GS-
Ky, Sithorizommonics

ST62 - ST63

PROGRAMMING MANUAL

INTRODUCTION

This manual deals with the description of the in-
struction set and addressing modes of ST62,63
microcontroller series. The manual is divided in
two main sections. The first one includes, after a
general family description, the addressing modes
description. The second section includes the de-
tailed description of ST62,63 instruction set. Each
instruction is described in detail with the differ-
ences between each ST6 series.

ST6 software has been designed to fully use the
hardware in the most efficient way possible while
keeping byte usage to a minimum; in short to pro-
vide byte efficient programming capability.

Table 1. ST62,63 Series Core Characteristics

PROGRAMMING MODEL

Itis useful at this stage to outline the programming
model of the ST62,63 series, by which we mean
the available memory spaces, their relation to one
another, the interrupt philosophy and so on.

Memory Spaces. The ST6 devices have three dif-
ferent memory spaces: data, program and stack.
All addressing modes are memory space specific
so there is no need for the user to specify which
space is being used as in more complex systems.
The stack space, which is used automatically with
subroutine and interruptmanagement for program
counter storage, is not accessible to the user.

Figure 1. ST6 Family Programming Model

ST62,63 Series

Stack Levels 6
Interrupt Vectors 5
NMI YES
Flags Sets 3

+ 2Ke
Program ROM ZSOK?\jfaxn
Data RAM 64 byte e m
Data ROM 64 byte pages

in ROM

Carry Flag SUB

. Reset if A > Source
Instruction

Carry Flag CP

. Set if A< Source
Instruction

March 1993

|b7 X REG. POINTER b0|
INDEX SHORT
REGISTER [[b7 Y REG.POINTER bo| | DIRECT
ADDRESSING
b7 V REGISTER b0 J MODE
b7 W REGISTER b0
[b7 ACCUMULATOR bo |
|b11 PROGRAM COUNTER b0 |
— SIX LEVELS E—
— STACK REGISTER —
NORMAL FLAGS
INTERRUPT FLAGS
NMI FLAGS
VA000423
1/43

ST62,63 Programming Manual

PROGRAMMING MODEL (Continued)

Figure 2. ST62 Data Space Example

Figure 3. ST62 Program Memory Example

b7 bo
0000h
NOT IMPLEMENTED
07FFh
0800h
RESERVED 087Eh
0880h
USER PROGRAM ROM
1828 BYTES
OF9Fh
OFAOh
RESERVED OFEFh
INTERRUPT VECTOR #4 OFFOh
A/D INTERRUPT OFF1h
INTERRUPT VECTOR #3 OFF2h
TIMER INTERRUPT OFF3h
INTERRUPT VECTOR #2 OFF4h
PORT B& C INTERRUPT OFF5h
INTERRUPT VECTOR #1 OFF6h
PORT A INTERRUPT OFF7h
OFF8h
RESERVED
OFFBh
INTERRUPT VECTOR #0 OFFCh
NMI INTERRUPT OFFDh
OFFEh
USER RESET VECTOR OFFFh
On EPROM versions there are no re-
served areas. These reserved bytes are
present on ROM/OTP versions.

b7 b0
000h
NOT IMPLEMENTED
03Fh
DATA ROM/EPROM WINDOW 040n
64 BYTE 07Fh
X REGISTER 080h
Y REGISTER 081h
V REGISTER 082h
W REGISTER 083h
084h
DATA RAM 60 BYTES
0BFh
PORT A DATA REGISTER 0COh
PORT B DATA REGISTER 0C1h
PORT CDATA REGISTER 0C2h
RESERVED 0C3h
PORT ADIRECTION REGISTER | 0C4h
PORT B DIRECTION REGISTER | 0C5h
PORT C DIRECTION REGISTER | 0C6h
RESERVED 0C7h
INTERRUPT OPTION REGISTER| 0C8h
DATA ROM WINDOW REGISTER| 0C%h
0CAh
RESERVED 0CBh
PORT A OPTION REGISTER 0CCh
PORT B OPTION REGISTER 0CDh
PORT COPTION REGISTER 0CEh
RESERVED OCFh
A/D DATA REGISTER 0DOh
A/D CONTROL REGISTER 0D1h
TIMER PSC REGISTER 0D2h
TIMER DATA REGISTER 0D3h
TIMER TSCR REGISTER 0D4h
0D5h
RESERVED
0D7h
WATCHDOG REGISTER 0D8h
0D%h
RESERVED
OFEh
ACCUMULATOR OFFh
2/43 ﬂ

SGS-THOMSON
MICROELECTRONICS

Data Memory Space. The following registers in
the data space have fixed addresses which are
hardware selected so asto decrease access times
and reduce addressing requirements and hence
program length. The Accumulator is an 8 bit regis-
terinlocation OFFh. The X, Y, V & W registers have
the addresses 80h-83h respectively. These are
used for short direct addressing, reducing byte re-
quirements in the program while the first two, X &
Y, can also be used as index registers in the indi-
rect addressing mode. These registers are part of
the data RAM space. Inthe ST62 and ST63 for
data space ROM a 6 bit (64 bytes addressing) win-
dow multiplexing in program ROM is available
through a dedicated data ROM banking register.

ST62,63 Programming Manual

PROGRAMMING MODEL (Continued)

For data RAM and 1/O expansion the lowest 64
bytes of data space (00h-03Fh) are paged through
a data RAM banking register.

Self-check Interrupt Vector FF8h & FF9h:
ip (self-check interrupt routine)

A jump instruction to the reset and interrupt rou-
tines must be written into these locations.

ST62 & ST63 Program Memory Space. The
ST62 and ST63 devices can directly address up to
4K bytes (program counter is 12-bit wide). A
greater ROM size is obtained by paging the lower
2K ofthe program ROM through a dedicated bank-
ing register located in the data space. The higher
2K ofthe program ROM can be seen as static and
contains the reset, NMI and interrupt vectors at the
following fixed locations:

Reset Vector FFEh & FFFh:
jp (resetroutine)

NMI Interrupt Vector FFCh & FFDh:
ip (NMl routine)

Non user Vector FFAh & FFBh
Non user Vector FF8h & FF9h
Interrupt #1 Vector FF6h & FF7h jp (Int 1 routine)
Interrupt #2 Vector FF4h & FF5h jp (Int 2 routine)
Interrupt #3 Vector FF2h & FF3h jp (Int 3 routine)
Interrupt #4 Vector FFOh & FF1h jp (Int 4 routine)

Program Counter & Stack Area. The program
counter is a twelve bit counter register since it has
to cover a direct addressing of 4K byte program
memory space. When an interrupt or a subroutine
occurs the current PC value is forward “pushed”
into a deep LIFO stacking area. On the return from
the routine the top (last in) PC value is “popped”
out and becomes the current PC value. The
ST60/61 series offer a 4-word deep stack for pro-
gram counter storage during interrupt and sub-rou-
tines calls. In the ST62 and ST63 series the stack
is 6-word deep.

