provide parallel input/outputs with or without handshake or
may be used to connect in/out signals to/from the peripherals (e.g. Core, Timers, SCI units, etc.) present
on the chip. The functional allocation of the Ports to support system tasks may be summarised as follows:

Port Functions

0 Usable as I/O Port (without handshake) or as multiplexed low-address and data lines for
external memory.

1 Usable as I/O Port (without handshake)or as high-address lines for external memory.

2 Usable as I/O Port (without handshake)or for SPI functions; Also INT1, INT2, and INT3 inputs.

3 Usable as I/O Port (without handshake)or for Timer functions.

4 Usable as I/O Port (with or without handshake)

5 Usable as I/O Port (with or without handshake).

6 Usable as I/O Port (without handshake)

7
Usable as I/O Port (without handshake)
or for SCI functions. Also used for INT4, INT5, and INT6 inputs
or for Control signals for slow external memory

Ports 0,1, and 6 are automatically initializedon systemReset to correspond to the installed on-chip memory.
Ports 2, 3, 4, 5, 6, and 7 need to be initialized (if available) to satisfy the specific application requirements
for external I/O, plus any alternative function assignments of port pins, and internal interconnections.Table
A.3, Appendix A, lists the complete set of Port Configuration registers together with their addresses.

Example:

C7 0A spp P3C_PG
F5 FC 05 ld P3C0R,#00000101b
F5 FD 0F ld P3C1R,#00001111b
F5 FE 05 ld P3C2R,#00000101b

In this example Port 3 pins 4, 5, 6, and 7 are configured as bidirectional pins, with weak pull-up output and
TTL inputs. Pins 0 (T0INA) and 2 (T0INB) are configured as TTL inputs, and Pins 1 (T0OUTA) and 3
(T0OUTB) are configured as Alternate Function Push-pull outputs.



INITIALIZATION OF THE ST9

4/44

MULTIFUNCTION TIMER CONFIGURATION

The ST9 Multifunction Timer is configured by loading suitable control-bit patterns in the groupe F page
register TCR, TMR, ICR, OACR, and OBCR (see Table A.4 in Appendix A). Note that registers EIMR and
CICR provide global control functions common to all on-chip peripherals and are hence initialized
conveniently in the basic system configuration routine.

The External Input Control Register, ICR , controls input source selection (internal/external), input mode
selection (falling/rising edge sensitive, etc.), counter mode of operation (continuous, one-shot, etc.), and
input function (Gate, Trigger, up/down control, etc.).

Example:

F5 FA 54 ld T_ICR,#01010100b

This instruction selects the external input A as a falling-edge-sensitive Trigger input, and the B input is a
normal Port I/O pin.

The Multifunction Timer Control Register, TCR , controls counter clear and prescaler reload operations
as well as providing a counter enable control bit and counter status flags.

Example:

F5 F8 48 ld T_TCR,#01001000b

This instruction halts the counter operation but provides for subsequent UP counting with counter clear
and Prescaler reload on Reg0 or Reg1 capture.

The Multifunction Timer Mode Register, TMR , selects the clock source for the counter-prescaler input,
enables Retrigger or Continuous mode, and controls register load/capture operations.

Example:

98 8C ld T_TMR,#10001100b

This patternenables output 1 anddisables output 0, disables bivalue modes, and selects Reg0 for capture
and Reg1 for monitor. Retriggerable continuous mode is selected.

The Output Control Register, OACR, links the output T0OUTA to counter overflow/underflow and
Compare events, and provides for subsequent Set, Reset, or Toggle of the external output. The on-chip
event (OCE) may be linked to a COMP0 event.

Example:

F5 F5 1B ld T_OACR,#00011011b

In this example T0OUTAis preset to 1, and issubsequentlyset by COMP0, toggled by COMP1, and Reset
by OVF. The OCE signal is generated by a successful CMP0 compare event.

The Output Control Register, OBCR , links the output T0OUTB to counter overflow/underflow and
Compare events, and provides for subsequent Set, Reset, or Toggle of the external output. The on-chip
event (OCE) may be linked to a counter overflow/underflow event.

Example:

F5 F6 83 ld T_OBCR,#10000011b

In this example T0OUTB is preset to 1,and is subsequentlyreset by COMP0, and set by OVF and COMP1.
The OCE signal is generated by a counter overflow/underflow event.



INITIALIZATION OF THE ST9

5/44

MULTIFUNCTION TIMER INITIALIZATION

Initialization of the Multifunction Timer requires loading of the Prescaler register and the two Comparison
registers. The timer Status register should be cleared, the Vector Table entry should be set, and the
Multifunction Timer counter actions enabled. The interrupt/DMA priority levels should be set and the mask
bits should be adjusted as appropriate to the application. Further, if DMA operations are specified, DMA
address and counter registers will require initialization.

The Prescaler Register, PRSR, holds the preset value for the 8-bit prescaler.

Example:

BC 00 ld T_PRSR,#00h

This defines a division ratio of 1 and the maximum counter clock is generated (INTCLK/3).

The Multifunction Timer Flags Register, FLAGR , contains flags which register successful capture or
comparison events together with OVF/UNF and overrun conditions.

Example:

15 FE FD and T_FLAGR,#~ocm0

This example resets the overrun bit for COMP0 operations.

The Interrupt Vector Register, IVR, should be loaded with the 5 most significant bits of the Multifunction
Timer’s interrupt vector address in program memory. The interrupt source (compare, capture, or OVF/UNF)
provides the least significant 3 bits to provide the correct vector link.

Example:

F5 F2 10 ld T0_IVR,#T0_IT_VECT

In thisexample IVR is loaded with the start address (10h) of the block of 8 words in the vector table allocated
to the 5 different Multifunction Timer interrupts.



INITIALIZATION OF THE ST9

6/44

MULTIFUNCTION TIMER INITIALIZATION (Continued)

The Interrupt/DMA Control Register, IDCR, is used to set the Interrupt and DMA priority levels, and the
DMAtransfer source and destination. It also enables Swap mode and contains End of Block condition flags.

Example:

F5 F3 D6 ld T0_IDCR,#11000110b

In this example the priority level is set at a value of 6, and the Swap mode is disabled. The DMA capture
channel source is REG0, and the DMA compare channel source is CMP0.

The Interrupt/DMA Mask Register, IDMR, contains a global Multifunction Timer Interrupt enable plus
individual DMAand Interrupt enable bits for overflow as well as successful capture and comparison events.

Example:

F5 FF 04 ld T_IDMR,#00000100b

0F FF 80 or T_IDMR,#gtien

The first instruction sets the interrupt enable on CMP0, and the second instruction globally enables all
Multifunction Timer interrupts.

The DMA Counter Pointer Register, DCPR, defines the DMA area and source, and specifies the location
of the DMA length register.

Example:

F5 F0 4C ld T0_DCPR,#CPT_LG_DMA

The DMA length register is 4Ch = rr12 = RR76 and the transfer occurs to/from Program/Data memory.

The DMA Address Pointer Register, DAPR , defines the DMA area and source, and specifies the location
of the DMA address register.