Status Flags. Three pairs of status flags, each pair
consisting of a Zero flag and a Carry flag, are avail-
able. Inthe ST62 and ST63 an additional third set
is available. One pair monitors the normal status
while the second monitors the state during inter-
rupts; the third flags set monitors the status during

Non Maskable interrupt servicing. The switching
from one set to another one is automatic as the in-
terrupt requests (or NMI request for ST62,ST63
only) are acknowledged and when the program re-
turns after an interrupt service routine. After reset,
NMI set is active, until the first RETI instruction is
executed.

ST62 & ST63 Interrupt Description. The ST62
and ST63 devices have 5 user interrupt vectors
(plus one vector for testing purposes). Interrupt
vector #0 is connected to the not maskable inter-
rupt input of the core. Interrupts from #1 to #4 can
be connected to different on-chip and external
sources (see individual datasheets for detailed in-
formation). All interrupts can be globally disabled
through the interrupt option register. After the reset
ST62 and ST63 devices are in NMI mode, so no
other interrupts can be accepted and the NMI flags
set is in use, until the RETI instruction is per-
formed. If an interrupt is detected, a special cycle
will be executed, during this cycle the program
counter is loaded with the related interrupt vector
address. NMI can interrupt other interrupt routines
at any time while normal interrupt can’t interrupt
each other. If more then one interrupt is waiting
service, they will be accepted according to their pri-
ority. Interrupt #1 has the highest priority while in-
terrupt #4 the lowest. This priority relationship is
fixed.

Figure 4. ST62/ST63 Stack Area

&= PROGRAM COUNTER

STACK LEVEL 1
STACK LEVEL 2

WHEN CALL

WHEN
RET OR RETI
OCCURS

OR
INTERRUPT REQUEST
OCCURS

STACK LEVEL 3

STACK LEVEL 4

STACK LEVEL 5
STACK LEVEL 6

[T

REEEE

VA000424

Ly $65-THOMSON 343

o MICREELECTRONIGS

ST62,63 Programming Manual

ADDRESSING MODES

The ST6 family gives the user nine addressing
modes for access to data locations. Some of these
are specifically tailored to particular instruction
types or groups while others are designed to re-
duce program length and operating time by using
the hardware facilities such as the X, Y, V & Wreg-
isters. The data locations can be in either the pro-
gram memory space or the data memory space
when the ST6 is operating due to user software. In
addition the ST6 has a stack space for the 12 bit
program counter but this is controlled by internal
programming and is not accessible by the user.
This section will describe all the addressing modes
which are provided to the user. The following is the
complete list of the ST6 available addressing
modes:

Example:
Instruction |Comments
WAIT Puts ST6 into the low power WAIT mode
STOP Puts the ST6 into the lowest power mode
Returns from interrupt. Pops the PC
RETI from the PC stack.Sets the normal set of
flags

Direct. In the direct addressing mode the address
of the data is given by the program memory byte
immediately following the opcode. This data loca-

- Inherent tion is in the data memory space. All instructions
- Direct using this mode are Two Bytes instructions, last-
- Short Direct ing Four Cycles .
- Indirect
- Immediate
- Program Counter Relative Program Memory Data Memory
- Extended
- BitDirect
- BitTest& B.ranch - . . oPC
Inherent. For instructions using the inherent ad-
dressing mode the opcode contains all the infor- O.A. ——| OPERAND
mation necessary for execution. All instructions
using this mode are One Byte instructions.
Program Memory Data Memory
OPC = Opcode
OPC O.A = Operand Address
Example:
Instruction Comments
Loads the accumulator with the value
LD A0A3N found in location A3h in the data space.
~ The value found in locations 11h in the
OPC =Opcode SUB A,11h data memory is subtracted from the
value in the accumulator.
4/43 ‘_ $GS-THOMSON
/. WicROELECTRONICS

ST62,63 Programming Manual

ADDRESSING MODES (Continued)

Short Direct. ST6 core has four fixed location reg-
isters in the data space which may be addressed in

Program Memory Data Memory

a short direct manner. The addresses and names
of these registers are 80h (X), 81h (Y), 82h (V) and
83h (W). When using this addressing mode the
data isin one of these registers and the address is
a part of the opcode. All instructions using this OPC &RA. |[——— XY
mode are One Byte instructions, lasting Four Cy-
cles.
Program Memory Data Memory
X OPC = Opcode
R.A. = Register Address
OPC &0.A. Y
Example:
Vv Instruction |Comments
The valuein the registers pointed to by
LD A,(X) the X register is loaded into the
w accumulator.
The valuein the register pointed to by
ADD A,(Y) the Y register is added to the
accumulator value.
819;85:&?% Address INC (Y) The valuein the register pointed to by
the Y register is incremented.

Example:
Instruction |[Comments
The value of the X register (80h) is
LD A X .
loaded into the accumulator.
INC X The Xregister is incremented.

Indirect. The indirect mode mustuse eitherthe X
(80h) or Y (81h) register. This register contains the
address of the data. The operand is at the data
space address pointed to by the content of X or Y
registers. All instructions using this mode are One
Byte instructions, lasting Four Cycles .

Immediate. Inthe immediate addressing mode the
operand is found in the program ROM in a byte
which is the last byte of the instruction. This ad-
dressing mode can be used for initializing data
space registers and supplying constants. Instruc-
tions using this mode can be Two or Three Bytes

instructions, lasting Four Cycles .

Program Memory Data Memory
OPC
D.A. —| DESTINATION
OPERAND
OPC = Opcode

D.A. = Destination Address

Ly $65-THOMSON 5/43

o MICREELECTRONIGS

ST62,63 Programming Manual

ADDRESSING MODES (Continued)

Example:
Instruction Comments
LDI 34h,DFh Loads |mmed|atg value DFh into
data space location 34h.
The immediate value 22h is
SUBI A,22h substracted from the acc.

Program Counter Relative. This addressing
mode is used only with conditional branches within
the program. The opcode byte contains the data
which is a fixed offset value. This offset is added to
the program counter to give the address of the next
instruction. The offset can have any value in the
range -15to +16. It is determined by the last five
bits of the opcode. All instructions using this mode
are One Byte Instructions, lasting Two Cycles .

Program Memory

OPC &D.A. + CURRENT PC

NEXT INSTRUC.

OPC =0Opcode
D.A. = Destination Address

Example:
Instruction |Comments
JRC 3 If the carry flag is set then PC = PC+3
If the zero flag is not set (i.e the result of
JRNZ -7 a previous instruction is not zero) then
PC = PC-7

The relative jump address can be also a label that
is automatically handled by the assembler.

Extended. The extended addressing mode is
used to make long jumps within the program mem-
ory space (4K). The data requires 12 bits and is
provided by half of the opcode byte and all of the
second byte. All instructions using this mode are
Two Bytes instructions, lasting Four Cycles .

6143 Ly $55:THOMSON

Program Memory Stack

OPC &12 CURRENT PC

BIT ADDRESS

OPC = Opcode

Example:

Instruction |Comments

Loads 3FAh into program counter and

JP 3FAh continues with the instruction at 3FAh.

The current PC is pushed onto the stack

CALLROU1 |and PCloaded with the value

associated to the ROU1 label

The absolute jump address can be also a label that
is automaticallyhandled by the assembler.

Bit Direct. This addressing mode allows the user
to set or clear any specified bit in a data memory
register. The address of the bit is given in the form:
“b,R” where b is the number of the bit and R is the
address of the register. The bit is determined by
three bits in the opcode and the register address is
given by the second byte. All instructions using this
mode are Two Byte instructions, lasting Four Cy-

cles.

Program Memory Data Memory
OPC &BIT ADD 1
D.A. ~(716(5]|4|3[2[1]|0
OPC = Opcode

D.A. = Destination Address

MICRGELECTRONICS

ST62,63 Programming Manual

ADDRESSING MODES (Continued)

Example:
Instruction Comments
SET 4,A Sets bit 4 of the accumulator to 1.
RES 0,PORT Clears bit 0 of PORT register

The register address can be associated to a label
that is automatically handled by the assembler.

Bit Test & Branch. The bit test addressing mode
is used in conditional jump instructions in which the
jump depends on the result of a bit test. The op-
code specifies the bitto be tested, the byte follow-
ing the opcode in the register address in data
space, and the third byte is the jump displacement,
which is in the range -126 to +129. This displace-
ment can be determined using a label, which is
converted by the assembler. The state of the
tested bit is also copied into the carry flag. All in-

structions using this mode are Three Byte instruc-
tions, lasting Five Cycles .

Example:

Instruction Comments

If bit three of data memory
register

associated to PORT label is
set then PC=PC+LAB1
(where LABL1 is the jump
displacement associated to
a label

JRS 3,PORT,LAB1

If bit 0 of data memory
register OAh is reset to O
then PC=PC-72.

JRR 0,0Ah,-72

The register address and the jump displacement
can be associated to labels that are automatically
handled by the assembler.

Program Memory Data Memory
PC
OPC &BIT ADD]
R.A. -_—171615|413[2|1|0
+ JD.
- —
ES
INSTRUCTION
NO
OPC =0Opcode
R.A. = Relative Address
J.D. = Jump Displacement
Ly SGS-THOMSON 7143
7‘: MIEREELECTRONIGS

ST62,63 Programming Manual

ST62 & ST63 INSTRUCTION SET

The ST62,63 instructions can be divided function-
ally into the following seven groups.

- LOADAND STORE

- ARITHMETICAND LOGIC
- CONDITIONAL BRANCH

- JUMPAND CALL

- BIT MANIPULATION
- CONTROL

- IMPLIED

The following summary shows the instructions be-
longing to each group, the number of operands re-
quired for each instructions and the number of
machine cycles. The flag behaviour is usually the
same for both ST62 and ST63. The only difference
is presentfor CP and SUB instructions as specified

in the detailed description.

Note: For the following tables:

A: Affected
*. Not Affected

Table 2. Load & Store Instructions

Instruction

Bytes

Cycles

Flags

CP

CP (X,Y)
CPI

DEC
DEC Alrr
INC

INC Alrr
RLC
SLA
SUB
SUB (X,Y)
SUBI

N P NN PN RPN PP DN RPN

R T T I - N e

* B> B> D>|O

[> > 2> T > > > > > R > > S
*

> > e >

Table 4. Conditional Branch Insructions

Instruction Bytes Cycles Flags Instruction Bytes Cycles Flags

z C Z

LD 1 4 A * JRC ! 2 ’

LD rr 2 4 A * JRNC ! 2 ’

LDI A 2 4 A * JRR 3 5 ’

LDI 3 4 * * IRS 8 ° ’

JRZ 1 2 *

Table 3. Arithmetic & Logic Instructions RNz ! 2 -

. Bytes Cycles Flag
Instruction 7 c Table 5. Jump & Call Instructions
ADD 2 4 A A Instruction Bytes Cycles Flags

ADD (X,Y) 1 4 A A 7

ADDI 2 4 A A CALL 2 4 «

AND 2 4 A * P 2 4 *
AND (X,Y) 1 4 A *
ANDI 2 4 A *
CLR A 2 4 A A
CLR 3 4 * *
COM 1 4 A A

8/43 ‘7_’ SGS-THOMSON
o MIGREELESTRONICS

ST62,63 Programming Manual

ST62 & ST63 INSTRUCTION SET (Continued)

Table 6. Bit Manipulation Instructions

Table 7. Control Instructions

Instruction

Bytes

Cycles

Flags

Z C

Instruction

Bytes

Cycles

RES
SET

* *

* *

NOP
RET
RETI

Table 8. Addressing Modes/Instruction Table

STOP
WAIT

N

N NN NN

Instruction

Inh

Dir 5h Dir

Ind

PCR

Ext

Bjt Dir

Bit
Test

Flags

ADD

AND

CALL

CLR A
CLR

COM

CP

DEC

INC

JP

JRC, JRNC
JRZ, JRNZ
JRR, JRS
LD, LDI
NOP

RES, SET
RET

RETI

RLC

SLA
STOP, WAIT
SUB

X X X X X

X X
X X

x
x

x

> BN

>

[> > > >

*

L > > >

>

>

*

[> >

LI > > >

>

Notes:

INH. Inherent, DIR: Direct, Sh.DIR: Short Direct,

IND. Indirect, IMM: Immediate, PCR: Program Counter Relative

EXT. Extended, BIT DIR: Bit Direct, BIT TEST.: Bit Test

A . Affected
* . Not Affected

o7

o

S$GS-THOMSON
K EREELECTASHIES

9/43

ST62,63 Programming Manual

ST62 & ST63 INSTRUCTION SET (Continued)