Example:

F5 F1 48 ld T0_DAPR,#CPT_AD_DMA

The DMA address register is 48h = rr8 = RR72. In conjunction with the DPCR value in the above example
it specifies Program memory for the buffer.



INITIALIZATION OF THE ST9

7/44

A/D CONVERTOR CONFIGURATION/INITIALIZATION

Configuration of the A/D convertor requires loading of 4 registers only, CLR, CRR, ICR, and IVR (Table
A.6), and initialization of this device involves, apart from global masking, loading of two double (threshold
registers). Hence a single routine can be written to cover both the configuration and initialization aspects
of A/D Convertor use.

The Control Logic Register, CLR , defines the Analog channel conversion start address, selects inter-
nal/external triggers, and enables continuous or single conversionand power up/down modes. This register
also contains a start/stop status/control bit.

Example:

F5 FD 04 ld AD_CLR,#00000100b

In this example, the conversion scan starts with channel 0 when enabled, powers up the A/D convertor,
halts conversion, and specifies single conversion scan mode.

Please note that before enabling any A/D conversion, it is mandatory to set the low bit of Control Logic
Register at least 60µs before the first conversion start. This is in order to correctly bias the analog section
of the converter.

The Interrupt Vector Register, IVR , defines the most significant 6 bits of the vector table byte address. It
thus points to the first of two word addresses which correspond to the analog watchdog and End of
conversion interrupt routines.

Example:

F5 FF 32 ld AD_IVR,#ADC_ITEOC_VECT

In this example, an address of 50 (decimal) is loaded into IVR. Hence a subsequent A/D convertor EOC
interrupt will cause a Vector Table access at location 50.

The Interrupt Control Register, ICR , contains the priority level specification, the two source interrupt flags
(Analog Watchdog and EOC) and their individual masking bits.

Example:

F5 FE 20 ld AD_ICR,#00100000b

05 FE 20 or AD_ICR,#00000110b

In this example, the priority level is first set at 0, End of Conversion interrupts are enabled, and theAnalog
Watchdog interrupt is masked. The second instruction then sets the priority to a level of 6.

If the Analog Watchdog is enabled (bit 6 in ICR) it will be necessary to load the threshold registers for
channels 6 and 7. In this case access will be made in the interrupt routine to register CRR.

The Compare Result Register, CRR, contains 4 flags showing the results of comparison operations
between the current values of data registers 6 and 7, and the upper and lower threshold registers.



INITIALIZATION OF THE ST9

8/44

SCI UNIT CONFIGURATION

The list of registers to be initialized when configuring the SCI unit is given in Table A.9. The functions of
these registers, and some illustrative examples of their use, are as follows:

The Character Configuration Register, CHCR , is used to define the serial frame format.

Example:

AC E3 ld S_CHCR,#E3h

This example defines a serial frame as follows: 8 data bits, 1 stop bit, even parity, and address input if the
character matches the contents of the Address Register.

The Clock Configuration Register, CLCR , is used to specify the transmitter, receiver, and Baud Rate
clock sources, and the clock divisor ratio. It also enables Auto Echo and Loopbacktest modes.

Example:

BC 80 ld s_clcr,#txclk

In this example, the Transmitter and Receiver clocks are provided by the Baud Rate Generator. Each data
bit period will be 16 clock periods (asynchronous mode), and the Auto Loop and Loopback modes are
disabled.

The Baud Rate Generator Register, BRGR, specifies a 16-bit division ratio.

Example:

BF DC 00 4E ldw s_brgr,#DIV_9600

This example specifies a division ratio yielding 9600 Bauds with a 24 Mhz external clock.

Writing to a Baud Rate Generator Register immediately disables and resets both the SCI Baud Rate
generator, the transmitter and receiver circuitry. After writing to the remaining Baud Rate Generator
Register, the transmitter and receiver circuits are enabled. The Baud Rate Generator will load the new
value and start counting.

To initialize the SCI, user should first initialize one Baud Rate Generator Divisor Register. This will reset all
SCI circuitry. Initialize all other SCI registers for the desired operating mode. Toenable the SCI, initialize
the remaining Baud Rate Generator Register.

The Address Compare Register, ACR, contains an 8-bit value which may be used as a match against
which a received address may be tested to set the Receive Address Pending bit.

Example:

5C 0D ld s_acr,#RETURN

This will cause the Receive Address Pending bit to be set if an End of Command character bit-pattern is
received.



INITIALIZATION OF THE ST9

9/44

SCI UNIT CONFIGURATION (Continued)

The Interrupt Vector Register, IVR , defines the most significant 5 bits of the vector table byte address. It
thus points to the first of four vector table word address entries.

Example:

4C 00x ld s_ivr,#SCI_IT

In this example, after the external symbol has been linked in, the Vector Table entry address will beloaded
into IVR at execution time.

The Interrupt Mask Register, IMR, contains five interrupt masking bits and two End of Block DMA status
bits. It also selects the shift register or holding register as source of the transmitter register empty interrupt.

Example:

6C 05 ld s_imr,#00000101b

In this example the interrupt pending bits are reset, the Transmitter data interrupt is masked, and the
Receiver data, data error, and address interrupts are unmasked.

The Interrupt/DMA Priority Register, IDPR, specifies the Interrupt/DMA priority, selects one of four
Address modes, and controls the emission of Break characters andenables address/9th bit data mode. It
also provides mask bits for Receive and Transmit DMA transfers.

Example:

9C 04 ld s_idpr,#04h

In this example a priority level of 4 is specified, and Transmitter DMA requests are masked.



INITIALIZATION OF THE ST9

10/44

SCI UNIT INITIALIZATION

The list of registers to be initialized when initializing the SCI unit is given in Table A.10. The functions of
these registers, and some illustrative examples of their use, are as follows:

The Receiver DMA Transaction Counter Pointer Register, RDCPR , contains the register file address
of the receiver DMA transaction counter. In addition it determines whether the DMA transfers occur in the
register file or in memory.

Example:

An example of the use of this register is provided below (see RDAPR example).

The Receiver DMA Destination Address Pointer Register, RDAPR , contains the register file address of
the receiver DMA data destination. In addition, in conjunction with bit 0 of RDCPR, it determines whether
the DMAtransfers occur in Program or Data memory.

Example:

00 FF LNG-DMA_SCI := 0Fh
00 A0 DEPART_DMA_SCI := 0A0h
00 02 NUM_RDAP := 2
00 03 NUM_RDCP := 3
2C 03 ld S_rdcpr,#NUM_RDCP
1C 02 ld S_rdapr,#NUM_RDAP
F5 03 0F ld R#NUM_RDCP,#(LNG_DMA_SCI)
F5 02 00 ld R#NUM_RDAP,#(DEPART_DMA_SCI)

In this programsequence the DMAtransaction counter and Address Pointer register addresses are defined
to be R3 and R2 respectively. These two registers are initialized for a block of size 15 bytes starting at
register address A0, i.e. R160.

The TransmitterDMA Transaction Counter Pointer Register, TDCPR , contains the register file address
of the transmitter DMA transaction counter. In addition it determines whether the DMA transfers occur in
the register file or in memory.