Table 9. Opcode Map

Low Low
0 1 2 3 4 5 6 7 8 9 A B C D E F
HI 0000 0001 0010 0011 0100 0101 0110 0111 | 1000 1001 1010 1011 1100 1101 1110 1111 HI
2 JRNZ|4 CALL |2 JRNC[5 JRR|2 JRZ 2 JRC|4 LD|2JRNZ|4 JP[2 JRNC|4 RES|[2 JRZ|4 LDI|2 JRC|4 LD
0800 e abc] bO,rree e # e a,(x) e abc e bO,rr e rr,nn e a,(y) 0(?00
1 perf2 ext|]1 per|3 bt|1 per 1 prc|/l ind|1 pcrf2 ext]l pcrf2 bdf1 per|f3 imm[1 pcrfl ind
2 JRNZ|4 CALL|2 JRNC|5 JRS|2 JRZ|4 INC|2 JRC|4 LDIf2 JRNZ|4 JP[2 JRNC|4 SET|2 JRZ |4 DEC|2 JRC|4 LD
1 e abc e b0,rr,ee e X e a,nn e abc e b0,rr e X e a,rr 1
0001 1 perf2 ext|]l1 per|3 bt|1 per|l sdf1 prc/|2 imm|1l pcrf2 ext|l pcrf2 b.df1 per|l sdf1 perl2 dir] 0001
2 JRNZ|4 CALL |2 JRNC[5 JRR|2 JRZ 2 JRC|4 CP|2 JRNZ|4 JP|2 JRNC[4 RES|2 JRZ|[4 COM[2 JRC|4 CP
2 e abc e b4,rree e # e a,(x) e abc e b4,rr e a e a,(y) 2
0010 1 perf2 ext|]l per|3 bt|1 per 1 prc|/l ind|1 pcrf2 @ ext]l pcrf2 bdf1 per|l inhj1 pcrfl ind 0010
2 JRNZ|4 CALL |2 JRNC|5 JRS|2 JRZ|4 LD|2 JRC|4 CPI|2 JRNZ|4 JP|2 JRNC|4 SET|2 JRZ|4 LD[2 JRC[4 CP
00311 e abc e b4,rr.ee e ax e a,nn e abc e b4,rr e X,a e a,rr 00311
1 perf2 ext|]1 pcr|3 bt|1 per|l sdf1 prc|2 imm|1l pcrf2 ext|l pcrf2 b.d]1l per|l sd[1 pcr|2 dir|
2 JRNZ|[4 CALL|2 JRNC|5 JRR|2 JRZ 2 JRC|4 ADD|2 JRNZ|4 JP(2 JRNC|4 RES|2 JRZ|2 RETI|2 JRC|[4 ADD
01‘50 e abc e b2,rree| e # e a,(x) e abc e b2,rr e e a,(y) 01400
1 perf2 ext]l per|3 bt|1 pecr 1 prc/l indl1 pcrf2 ext]l pcrf2 b.df1 per|l inhj1 perfl ind
2 JRNZ|4 CALL [2 JRNC|5 JRS|2 JRZ|4 |INC|2 JRC|4 ADDI|2 JRNZ|4 JP|2 JRNC|4 SET|2 JRZ|4 DEC|2 JRC|4 ADD
01501 e abc e b2,rree e y e a,nn e abc e b2,rr e y e a,rr 01501
1 perf2 ext{l pcr|3 bt{1 perfl sd|1 prc|2 imm[1 pcrf2 ext{1 perf2 bdfl perfl sd|1 pcr|2 dir}
2 JRNZ|4 CALL |2 JRNC|5 JRR|2 JRZ 2 JRC|[4 INC|2 JRNZ|4 JP[2 JRNC|4 RES|2 JRZ|2 STOP|2 JRC|4 INC
01610 e abc e |bermree| e # e (%) e abc e b6, e e) 01610
1 perf2 ext]l pcr|3 bt|1 pcr 1 prc|/l ind|1 pcrf2 ext]l pcrf2 b.df1 per|l inhj1 pcfl ind
2 JRNZ|4 CALL|2 JRNC|5 JRS|2 JRZ]|4 LD[2 JRC 2 JRNZ|4 JP[2 JRNC|4 SET|2 JRZ|4 LD|2 JRC|4 INC
01711 e abc e |b6ree| e ay e # e abc e b6,rr e y,a e ie 01711
1 perf2 ext]l pcr|3 bt|1 per|l sdf1 prc 1 perf2 ext|l pcrf2 b.df1 per|l sd[1 pcr|2 dir]
2 JRNZ|4 CALL |2 JRNC|5 JRR|2 JRZ 2 JRC|4 LD|2JRNZ|4 JP[2 JRNC|4 RES|2 JRZ 2 JRC|4 LD
10%0 e abc e bl,rr.ee e # e (x),a e abc e bl,rr e # e y).a 10800
1 per[2 ext{l pcr|3 bt|1 pcr 1 prcjl ind|1 perf2 ext|l perf2 bdl1l per 1 perfl ind
2 JRNZ|4 CALL|2 JRNC|5 JRS|2 JRZ[4 |INC|2 JRC 2 JRNZ|4 JP[2 JRNC|4 SET|2 JRZ|4 DEC|2 JRC|4 LD
10901 e abc e bl,r.ee e \Y e # e abc e bl,rr e \Y e ma 10901
1 perf2 ext]l pcr|3 bt|1 perfl sdf1 prc 1 perf2 ext|l pcrf2 bdl1 per|l sdf1 pcr|2 dir|
2 JRNZ|4 CALL |2 JRNC[5 JRR]|2 JRZ 2 JRC|4 AND|2 JRNZ|4 JP(2 JRNC|4 RES|2 JRZ|4 RLC|2 JRC|4 AND
1£\10 e abc e |bsree| e # e a,(x) e abc e b5, e a e a,(y) 1(?10
1 perf2 ext]l per|3 bt[1 pcr 1 prc/l ind|1 pcrf2 extyl perf2 bdfl perfl inhf1 pefl ind
2 JRNZ|4 CALL |2 JRNC|5 JRS|2 JRZ|4 LD[2 JRC|4 ANDI|2 JRNZ|4 JP[2 JRNC|4 SET|2 JRZ|4 LD[2 JRC|4 AND
1[')311 e abc e b5,rr.ee e av e a,nn e abc e b5,rr e v,a e a,rr 18311
1 perf2 ext{l pcr|3 bt[1 perf1 sd]1 prcj2 imm|1 pcf2 o ext)l perf2 bdf1 perfl sd|1 pcr|2 dir
2 JRNZ|4 CALL |2 JRNC[5 JRR]|2 JRZ 2 JRC|4 SUB|2 JRNZ|4 JP(2 JRNC|4 RES|2 JRZ|2 RET|2 JRC|[4 SUB
11%0 e abc e |b3mee| e # e a,(x) e abc e b3, e e a,(y) 11%0
1 perf2 ext]l pcr|3 bt|1 pcr 1 prcjl ind|l perf2 o ext|l perf2 bdl1 pefl inhf1 pc]l ind
2 JRNZ|4 CALL |2 JRNC|5 JRS|2 JRZ|4 INC|2 JRC|4 SUBI|2 JRNZ|4 JP(2 JRNC|4 SET|2 JRZ|4 DEC|2 JRC|4 SUB
11%1 e abc e |[b3rmee| e w e a,nn e abc e b3,rr e w e a,rm 11DO1
1 perf2 ext]l pcr|3 bt|1 perfl sdl1 prc[2 imm|[1 pcrf2 ext{1 pcf2 bdfl peql sd|1 pcr|2 dir
2 JRNZ|4 CALL |2 JRNC[5 JRR]|2 JRZ 2 JRC|4 DEC|2 JRNZ|4 JP[2 JRNC|4 RES|2 JRZ|2 WAIT|2 JRC|4 DEC
11ElO e abc e |b7mee| e # e (x) e abc e b7,rr e e) 11Elo
1 perf2 ext{l pcr|3 bt|1 pcr 1 prcjl ind]1 pcf2 ext{l pefj2 bdfl pefl inhj1 pcjl ind
2 JRNZ|4 CALL |2 JRNC[5 JRS|2 JRZ|4 LD|2 JRC 2 JRNZ|4 JP[2 JRNC|4 SET|2 JRZ|4 LD|2 JRC|4 DEC|
F e abc e b7,r.ee e a,w e # e abc e b7,rr e w,a e r F
1111 1 pcrj2 extfl pcr|3 bt|1 pcr|l sd|1 prc 1 pef2 extl perf2 bd1 perl sd|1 pcr|2 dir 1111
Abbreviations for Addressing Modes: Legend: gﬁgfasn(-j—_ 2 JRC|—mmm Mnemonic
dir Direct # Indicates lllegal Instructions Bytes B epcr
sd Short Direct e 5 Bit Displacement Addressing Mode
imm Immediate b 3 BitAddress
inh Inherent rmr lbyte dataspace address
ext Extended nn 1 byte immediate data
b.d Bit Direct abc 12 bitaddress
bt Bit Test ee 8 bitDisplacement
pcr Program Counter Relative
ind Indirect
10143 LNy SGS-THOMSON
’Iz MICROELECTRAMICS