Example:

An example of the use of this register is provided below (see TDAPR example).

The TransmitterDMA Destination Address Pointer Register, TDAPR , contains the register file address
of the transmitter DMA data destination. In addition, in conjunction with bit 0 of TDCPR, it determines
whether the DMA transfers occur in Program or Data memory.

Example:

00 FF LNG-DMA_SCI := 0Fh
00 A0 DEPART_DMA_SCI := 0A0h
00 06 NUM_TDAP := 6
00 07 NUM_TDCP := 7
2C 07 ld S_TDCPR,#NUM_TDCP
3C 06 ld S_TDAPR,#NUM_TDAP
F5 07 0F ld R#NUM_TDCP,#(LNG_DMA_SCI)
F5 06 00 ld R#NUM_TDAP,#(DEPART_DMA_SCI)

In this programsequence the DMAtransaction counter and Address Pointer register addresses are defined
to be R7 and R6 respectively. These two registers are initialized for a block of size 15 bytes starting at
register address A0, i.e. R160.



INITIALIZATION OF THE ST9

11/44

TIMER/WATCHDOG UNIT CONFIGURATION

Configuration of the Timer/Watchdog requires loading of the 6 registers listed in Table A.11, Appendix A.

Timer/Watchdog unit Configuration

The Timer/WatchdogControl Register , WDTCR, containsa start/stopbit, and is also used to select input,
output, and counter modes, as well as input and outputenable bits.

Example:

BC 80 ld wdtcr,#80h

In this example the Timer starts counting down in continuous mode, and the input and output sections are
disabled.

The Wait Control Register , WCR, as well as specifying the number of wait states for access to off-chip
program and data memory enables the Watchdog function.

Example:

CC 40 ld wcr,#wden

In this example the Watchdog action is disabled, and the number of wait states are set to zero.

The External Interrupt Vector Register , EIVR, contains a bit, TLIS, which is used to control the Top Level
Interrupt source (Timer/Watchdog EOC or External NMI). A second bit IAOS is used to select the
Timer/Watchdog as an interrupt source on channel A0 (INT0). This register is also used to supply the 4
most significant bits of the External InterruptVector.

Example:

6C 20 ld eivr,#EXT_IT_VECT

In this example the Timer/Watchdog EOC generates an interrupt on channel A0 at each End of Count. The
Top Level Interrupt is isolated from the NMI input and may be used for a Software Trap.

The Timer/Watchdog Prescaler Register, WDTPR, contains an 8-bit value which is loaded into the
Prescaler register.

Example:

90 DA clr wdtpr

The specified Prescaler value of zero leads to a minimum timer count period of 333ns, assuming a system
clock running at 12MHz.

The Timer/Watchdog High Register, WDTHR , and Timer/Watchdog Low Register, WDTLR, together
contain a 16-bit value which is loaded into the counter at each End of Count.

Example:

BF F8 0B BB ldw WDTR,#3003

The specified count value leads to a count period of about 1 millisecond, (3003 x 333ns).



INITIALIZATION OF THE ST9

12/44

TIMER/WATCHDOG UNIT INITIALIZATION

The External Interrupt Priority Level Register , EIPLR, specifies the priority level of four pairs of external
interrupts, a), A1,...D0, D1. It is thus used to set the priority of the Timer/Watchdog EOC interrupt routine,
called via channel A0.

Example:

5C FE ld eiplr,#0FEh

In this example priority levels of 4 and 5 are specified for the pair INTA0, INTA1.

The External Interrupts PendingBit Register , EIPR, holds the eight interruptpending bits for the external
interrupts, including, in the present context, the Watchdog/Timer EOC interrupt. These bits are set by
hardware action and reset by software during the service routine.

Example:

90 D3 clr eipr

In this example all the external interrupt pending bits are cleared.

The External Interrupts Mask-Bit Register, EIMR, holds the eight interrupt mask bits for the external
interrupts, including, in the present context, the Timer/Watchdog EOC interrupt.

Example:

4C 01 ld eimr,#ia0

In this example the Timer/Watchdog End of Count on Channel A0 is unmasked.



INITIALIZATION OF THE ST9

13/44

INTERRUPT SERVICE ROUTINE ORGANIZATION

When an enabled interrupt is acknowledged the Interrupt machine cycle performs the following actions:

(i) All maskable interrupts are disabled by clearing the EI bit of register CICR.

(ii) The PC (two bytes) and the FLAGS register are saved on the System stack.

(iii) The PC is loaded with the 16-bit vector stored in the Vector Table.

On exit from the Interrupt service, using an IRET instruction the following operations are carried out:

(iv) The FLAGR register is restored from the System stack.

(v) The PC is restored from the System stack.

(vi) The unmasked interrupts are enabled by setting the CICR.EI bit.

In general additional resources must be saved and restored apart from thosehandled automatically by the
system as listed above. In a typical case these additional resources will include the two Register pointer
registers, the Page-pointer register, and any working registers used in the Interrupt routine.

An outline for a suitable Interrupt service routine is hence as follows:

Label_int:

work_reg_page0 = (0Dh*2)
work_reg_page1 = (0Dh*2) + 1
WDT_PG = 0
T0c_PG = 9
T0d_PG = 10
S_PG = 24
AD0_PG = 63

push RP0
push RP1
push PPR
spp #T0d_PG
srp0 #work_reg_page0
srp1 #work_reg_page1
push r0
push r1
push rA

;
;
;Interrupt Service routine
;appears here, including
;read/write data registers
;test status flags
;clear interrupt pending flags

pop rA
pop r1
pop r0
pop PPR
pop RP1
pop RP0
iret



INITIALIZATION OF THE ST9

14/44

SUMMARY

This Application Note has attempted to formalize and simplify the programming task of configuring and
initializing an ST9 system. The resources to be controlled have been listed with brief examples of their use.
Complete examples of ST9 configuration, initialization, and Interrupt Service routines are presented in a
set of Appendices. These programs have been written for an ST9030 but can be readily adapted where
necessary for use with other versions.

REFERENCES

(1) “ST9 Technical Manual”, SGS-THOMSON Microelectronics.

(2) Application Note AN411,SYMBOLS.INC Standard Definitions of ST9 Registers and Register-bits.

APPENDICES

A. ST9 Core and Peripheral Configuration/InitializationRegisters.

A.1. System Configuration: System Registers.

A.2. System Configuration: Paged Registers.

A.3. Port Configuration Registers.

A.4. Multifunction Timer Configuration/InitializationRegisters.

A.5. Multifunction Timer Data/Status Register.

A.6. A/D Configuration/Initialization Registers.

A.7. A/D Channel Registers.

A.8. A/D Threshold Registers

A.9. SCI Configuration Registers.

A.10. SCI Initialization Registers.

A.11. Watchdog Timer Configuration/Initialization Registers.

A.12. SPI Init ialization.

A.13. EEPROM Initialization.

B. Examples of ST9 System Configurations.

C. Examples of Multifunction Timer 0 Configurations.

D. Examples of A/D Converter Configurations.

E. Examples of SCI Configurations.

F. Examples of Timer/Watchdog Configurations.



INITIALIZATION OF THE ST9

15/44

Mnem. Name Reg. Hex Pg.
Reset
Value
(Hex)

CICR Central Interrupt Control Register R230 E6 - 87

FLAGR Flags Register R231 E7 - XX

RP0R Register Pointer 0 R232 E8 - XX

RP1R Register Pointer 1 R233 E9 - XX

PPR Page Pointer Register R234 EA - XX

MODER Mode Register R235 EB - E0

USPHR User Stack Pointer (high) R236 EC - XX

USPLR User Stack Pointer (low) R237 ED - XX

SSPHR System Stack Pointer (high) R238 EE - XX

SSPLR System Stack Pointer (low) R239 EF - XX

A.1. System Configuration: System Registers

Mnem. Name Reg. Hex Pg.
Reset
Value
(Hex)

EECR EEPROM Control Register Mask Register R241 F1 0 87

EITR External Interrupt Trigger-Event Register R242 F2 0 XX

EIPR External Interrupt Pending Register R243 F3 0 XX

EIMR External Interrupt Mask Register R244 F4 0 XX

EIPLR External Interrupt Priority Level Register R245 F5 0 XX

EIVR External Interrupt Vector Register R246 F6 0 E0

NICR Nested Interrupt Control Register R247 F7 0 XX

WCR Wait Control Register R252 FC 0 7F

A.2. System Configuration: Page Registers

APPENDIX A. ST9 CORE AND PERIPHERAL CONFIGURATION/INITIALIZATION



INITIALIZATION OF THE ST9

16/44

Port Name Registers Hex Pg.
(Hex)

0
Data Register

Control Registers (PxC0-PxC2)
R224

R240-R242
E0

F0-F2
-
2

1
Data Register

Control Registers (PxC0-PxC2)
R225

R244-R246
E1

F4-F6
-
2

2

Data Register
Control Registers (PxC0-PxC2)

Handshake Control Register

R226
R248-R250

R251

E2
F8-FA

FB

-
2
2

3

Data Register
Control Registers (PxC0-PxC2)

Handshake Control Register

R227
R252-R254

R255

E3
FC-FE

FF

-
2
2

4
Data Register

Control Registers (PxC0-PxC2)
Handshake Control Register

R228
R240-R242

R243

E4
F0-F2

F3

-
3
3

5
Data Register

Control Registers (PxC0-PxC2)
Handshake Control Register

R229
R244-R246

R247

E5
F4-F6

F7

-
3
3

6
Data Register

Control Registers (PxC0-PxC2)
R251

R248-R250
FB

F8-FA
3
3

7
Data Register

Control Registers (PxC0-PxC2)
R255

R252-R254
FF

FC-FE
3
3

RESET Values:
Ports 2, 3, 4, and 5: PcX0: 00000000

PcX1: 00000000
PcX2: 00000000

Handshake Control Registers: 111111111

A.3. Port Configuration Registers



INITIALIZATION OF THE ST9

17/44

Mnem. Name Reg. Hex Pg.
Reset
Value

(Binary)

CICR Central Interrupt Control Register R230 E6 - 10000111

TCR Timer Control Register R248 F8 10 00000XXX

TMR Timer Mode Register R249 F9 10 00000000

ICR External Interrupt Control Register R250 FA 10 0000XXXX

OACR Output A Control Register 0 R252 FC 10 XXXXXX0X

OBCR Output A Control Register 1 R253 FD 10 XXXXXX0X

IDMR Interrupt/DMA Mask Register R255 FF 10 00000000

DCPR DMA Counter Pointer Register R240 F0 9 XXXXXXXX

DAPR DMA Address Pointer Register R241 F1 9 XXXXXXXX

IVR Interrupt Vector Register R242 F2 9 XXXXXXXX

IDCR Interrupt/DMA Control Register R243 F3 9 11000111

A.4. Multi-Function Timer Configuration/Initialization Registers (MFT0)

Mnem. Name Reg. Hex Pg.
Reset
Value

(Binary)

REG0HR Capture/Reload Register 0 (High) R240 F0 10 XXXXXXXX

REG0LR Capture/Reload Register 0 (Low) R241 F1 10 XXXXXXXX

REG1HR Capture/Reload Register 1 (High) R242 F2 10 XXXXXXXX

REG1LR Capture/Reload Register 1 (Low) R243 F3 10 XXXXXXXX

CMP0HR Compare Register Register 0 (High) R244 F4 10 XXXXXXXX

CMP0LR Compare Register Register 0 (Low) R245 F5 10 XXXXXXXX

CMP1HR Compare Register Register 1 (High) R246 F6 10 XXXXXXXX

CMP1LR Compare Register Register 1 (Low) R247 F7 10 XXXXXXXX

PRSR Prescaler Register R251 FB 10 00000000

FLAGR Timer Flags Register R254 FE 10 00000000

A.5. Timer Data/Status Registers (MFT0)



INITIALIZATION OF THE ST9

18/44

Mnem. Name Reg. Hex Pg.
Reset
Value

(Binary)

CRR Compare Result Register R252 FC 63 00001111

CLR Control Logic Register R253 FD 63 00000000

ICR Interrupt Control Register R254 FE 63 00001111

IVR Interrupt Vector Register R255 FF 63 XXXXXX10

A.6. A/D Configuration/Initialization Registers

Mnem. Name Reg. Hex Pg.

AD_D0R Channel 0 Data Register R240 F0 63

AD_D1R Channel 1 Data Register R241 F1 63

AD_D2R Channel 2 Data Register R242 F2 63

AD_D3R Channel 3 Data Register R243 F3 63

AD_D4R Channel 4 Data Register R244 F4 63

AD_D5R Channel 5 Data Register R245 F5 63

AD_D6R Channel 6 Data Register R246 F6 63

AD_D7R Channel 7 Data Register R247 F7 63

A.7. A/D Channel Registers

Mnem. Name Reg. Hex Pg.

AD_LT6R Channel 6 Lower Threshold Register R248 F8 63

AD_UT6R Channel 6 Upper Threshold Register R249 F9 63

AD_LT7R Channel 7 Lower Threshold Register R250 FA 63

AD_UT7R Channel 7 Upper Threshold Register R251 FB 63

A.8. A/D Threshold Registers



INITIALIZATION OF THE ST9

19/44

Mnem. Name Reg. Hex Pg.
Reset
Value

(Binary)

IVR Interrupt Vector Register R244 F4 24 XXXXXXXX

IMR Interrupt Mask Register R246 F6 24 0XX00000

ISR Interrupt Status Register R247 F7 24 XXXXXXXX

IDPR Interrupt/DMA Priority Register R249 F9 24 XXXXXXXX

CHCR Character Recognition Register R250 FA 24 XXXXXXXX

CCR Clock Configuration Register R251 FB 24 00000000

BRGHR
Baud Rate Generator

Divisor Register (High)
R252 FC 24 XXXXXXXX

BRGLR
Baud Rate Generator
Divisor Register (Low)