ST62,63 Programming Manual

ST62 & ST63INSTRUCTION SET (Continued)

Table 10. Instruction Set Cycle-by-Cycle Summary

Instruction k:ycles Ctycles(#) | Address Bus Data Bus CPU Activity N4>tes
Indirect Addressing Mode
ADD. AND. CP 1 Opcode Address(*) Opcode (*) Decode Opcode ROM
DEC’ INC ’LD ! 2 Opcode Address +1 Next Instruction Read Operand Address | Data
SUBl B 3 Opcode Address +1 Next Instruction Read Operand Space not
4 Opcode Address +1 Next Instruction Execute Instruction Addressed
ADD. AND. CP 1 Opcode Address(*) Opcode (*) Decode Opcode ROM
DEC’ INC ’LD ' 2 Opcode Address +1 Next Instruction Read Operand Address | Data
SUB' T 3 Opcode Address +1 Next Instruction Read Operand Space
4 Data Space Rom Add Rom Data (#) Execute Instruction Addressed
Direct Addressing Mode
ADD, AND, CP, 1 Opcode Address(*) Opcode (*) Decode Opcode ROM
DEC, INC, LD, 2 Opcode Address +1 Operand Address | Address Data Space | Data
RES, SET,LSA, 3 Opcode Address +1 (*) Operand Address(*) | Read Operand Space not
SUB, CLR 4 Opcode Address +2 Next Instruction Execute Instruction Addressed
ADD, AND, CP, 1 Opcode Address(*) Opcode (*) Decode Opcode ROM
DEC, INC, LD, 2 Opcode Address +1 Operand Address | Address Data Space | Data
RES, SET,LSA, 3 Opcode Address +1 (*) Operand Address(#) | Read Operand Space
SUB, CLR 4 Data Space Rom Add. (*) | Rom Data (#) Execute Instruction Addressed
Immediate Addressing Mode
1 Opcode Address(*) Opcode (*) Decode Opcode
ADDI, ANDI, :
CPL. LDI 2 Opcode Address +1 Immediate Operand | Idle
SUéI ' 3 Opcode Address +1(*) Immediate Operand | Read Operand
4 Opcode Address +2(*) Next Instruction Execute Instruction
1 Opcode Address(*) Opcode (*) Decode Opcode ROM
LDI 1t 2 Opcode Address +1 Register Address | Read Register Address Data
3 Opcode Address +2 Immediate Operand | Read Immediate Operand | Space not
4 Opcode AdDress +3 Next Opcode Write Operand To Reg. | Addressed
1 Opcode Address(*) Opcode (*) Decode Opcode ROM
LD rr 2 Opcode Address +1 (¥) Register Address | Read Register Address Data
3 Opcode Address +2 (#) Immediate Operand | Read Immediate Operand | Space
4 Data Space Rom Add. Rom Operand (#) | Write Operand To Reg. | Addressed
Short Direct Addressing Mode
1 Opcode Address(*) Opcode (*) Dec_ode Opcode
Define Data Space
2 Opcode Address +1 Next Opcode
DEC, INC, LD Add.
3 Opcode Address +1 Next Opcode Read Operand
4 Opcode Address +1 Next Opcode P .
Execute Instruction
Other Instructions
Notes: *. Valid only at the beginning of the cycle
#. Valid only until t18 of the cycle
11/43

‘y_l SGS-THOMSON

o MICREELECTRONIGS

ST62,63 Programming Manual

ST62 & STE3 INSTRUCTION SET (Continued)
Table 10. Instruction Set Cycle-by-Cycle Summary (Continued)