R253 FD 24 XXXXXXXX

A.9. SCI Configuration Registers

Mnem. Name Reg. Hex Pg. Reset
Value

RDCPR
Receiver DMA Transaction

Counter Register
R240 F0 24 XXXXXXXX

RDAPR
Receiver DMA

Address Pointer Register
R241 F1 24 XXXXXXXX

TDCPR
Transmit DMA Transaction

Counter Register
R242 F2 24 XXXXXXXX

TDAPR
Transmit DMA

Address Pointer Register
R243 F3 24 XXXXXXXX

ACR Address Compare Register R245 F5 24 XXXXXXXX

RXBR
Receive Buffer Register

(Read only)
R248 F8 24 XXXXXXXX

TXBR
Transmitter Buffer Register

(Write only)
R248 F8 24 XXXXXXXX

A.10. SCI Initialization



INITIALIZATION OF THE ST9

20/44

Mnem. Name Reg. Hex Pg.
Reset
Value

(Binary)

EIPR External Interrupt Pending Register R243 F3 0 00000000

EIMR External Interrupt Masking Register R244 F4 0 00000000

EIPLR External Interrupt Priority Register R245 F5 0 11111111

EIVR External Interrupt Vector Register R246 F6 0 XXXX0010

WDTLR Watchdog Timer Low Register R248 F8 0 XXXXXXXX

WDTHR Watchdog Timer High Register R249 F9 0 XXXXXXXX

WDTPR Watchdog Timer Prescaler Register R250 FA 0 XXXXXXXX

WDTCR Watchdog Timer Control Register R251 FB 0 00010010

WCR Wait Control Register R252 FC 0 01111111

A.11. Watchdog Timer Configuration/Initialization

Mnem. Name Reg. Hex Pg.
Reset
Value

(Binary)

SPIDR SPI Data Register R253 FD 0 XXXXXXXX

SPICR SPI Control Register R244 F4 0 00100000

A.12. SPI Initialization

Mnem. Name Reg. Hex Pg.
Reset
Value

(Binary)

EECR EEPROM Control Register R241 F1 0 00000000

A.13. EEPROM Initialization (ST9040 only)



INITIALIZATION OF THE ST9

21/44

. sbttl “ ST9030 registers addresses and contents ”

. include “c:\st9\bin\symbols.inc”

; The reader should refer to the file containing the

; declaration of all the bits and registers of the ST9030

; for the symbols used in the following listing.

;

; .nlist

;***
;* This program demonstrates the configuration of ST9 peripherals*

;***

;**********************
;*RAM Declaration*
;**********************

prescal_t0 := r2 ; Value of Timer 0 Prescaler

val_capt_t0 := rr4 ; Value of Timer 0 Capture register

nb_event_t0 := rr4 ; Number of Timer 0 event

lg_dma := rr6 ; Length of DMA

CPT_AD_DMA := RR8 ; DMA Address Register

CPT_LG_DMA := RR8 ; DMA Counter Register

ad_conv := r3 ; conversion start address

IT_T0_LEVEL = 4 ; Timer 0 priority level

IT_CAD_LEVEL = 6 ; A/D converter priority level

;****************************
;*INTERRUPT VECTOR ADDRESSES*

;****************************

CORE_IT_VECT := 00h ; Core interrupt vectors

T0_IT_VECT := 10h ; Timer 0 interrupt vectors

EXT_IT_VECT := 20h ; External interrupt vectors

ADC_IT_VECT := 30h ; A/D Converter interrupt vectors

SCI_IT := 40h ; SCI interrupt vector

;*******************

;*STACK Declaration*

;*******************

SSTACK := 223 ; System stack address group D C

USTACK := 191 ; User stack address group B

APPENDIX B. EXAMPLES OF ST9 PERIPHERAL CONFIGURATIONS



INITIALIZATION OF THE ST9

22/44

;********************
;*Group number names*

;********************

BK0 := 0

BK1 := 1

BK2 := 2

BK3 := 3

BK4 := 4

BK5 := 5

BK6 := 6

BK7 := 7

BK8 := 8

BK9 := 9

BKA := 10

BKB := 11

BKC := 12

BKD := 13

BKE := 14

BKF := 15

BK_0 := BK0 * 2 ; free user group

BK_BDT:= BK2 * 2 ; TWD group

BK_CAD:= BK5 * 2 ; A/D group

BK_T0 := BK4 * 2 ; MFTimer 0 group

BK_SCI:= BK6 * 2 ; SCI group.

BK_F := BKF * 2 ; paged registers

APPENDIX B. EXAMPLES OF ST9 PERIPHERAL CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

23/44

;***
;*Declaration of the interrupt vector table*
;***

.text ; start of program

.org CORE_IT_VECT ; Core interrupt vector

.word DIV0 ; divide by 0 interrupt vector

.word TOP_LEVEL_IT; Top level interrupt vector

.org T0_IT_VECT ; Timer 0 interrupt vector

; ***********************

.org T0_IT_VECT + 4 ; unused addresses

.word T0_CAP ; Timer 0 capture interrupt vector

.word T0_COMP ; Timer 0 compare interrupt vector

.org EXT_IT_VECT ; External interrupt vector

; *************************

WDT_IT: .word TEMPO ; Watchdog Timer interrupt vector

.org ADC_IT_VECT ; ADC interrupt vector

; ********************

.word RESET_START ; Analog Watchdog interrupt vector

.word ADC_EOC ; End of conv. interrupt vector

.org SCI_IT ; SCI interrupt vector

; ********************

.org SCI_IT + 4 ; unused addresses

.word REC_DATA ; receiver interrupt

.word TRA_HOLD ; Transmitter interrupt

APPENDIX B. EXAMPLES OF ST9 PERIPHERAL CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

24/44

;**********************

;*Start of main module*

;**********************

.org 100h ; start of code

RESET_START:

ld MODER,#11100000b ; CLOCK MODE REGISTER

; internal stack

; no prescaling

; external clock divided by 2

ld CICR,#10000111b ; CENTRAL INTERRUPT

; CONTROL REGISTER

; priority level = 7

; concurrent mode

; disable interrupt

clr FLAGR

spp #WDT_PG

ld WCR,#wden ; watch dog mode disabled,

; no wait states.

ld EIMR,#0 ; mask all channel interrupts.

; at reset,Global Counter Enable

; bit is active.

ld SSPLR,#SSTACK + 1 ; load system stack pointer

ld USPLR,#USTACK + 1 ; load user stack pointer

call INIT_IO ; init I/O ports

MAIN:

jxt MAIN ; include your Main program here !

APPENDIX B. EXAMPLES OF ST9 PERIPHERAL CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

25/44

;**
;*Configuration of TIMER 0 I/O pins and A/D Converter I/O pins*

proc INIT_IO [PPR] {

;.............