Instruction Cycles Qycles(#) Address Bus Data Bus CPU Activity Notes
1 Opcode Address(*) Opcode (*) Decode Opcode
CALL 4 2 Opcode Address +1 Subroutine Address [Increment Stack Pointer
3 Opcode Address +1 Subroutine Address | Push Return Address
4 Opcode Address +2(*) Next Instruction Calculate Subroutine Add.
1 Opcode Address(*) Opcode (*) Decode Opcode
COM 4 2 Opcode Address +1 Next Opcode Calculate Acc. Address
3 Opcode Address +1 Next Opcode Read Accumulator
4 Opcode Address +1 Next Opcode Complement Accumulator
Calculate Interrupt Add.
INTERRUPT 1 1 Next opcode address Next Opcode (*) Push Return Address Note 1
Switch Flag Set
1 Opcode Address(*) Opcode (*) Decode Opcode
P 4 2 Opcode Address +1 Jump Address Idle
3 Opcode Address +1 Following Instr. Read Jump Address
4 Opcode Address +2 Following Instr. (*) | Calculate Jump Address
JRC, JRNC, 5 1 Opcode Address(*) Opcode (*) Decode Opcode
JRZ, JRNZ 2 Opcode Address +1 Following Instr. Calculate Offset
1 Opcode Address(*) Opcode (*) Decode Opcode ROM
2 Opcode Address +1(*) Operand Address (*)| Read Operand Data
JRR, JRS 5 3 Opcode Address +2(*) Branch Value Test Operand Space not
4 Opcode Address +2(*) Branch Value (*) | Fetch Branch Value As dressed
5 Opcode Address +3(*) Following Instr. Calculate New Address
1 Opcode Address(*) Opcode (*) Decode Opcode ROM
2 Opcode Address +1(*) Operand Address (*)| Read Operand Data
JRR, JRS 5 3 Data Space Rom Add.(#) | Rom Data (#) Test Operand Space
4 Opcode Address +2(*) Branch Value (*) [Fetch Branch Value A(F:i) dressed
5 Data Space Rom Add.(#) | Rom Data (#) Calculate New Address
RET > 1 Opcode Address(*) Opcode (*) Decode Opcode
2 Return Address Next Opcode Pop Return Address
. . Decode Opcode
2| 3 |Rheeliess) | opeete) | Pon Retm Acess
P Switch Flag Set
1 Opcode Address(*) Opcode (*)
2 Opcode Address +1 Next Opcode Decode Opcode
RLC 4 Calculate Acc. Address
3 Opcode Address +1 Next Opcode Read Accumulator Shifted
4 Opcode Address +1 Next Opcode
1 Opcode Address(*) Opcode (*) Decode Opcode
STOP, WAIT 2 2 Opcode Address +1 Next Opcode Stop/Wait the Oscillator

Notes: *. Valid only at the beginning of the cycle
#. Valid only until t18 of the cycle

1. Add osdillator build up time plus 16 osdillator clocks if a stopinstruction has been executed before the interrupt occured

12143 L7 $53-THOMSON

MICRGELECTRONICS

ST62,63 Programming Manual

ADD

Addition

the accumulator. The source register remains unaltered.

Mnemonic: ADD
Function: Addition
Description:

Operation:

dst « dst+src

The destination must be the accumulator.

The contents of the source byte is added to the accumulator leaving the resultin

Instruction Format Opcode (Hex) Bytes Cycles Flags
ADD dst,src z C
ADD AA 5F FF 2 4 A A
ADD A, X 5F 80 2 4 A A
ADD AY 5F 81 2 4 A A
ADD AV 5F 82 2 4 A A
ADD AW 5F 83 2 4 A A
ADD A,(X) 47 1 4 A A
ADD A,(Y) 4F 1 4 A A
ADD A,rr 5F rr 2 4 A A
Notes:
rr.1 Byte dataspace address.
A:Z issetifthe resultis zero. Cleared otherwise.
C iscleared before the operation and than set if there is an overflow from the 8-bit result.
Example: If data space register 22h contains the value 33h and the accumulator holds the
value 20h then the instruction,
ADD A,22h
will cause the accumulator to hold 53h (i.e. 33+20).
Addressing Modes: Source: Direct, Indirect
Destination: Accumulator
13/43

o7

o

S$GS-THOMSON
K EREELECTASHIES

ST62,63 Programming Manual

ADDI

Addition Immediate

Mnemonic: ADDI
Function: Addition Immediate

Description: The immediately addressed data (source) is added to the accumulator leaving the
result in the accumulator.

Operation: dst « dst +src
The destination must be the accumulator.

Instruction Format Opcode (Hex) Bytes Cycles Flags
ADDI dst,src z C
ADDI A,nn 57 nn 2 4 A A

Notes:

nn.1 Byteimmediate data

A: Zis setifresult is zero. Cleared otherwise

C iscleared before the operation and than set if there is an overflow from the 8-bit result

Example: If the accumulator holds the value 20h then the instruction,
ADDI A,22h
will cause the accumulator to hold 42h (i.e. 22+20).

Addressing Modes: Source: Immediate
Destination: Accumulator

14/43 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

ST62,63 Programming Manual

AND
Logical AND

Mnemonic: AND

Function: Logical AND

Description: This instruction logically ANDs the source register and the accumulator. The result

is leftin the destination register and the source is unaltered.

Operation: dst « src AND dst
The destination must be the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
AND dst,src z
AND AA BF FF 2 4 A
AND A, X BF 80 2 4 A
AND A)Y BF 81 2 4 A
AND AV BF 82 2 4 A
AND AW BF 83 2 4 A
AND A, (X) A7 1 4 A
AND A,(Y) AF 1 4 A
AND Arr BF rr 2 4 A

Notes:

rr.1 Byte dataspace address

*.C isunaffected

A.Z issetifthe resultis zero. Cleared otherwise.

Example: If data space register 54h contains the binary value 11110000 and the

Addressing Modes:

accumulator contains the binary value 11001100 then the instruction,

AND A,54h

will cause the accumulator to be altered to 11000000.

Source: Direct, Indirect.
Destination: Accumulator
‘_ $GS-THOMSON 15/43
YA ®icReEECTRONIGS

ST62,63 Programming Manual

ANDI

Logical AND Immediate

Mnemonic: ANDI

Function: Logical AND Immediate

Description: This instruction logically ANDs the immediate data byte and the accumulator.
The resultis leftin the accumulator.

Operation: dst < src AND dst
The sourceis immediate data and the destination must be the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
ANDI dst,src
ANDI A,nn B7 nn 2 4
Notes:
nn.1 Byteimmediate data
*.C isunaffected
A. Zis setifthe resultis zero. Cleared otherwise.
Example: If the accumulator contains the binary value 00001111 then the instruction,

Addressing Modes:

16/43

ANDI A,33h

will cause the accumulator to hold the value 00000011.

Source: Immediate
Destination: Accumulator
‘_ $GS-THOMSON
Y1 iicROELECTRONICS

ST62,63 Programming Manual

CALL

Call Subroutine

Mnemonic: CALL
Function: Call Subroutine

Description: The CALL instruction is used to call a subroutine. It “pushes” the current contents
of the program counter (PC) onto the top of the stack. The specified destination
address is then loaded into the PC and points to the first instruction of a procedure.
At the end of the procedure a RETurn instruction can be used to return to the
original program flow. RET pops the top of the stack back into the PC.

Because the ST6 stack is 4 levels deep (ST60) and 6 levels deep (ST62,ST63),
a maximum of four/six calls or interrupts may be nested. If more calls are nested,
the PC values stacked latest will be lost. In this case returns will return to the PC
values stacked first.

Operation: PC < dst; Top of stack — PC

Inst. Format OPCODE (Hex) Bytes Cycles Flags
CALL dst Z C
CALL abc c0001 ab 2 4 * *

Notes:
abc.the three half bytes of a twelve bit address, the start location of the subroutine.

*. C,Z not affected
Example: If the current PC is 345h then the instruction,
CALL 8DCh

The current PC 345h is pushed onto the top of the stack and the PC will beloaded
with the value 8DCh. The next instruction to be executed will be the instruction at
8DCh, the first instruction of the called subroutine.

Addressing Modes: Extended

Nz 56S-THOMSON 17143
7lz MIERSELEECTRONIES

ST62,63 Programming Manual

CLR

Clear

Mnemonic: CLR

Function: Clear

Description: The destination register is cleared to 00h.

Operation: dst « O

Inst. Format OPCDE (Hex) Bytes Cycles Flags

CLR dst
CLR A DF FF 2 4
CLR X 0D 8000 3 4
CLRY 0D 8100 3 4
CLRV 0D 8200 3 4
CLR W 0D 83 00 3 4
CLR rr 0D rr 00 3 4

Notes:

rr. 1 Byte dataspace address
A. Z set, A\. C reset
* C,Z unaffected

Example:

If data space register 22h contains the value 33h,
CLR 22h

will cause register 22h to hold 00h.

Addressing Modes: Direct

18/43

"_I SGS-THOMSON

MICRGELECTRONICS

ST62,63 Programming Manual

COM

Complement

Mnemonic: COM
Function: Complement

Description: This instruction complements each bit of the accumulator; all bits which are set to
1 are cleared to 0 and vice-versa.

Operation: dst — NOT dst
The destination must be the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
COM dst VA C
COM A 2D 1 4 A A

Note :

A:Z issetifthe resultis zero. Cleared otherwise.

C will contain the value of the MSB before the operation.

Example: If the accumulator contains the binary value 10111001 then the instruction

COMA

will cause the accumulator to be changed to 01000110 and the carry flag to be set
(since the original MSB was 1).

Addressing Modes: Inherent

Nz 56S-THOMSON 19/43
7lz MIERSELEECTRONIES

ST62,63 Programming Manual

CP

Compare
Mnemonic: CP
Function: Compare

Description: This instruction compares the source byte (subtracted from) with the destination
byte, which must be the accumulator. The carry and zero flags record the result of
this comparison.

Operation: dst -src
The destination must be the accumulator, but it will not be changed.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
CP dst,src 4 C
CP AA 3F FF 2 4 A A
CP AX 3F 80 2 4 A A
CPAY 3F 81 2 4 A A
CP AV 3F 82 2 4 A A
CP AW 3F 83 2 4 A A
CP A,(X) 27 1 4 A A
CP A,(Y) 2F 1 4 A A
CP A,rr 3F 1T 2 4 A A

Note: rr. 1Byte dataspace address

ST60 A: Zis setif the resultis zero. Cleared otherwise.
Cis setif Acc = src, cleared if Acc < src.

ST62/63 A: Zis setif the resultis zero. Cleared otehrwise.
Cis setif Acc <src, cleared if Acc = src.

Example: If the accumulator contains the value 11111000 and the register 34h contains the
value 00011100 then the instruction,

CP A34h

will clear the Zero flag Z and set the Carry flag C, indicating that Acc= src (on ST60)

20/43 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

ST62,63 Programming Manual

CPI

Compare Immediate

Mnemonic: CPI
Function: Compare Immediate

Description: This instruction compares the immediately addressed source byte (subtracted from)
with the destination byte, which must be the accumulator. The carry and zero flags
record the result of this comparison.

Operation: dst-src

The source must be the immediately addressed data and the destination must be
the accumulator, that will not be changed.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
CPI dst,src A C
CPI A,nn 37 nn 2 4 A A

Note: nn.1 Byte immediate data.

ST60 A: Zis setif the resultis zero. Cleared otherwise.
Cis setif Acc = src, cleared if Acc < src.
ST62/63 A: Zis setif the resultis zero. Cleared otherwise.
Cis setif Acc < src, cleared if Acc = src.
Example: If the accumulator contains the value 11111000 then the instruction,
CPI A,00011100B
will clear the Zero flag Z and set the Carry flag C indicating that Acc= src (on ST60).
Addressing Modes: Source: Immediate

Destination: Accumulator

Nz 56S-THOMSON 21/43
7lz MIERSELEECTRONIES

ST62,63 Programming Manual

DEC

Decrement

Mnemonic: DEC
Function: Decrement

Description: The destination register’s contents are decremented by one.

Operation: dst « dst-1
Inst. Format OPCODE (Hex) Bytes Cycles Flags
DEC dst z
DEC A FF FF 2 4 A
DEC X 1D 1 4 A
DEC Y 5D 1 4 A
DEC V 9D 1 4 A
DEC W DD 1 4 A
DEC (X) E7 1 4 A
DEC (Y) EF 1 4 A
DEC rr FF rr 2 4 A
Notes:
rr.1 Byte dataspace address
*.C isunaffected
A.Z issetifthe resultis zero. Cleared otherwise.
Example: If the X register contains the value 45h and the data space register 45h contains

the value 16h then the instruction,

DEC (X)

will cause data space register 45h to contain the value 15h.

Addressing Modes: Short direct, Direct, Indirect.