;............. P3.0 (T0INA) P3.2 (T0INB) INPUT TRISTATE TTL

;............. P3.1 (T0OUTA) P3.3 (T0OUTB) OUTPUT ALTERNATE FUNCTION

PUSH_PULL TTL

spp #P3C_PG ; Port 3 control register page

ld P3C0R,#00001111b

ld P3C1R,#00001010b

ld P3C2R,#00000101b

;............. end of init. P3

;............. INITIALIZATION OF A/D CONVERTOR INPUTS

;............. P4.7 (AIN7) ALTERNATE FUNCTION OPEN DRAIN TTL

;............. P4.6 (AIN6) ALTERNATE FUNCTION OPEN DRAIN TTL

spp #P4C_PG ; Port 4 control register page

ld P4C0R,#11000000b

ld P4C1R,#11000000b

ld P4C2R,#11000000b

;............ end of init. P4

;............ INITIALIZATION OF SCI I/O

; P70: Input = Sin.

; P71: AF = Sout.

; P72: AF = Txclck.

; P73: AF = Rxclck.

spp #P7C_PG ; Port 7 control page.

ld P7C0R,#00001111b ; bit 0 (Sin): IN, TRI, TTL.

ld P7C1R,#11111110b ; bit 1,2,3 (Sout, Txck, Rxck): AF,PP,TTL.

ld P7C2R,#00000001b ; Others : OUT,PP,TTL.

}

APPENDIX B. EXAMPLES OF ST9 PERIPHERAL CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

26/44

;***

;*SECTION CODE FOR THE CORE INTERRUPT ROUTINE*

;***

;——————————————————-
;*INTERRUPT ROUTINE FOR ZERO DIVISION*

;——————————————————-

DIV0:

nop

ret

;——————————————————

;*INTERRUPT ROUTINE FOR TOP_LEVEL_IT*

;——————————————————

TOP_LEVEL_IT:

nop

iret

;—————————————————————

;*INTERRUPT ROUTINE FOR TIMER WATCHDOG INT*

;—————————————————————

TEMPO:

nop

iret

APPENDIX B. EXAMPLES OF ST9 PERIPHERAL CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

27/44

;***********************

;*DEFINE TIMER 0 MACROS*

;***********************

.macroT0_START_IT ; start timer 0, enable interrupts

spp #T0D_PG ; select Timer 0 data register page

and T_TCR,#ccl ; counter clear bit

or T_TCR,#cen ; counter enable bit

or T_IDMR,#gtien ; global interrupt mask

.endm

.macroT0_START_DMA_CAP ; start timer 0, enable interrupts

; and DMA

spp #T0D_PG ; select Timer 0 data register page

or T_IDMR,#(gtien | cp0d) ; global interrupt mask

or T_TCR,#cen ; counter enable bit

.endm

.macroSTOP_T0 ; stop Timer 0

spp #T0D_PG ; select Timer 0 data register page

and T_IDMR,#gtien ; global interrupt mask

and T_TCR,#cen ; counter enable bit

.endm

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS



INITIALIZATION OF THE ST9

28/44

;**

proc GEST_T0_ITCAPT{

;Configuration of Timer 0 for IT CAPTURE

;TCR: - stop count

; - clear on capture

; - up count

;TMR: - disable output

; - internal clock

; - disable bivalue mode
; - disable retrigger mode

; - disable REG1 mode

; - continuous mode

; - enable REG0 mode

;ICR: - EXTA Trigger

; - falling edge on EXTA

; - EXTB No Operation

;OACR-OBCR: - no operation

;IDMR: - Interrupt on capture REG0

;DCPR: - reset value

;DAPR: - 00h

;IVR: - Interrupt vector 10h = T0_IT_VECT

;IDCR: - level 4

spp #T0D_PG ; Timer 0 data register page

ld T_TCR,#01001000b ; TCR

ld T_TMR,#00001010b ; TMR

ld T_ICR,#01010100b ; ICR

ld T_PRSR,prescal_t0 ; PRESCALER

ld T_OACR,#11111100b ; OACR

ld T_OBCR,#11111100b ; OBCR

ld T_FLAGR,#00h ; FLAGR

ld T_IDMR,#00100000b ; IDMR

spp #T0C_PG ; Timer 0 control register page

ld T0_DCPR,#00h ; DCPR

ld T0_DAPR,#0 ; DAPR

ld T0_IVR,#T0_IT_VECT ; IVR interrupt vector 14h

ld T0_IDCR,#IT_T0_LEVEL ; priority level 4

T0_START_IT ; start Timer 0, enable interrupt

}

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

29/44

;***

proc GEST_T0_EVENT{

; Configuration of Timer 0 into EVENT COUNTER MODE

; IT COMPARE is serviced when nb_event_t0 is reached

;TCR: - Stop count

; - Up count

; - Clear on compare

;TMR: - Disable output 0-1

; - no Bivalue mode

; - no Bicapture

; - Internal clock

; - Disable retrigger mode

; - Continuous mode

;ICR: - EXTB Ext.Clock

; - Falling edge on EXTB

; - EXTA I/O

;OACR-OBCR: - No operation

;FLAG: - reset value

;IDMR: - IT compare 0

;DCPR: - 00h

;DAPR: - 00h

;IVR: - interrupt vector 10h = T0_IT_VECT

;IDCR: - priority level 4

;COMP0

spp #T0D_PG ; Timer 0 data register page

ldw T_CMP0R,nb_event_t0 ; COMP0

ld T_TCR,#00111000b ; TCR

ld T_TMR,#00000010b ; TMR

ld T_ICR,#01000010b ; ICR

ld T_PRSR,prescal_t0 ; PRESCALER

ld T_OACR,#11111100b ; OACR

ld T_OBCR,#11111100b ; OBCR

ld T_IDMR,#00000100b ; IDMR

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

30/44

spp #T0C_PG ; Timer 0 control register page

ld T0_DCPR,#0 ; DCPR

ld T0_DAPR,#0 ; DAPR

ld T0_IVR,#T0_IT_VECT ; IVR

ld T0_IDCR,#IT_T0_LEVEL ; IDCR

T0_START_IT

}

;***

proc GEST_T0_DMA{

;Configuration of Timer0 in IT CAPTURE associated to the DMA mode

;the length of DMA is given by lg_dma

;TCR: - Stop count

; - no clear

; - Up count

;TMR: - disable interrupt

; - no bivalue mode

; - no capture

; - external/internal clock

; - disable retrigger mode

; - continuous count

;ICR: - EXTA TRIGGER

; - Falling edge on EXTA

; - EXTA no operation

;OACR-OBCR: - no operation

;IDMR: - no interrupt, DMA / CAPTURE REG0

;DCPR: - DMA ext. data/program memory- DMA counter

;DAPR: - DMA external program memory - DMA address

;IVR: - interrupt vector 10h = T0_IT_VECT

;IDCR: - interrupt dma priority level 4

spp #T0D_PG ; select Timer 0 data register

ld T_TCR,#01001000b ; TCR

ld T_TMR,#00001010b ; TMR

ld T_ICR,#01010100b ; ICR

ld T_PRSR,prescal_t0 ; PRESCALER

ld T_OACR,#11111100b ; OACR

ld T_OBCR,#11111100b ; OBCR

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

31/44

ld T_FLAGR,#00h ; FLAGR

ld T_IDMR,#00100000b ; IDMR

spp #T0C_PG ; select Timer 0 control register

ld T0_DCPR,#CPT_LG_DMA ; DCPR lg. DMA = 4ch = rr12

; = RR76

ld T0_DAPR,#CPT_AD_DMA ; DAPR ad. DMA = 48h = rr8

; = RR72

ld T0_IVR,#T0_IT_VECT ; IVR

ld T0_IDCR,#IT_T0_LEVEL ; priority level 4

ldw CPT_LG_DMA,lg_dma ; init DMA counter

ldw CPT_AD_DMA,#0ff00h ; DMA address in ROM is 0FF00h

T0_START_DMA_CAP ; enable Interrupt. and DMA

}

;**

; Example for Timer 0 and Timer 1 in parallel mode

; A Toggle is generated on T0OUTB and T1OUTB on each overflow

;**

;******************

;initialize TIMER 0

;******************

TIMER0::

spp #T0D_PG ; select timer 0 register page

srp #BK_F ; select working register

ld t_tcr,#00011000b ; Counter clear

; Software Up

ld t_tmr,#10001000b ; Enable output 1

; Disable output 0

; Not bivalue mode

; REG 1 monitor counter value

; REG 0 Capture

; Internal clock

; Retrigger mode

; Continuous mode

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

32/44

ld t_icr,#00 ; No action on input pins

ld t_prsr,#00 ; No prescaling

ld t_oacr,#11111100b ; No action on OUTPUT0

ld t_obcr,#11110100b ; Toggle on OVF

ld t_flagr,#00

ld t_idmr,#00

.macroT0_START ; Start TIMER 0

spp #T0D_PG ; select Timer 0 data register page

or t_tcr,#cen ; counter enable bit

.endm

;******************

;initialize TIMER 1

;******************

TIMER1::

spp #T1D_PG ; select timer 1 register page

srp #BK_F ; select working register

ld t_tcr,#00011000b ; Counter clear

; Software Up

ld t_tmr,#10001100b ; Enable output 1

; Disable output 0

; Not bivalue mode

; REG 1 monitor counter value

; REG 0 Capture

; Parallel mode

; Retrigger mode

; Continuous mode

ld t_icr,#00 ; No action on input pins

ld t_prsr,#00 ; No prescaling

ld t_oacr,#11111100b ; No action on T1OUTA

ld t_obcr,#11110100b ; Toggle on OVF T1OUTB

ld t_flagr,#00

ld t_idmr,#00

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

33/44

.macroT1_START ; Start TIMER 1

spp #T1D_PG ; select Timer 1 data register page

and t_tcr,#ccl ; counter clear bit

or t_tcr,#cen ; counter enable bit

.endm

or CICR,#10000000b ; Global counter enable

loop {

}

;***

; INTERRUPT SUBROUTINES FOR TIMER 0

;***

;These subroutines are serviced on TIMER 0 Interrupts. They come from:

; T0_IT_VECT + 4 for both - IT/CAPTURE

; and - DMA IT/CAPTURE end of block

; T0_IT_VECT + 6 for - IT/COMPARE

;***

; Timer 0 CAPTURE Interrupt subroutine:

; - IT Capture on event on EXTA

; - DMA IT/CAPTURE end of block

T0_CAP:

spp #T0D_PG ; Timer 0 data register page

tm T_FLAGR,#ccp0 ; mask successful capture

jxz RESET_START ; this is not an IT CAPTURE

; == Pb

tm T_FLAGR,#ocp0 ; overrun on Capture 0 ?

jxnz RESET_START ; yes == RESET

and T_FLAGR,#~cp0 ; reset successful capture flags

and T_FLAGR,#~ocp0 ; reset overrun on capture 0 flag

iret ; return from interrupt

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

34/44

;**
;Timer 0 COMPARE interrupt subroutine:

; - IT / COMPARE

T0_COMP:

spp #T0D_PG ; Timer 0 data register page

tm T_FLAGR,#cm0 ; mask successful compare

jxz RESET_START ; RESET if it is not

; an IT COMPARE

tm T_FLAGR,#ocm0 ; overrun on Compare 0 ?

jxnz RESET_START ; yes == RESET

and T_FLAGR,#~cm0 ; reset successful compare bit

and T_FLAGR,#~ocm0 ; reset overrun compare 0 bit

iret ; return from interrupt

;******** END OF TIMER 0 CONFIGURATION EXAMPLES ************

APPENDIX C. EXAMPLES OF TIMER 0 CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

35/44

;***

proc SG_CONV{

; A/D Converter is configured as follows:

; - one shot conversion

; - power up mode

; - IT upon End of Conversion

; - Start mode

; - Autoscan from channel number AD_CONV

; - No INT upon Analog Compare

spp #AD0_PG ; A/D converter register page

ld AD_CLR,#00000100b ; Control logic register

; power up

; Stop

; Single mode

; Channel 0

ld AD_CRR,#00h ; Compare result register

ld AD_ICR,#00100000b ; Interrupt control register

; mask analog watchdog

; enable end of conversion

or AD_ICR,#IT_CAD_LEVEL ; Priority level = 6

ld AD_IVR,#ADC_IT_VECT ; Interrupt vector register

ld r0,ad_conv ; AD_CONV = channel number

swap r0

rcf

rlc r0 ; mask for channel number

or AD_CLR,r0 ; start conversion address

ld R10, #40

loop [R10] { ; wait 60 µs before start the first

; conversion

nop

}

or AD_CLR,#st ; start conversion

}

APPENDIX D. EXAMPLES OF A/D CONVERTOR CONFIGURATIONS



INITIALIZATION OF THE ST9

36/44

;***

; A/D END OF CONVERSION INTERRUPT SUBROUTINE

ADC_EOC:

spp #AD0_PG ; A/D converter register page

; converter flags

and AD_ICR,#~(ecv | awd) ; end of conversion pending flag

; analog watch_dog pending flag

and AD_CLR,#~(st | pow) ; stop converter

; power down mode

iret

APPENDIX D. EXAMPLES OF A/D CONVERTOR CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

37/44

;***********************
; SCI

;constant declarations.
;***********************

PRIORITY_SCI = 4 ; SCI priority level

DIV_9600 = 78 ; BRG divisor for a 9600 baud clock

; with a 12 MHz system clock.

DIV_4800 = 156 ; To generate a 4800 bds clock.

DIV_2400 = 312 ; To generate a 2400 bds clock.

DIV_1200 = 614 ; To generate a 1200 bds clock.

VC_9600 := 4 ; Character for 9600 bauds.

Return = 00dh

LNG_DMA_SCI := 0Fh ; DMA length.

DEPART_DMA_SCI := 0A0h ; Start DMA address .

; BK_DMA_SCI reserved for this.

NUM_TDAP := 6 ; Contains DMA transmit address pointer value.

NUM_TDCP := 7 ; Contains DMA transmit address counter value.

data := r2 ; data hold register

rec_ptr := rr6

rec_cpt := rr8

;**
; function:

; - I/O ports initialization.

; - Speed and frame initialization.

; - Compare register initialization.

; - Interrupt and DMA configuration.

;

; Interrupt request:

; - Receive error.

; - Receiver data.

; - end of DMA transmit.

;

; inputs: none

;

; outputs:none

;

APPENDIX E. EXAMPLES OF SCI CONFIGURATIONS



INITIALIZATION OF THE ST9

38/44

;***

proc INIT_SCI {

;—- Communication format configuration.

;

; Communication format is configured as follows:

;

; - 8 data bit transmitted or received character.

; - 1 stop bit included in data format.

; - Parity even.

; - 9600 Baud communication rate.

;—- SCI configuration.

;

; - No address bit included between the parity bit and the stop bit.

; - Address mode: Address interrupt if character match.

; - DMA permits transmission from EEPROM memory to serial line.

; - Receiver data interrupt unmask (to detect a received data item).

; - Transmitter data interrupt unmask (to detect DMA end of block).

; - Receiver error interrupt unmask (to detect overrun, parity or framing error).

spp #SCI1_PG ; SCI register page.

srp #BK_F ; To address SCI registers with r.

ld s_brglr,#00 ; Reset SCI

ld s_chcr,#(wl8 | sb10 | pen | ep | am)

; 8 data bit.

; 1 stop bit.

; Parity even.

; No address bit.

; AME = 0, AM = 1.

; = IT if character match.

ld s_ccr,#txclk ; Xmit clock source = BRG.

; Receiver clock source = BRG.

; 16x asynchronous mode.

ld s_acr,#RETURN ; End Of Command acquisition.

APPENDIX E. EXAMPLES OF SCI CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

39/44

;—- Interrupt and DMA configuration.

ld s_ivr,#SCI_IT ; Interrupt vector register.

ld s_tdcpr,#NUM_TDCP ; Tx DMA counter in register file.

ld s_imr,#(rxdi | rxa | rxe)

; Mask Transmitter data interrupt.

; Unmask Receiver data interrupt.

; Unmask Receiver data error interrupt.

; Unmask Receiver address interrupt.

; Reset of the pending bits.

ld s_idpr,#PRIORITY_SCI ; Mask transmitter DMA request.

; SCI exeptions priority level.

ld s_brglr,#DIV_9600 ; BRG divisor for 9600 bauds, start SCI

; !!! with a 24 Mhz external clock,

; !!! or 4800 Bds (12 MHz external clock.)

} ;—- end of proc.

;***

; SYNC_COM:

proc SYNC_COM {

spp #SCI1_PG

srp #BK_F

ld R#NUM_TDAP,#(DEPART_DMA_SCI) ; DMA pointer initialisation.

ld R#NUM_TDCP,#(LNG_DMA_SCI) ; DMA counter initialisation.

or s_idpr,#txd

; Unmask transmitter DMA request.

; unmask transmitter data interrupt.

ld s_imr,#txdi

; Unmask Transmitter data interrupt.

; Mask Receiver data interrupt.

; Mask Receiver data error interrupt.

} ;—- End of proc.

APPENDIX E. EXAMPLES OF SCI CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

40/44

; REC_DATA: Receive interrupt.

REC_DATA:

pushu PPR ; save page pointer.

pushuw RPP ; save register pointer pair.

spp #SCI1_PG ; SCI register page.

srp #BK_SCI ; 16 registers reserved for SCI.

ld data,S_RXBR ; Read the data received.

and data,#07Fh ; Mask the parity bit.

ld rec_ptr(rec_cpt),data ; Storage of the received data.

incw rec_cpt

cpw rec_cpt,#7 ; End of the table.

and S_ISR,#~rxdp ; Reset receiver data pending flag.

popuw RPP ; restore register pointer pair

popu PPR ; restore page pointer

iret

APPENDIX E. EXAMPLES OF SCI CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

41/44

;***
; TRA_HOLD: End of DMA transmitter Interrupt

; Function:

; - Check Interrupt source.

; - Disable DMA mask .

; - Enable Receiver interrupt mask.

TRA_HOLD:

pushu PPR ; save page pointer.

pushuw RPP ; save register pointer pair.

spp #SCI1_PG ; SCI register page.

srp #BK_F ; To address SCI registers with r.

tm s_imr,#txeob

if [SETZ] { ; If a Transmitter End Of Block interrupt.

bres S_txeob ; Dis. Tr ansmit end of block pending bit.

bres S_txhem ; Reset transmit holding reg. empty .

ld s_imr,#~(rxdi | rxe)

; Unmask Receiver data interrupt.

; Unmask Receiver data error interrupt.

; Mask Transmitter data interrupt.

} else {

jx RESET_START ; If not a normal interrupt source.

} ;—- end of if.

popuw RPP ; restore register pointer pair

popu PPR ; restore page pointer

iret

APPENDIX E. EXAMPLES OF SCI CONFIGURATIONS (Continued)



INITIALIZATION OF THE ST9

42/44

;***

;INIT_WDT: This procedure initializes and starts Watchdog Timer.

;

; Watchdog mode is disabled.

; Timer will down count in continuous mode.

; It will generate an interrupt on channel A0 at each End Of Count.

; —- See the external interrupt parameters initialization.

;***

proc INIT_WDT {

spp #WDT_PG ; To access in paged registers with r.

ld wcr,#wden ; watch dog mode dis., no wait states.

clr wdtpr ; 333 ns(sys.clock=12 MHz) min. count,

; prescaler = 0.

ldw WDTR,#3003 ; (3003 X 333) ns = 1 ms.

or wdtcr,#stsp ; Timer starts down counting.

; Continuous mode.

; Watch Dog disabled.

; Input section disabled.

; Output disabled.

; Interrupt A0 on Timer EOC.

; Top Level Interrupt on SW TRAP.

};—- End of proc.

;**

;*Interrupt on channel A0 initialization*

;**

spp #WDT_PG

srp #BK_F ; page 0 reg. direct addressing mode.

clr eipr ; Dis. all external int. pending bits.

nop ; See WARNING (Tech. manual-Chap. 8).

ld eivr,#EXT_IT_VECT ; External interrupt vector.

; IAOS - TLIS = 00 = ...

; ... A0 int. will be on WDT End Of Count.

ld eiplr,#0FEh

; Priority level: group INTA0,INTA1 = 4,5.

ld eimr,#ia0sm ; Unmask Interrupt A0 channel

; (WDT End Of Count).

APPENDIX F. EXAMPLES OF WATCHDOG TIMER CONFIGURATIONS



INITIALIZATION OF THE ST9

43/44

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without the
express written approval of SGS-THOMSON Microelectronics.

 1994 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I2C Components by SGS-THOMSON Microelectronics conveys a license under the Philips I2C Patent.
Rights to use these components in an I2C system is granted provided that the system conforms to the I2C Standard

Specification as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

THE SOFTWARE INCLUDED IN THIS NOTE IS FOR GUIDANCE ONLY. SGS-THOMSON SHALL NOT
BE HELD LIABLEFOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECTTO
ANY CLAIMS ARISING FROM USE OF THE SOFTWARE.



INITIALIZATION OF THE ST9

44/44