22/43 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

ST62,63 Programming Manual

INC

Increment
Mnemonic: INC
Function: Increment
Description: The destination register’s contents are incremented by one.
Operation: dst « dst+1
Inst. Format OPCODE (Hex) Bytes Cycles Flags
INC dst z C
INC A 7F FF 2 4 A *
INC X 15 1 4 A *
INC Y 55 1 4 A *
INC V 95 1 4 A *
INC W D5 1 4 A *
INC (X) 67 1 4 A *
INC (Y) 6F 1 4 A *
INC rr 7F rr 2 4 A *
Notes:
rr.1 Byte dataspace address
*. C is unaffected
A.Z issetifthe resultis zero. Cleared otherwise.
Example: If the X register contains the value 45h and the data space register 45h contains
the value 16h then the instruction
INC (X)
will cause data space register 45h to contain the value 17h.
Addressing Modes: Short direct, Direct, Indirect.
‘_ $GS-THOMSON 23/43
VI IcReELECTRGNICS

ST62,63 Programming Manual

JP
Jump

Mnemonic: JP
Function: Jump (Unconditional)

Description: The JPinstruction replaces the PC value with a twelve bit value thus causing a
simple jump to another location in the program memory. The previous PC value is
lost, not stacked.

Operation: PC ~ dst

Inst. Format OPCODE (Hex) Bytes Cycles Flags
JP dst 4 C

JP abc c1001 ab 2 4 * *

Notes:

abc.the three half bytes of a twelve bit address.
*. C,Z not affected

Example: The instruction,

JP 5CDh

will cause the PC to be loaded with 5CDh and the program will continue from that
location.

Addressing Modes: Extended

24/43 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

ST62,63 Programming Manual

JRC

Jump Relative on Carry Flag

Mnemonic: JRC

Function: Jump Relative on Carry Flag

Description: This instruction causes the carry (C) flag to be tested and if this flag is set then a
jump is performed within the program memory. This jump is in the range -15 to +16
and isrelative to the PC value. The displacemente is of five bits. If C=0 than the

nextinstruction is executed.

Operation: IfC=1,PC —« PC+e
where e=5 bit displacement

Inst. Format

OPCODE (Hex) Bytes

Cycles

Flags

JRC e

el10

Notes:

e.5 bitdisplacement in the range —15 to+ 16

*.C,Z not affected

Example: If the carry flag is set then the instruction,

Addressing Modes:

JRC +8

will cause a branch forward to PC+8. The user can use labels asindentifiers and
the assembler will automatically allow the jump if it is in the range -15 to +16.

Program Counter Relative

o MICREELECTRONIGS

‘y_l SGS-THOMSON

25/43

ST62,63 Programming Manual

JRNC

Jump Relative on Non Carry Flag

Mnemonic: JRNC
Function: Jump Relative on Non Carry Flag

Description: This instruction causes the carry (C) flag to be tested and if this flag is cleared to
zero then a jump is performed within the program memory. This jump s in the
range -15to +16 and s relative to the PC value. The dispacement is of five bits.
If C=1then the nextinstruction is executed.

Operation: If C=0,PC —~ PC+e
where e=5 bit displacement

Inst. Format OPCODE (Hex) Bytes Cycles Flags

JRNC e e010 1 2 * *

Notes:

e:5 bitdisplacement in the range -15 to+16

*.C,Z not affected

Example: If the carry flag is cleared then the instruction,

JRNC -5

will cause a branch backward to PC-5. The user can use labels as identifiers and
the assembler will automatically allow the jump if it is in the range -15 to +16.

Addressing Modes: Program Counter Relative
26/43 Lyy S36S-THOMSON
Y/ WICROGLECTROYICS

ST62,63 Programming Manual

JRNZ

Jump Relative on Non Zero Flag

Mnemonic: JRNZ

Function: Jump Relative on Non Zero Flag

Description: This instruction causes the zero (Z) flag to be tested and if this flag is cleared to
zero then a jump is performed within the program memory. This jump s in the
range -15to +16 and is relative to the PC value. The displacement is of five bits.
If Z=1 then the nextinstruction is executed.

Operation: If Z=0, PC —~ PC+e
where e=5 bit displacement

Inst. Format OPCODE (Hex) Bytes Cycles Flags
JRNZ e e000 1 2
Notes:

e.5 bitdisplacement in the range -15 to +16.

*.C,Z not affected

Example:

Addressing Modes:

If the zero flag is cleared then the instruction,

JRNZ -5

will cause a branch backward to PC-5. The user can use labels as identifiers and
the assembler will automatically allow the jump if it is in the range -15 to +16.

Program Counter Relative

27143

Ly SGS-THOMSON
Y wizRenLseTAGHIGS

ST62,63 Programming Manual

JRR

Jump Relative if Reset

Mnemonic: JRR
Function: Jump Relative if RESET
Description: This instruction causes a specified bit in a given dataspace register to be tested.
If this bit is reset (=0) then the PC value will be changed and a relative jump will be
performed within the program. The relative jump range is -126 to +129. If the
tested bit is not reset then the next instruction is executed.
Operation: If bit=0, PC — PC + ee
where ee= 8 bit displacement
Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C
JRR b,rr,ee b00011 rree 3 5 * A
Notes:

b.3 bit-address

rr.1 Byte dataspace address

ee.8 bitdisplacementin the range -126 to +129

*.Z is not affected

A.The tested bit is shifted into carry.

Example:

If bit 4 of dataspace register 70h is reset and the PC=110 then the instruction,

JRR 4,70h, -20

will cause the PC to be changed to 90 (110-20) and the instruction starting at that

address in the program memory to be the next instruction executed.

The useris advised to use labels for conditional jumps. The relative jump will be

calculated by the assembler. The jump must be in the range -126 to +129.

Addressing Modes: Bit Test

28/43

Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

ST62,63 Programming Manual

JRS

Jump Relative if Set

Mnemonic: JRS
Function: Jump Relative if set

Description: This instruction causes a specified bit in a given dataspace register to be tested.
If this bit is set (=1) then the PC value will be changed and a relative jump will be
performed within the program. The relative jump range is -126 to +129. If the
tested bit is not set then the next instruction is executed.

Operation: If bit=1, PC — PC +ee
where ee= 8 bit displacement

Inst. Format OPCODE (Hex) Bytes Cycles Flags

JRS b,rr,ee b10011 rree 3 5 * A

Notes:
b.3 bit-address
rr.1 Byte dataspace address

ee.8 bitdisplacementin the range -126 to +129

*.Z is not affected

A.The tested bit is shifted into carry.

Example: If bit 7 of dataspace register AFh is set and the PC=123 then the instruction,
JRS 7,AFh,+25

will cause the PC to be changed to 148 (123+25) and the instruction starting at
that addressin the program memory to be the next instruction executed.

The useris advised to use labels for conditional jumps. The relative jump will be
calculated by the assembler. The jump must be in the range -126 to +129.

Addressing Modes: Bit Test

Nz 56S-THOMSON 29/43
7lz MIERSELEECTRONIES

ST62,63 Programming Manual

JRZ

Jump Relative on Zero Flag

Mnemonic: JRZ
Function; Jump Relative on Zero Flag

Description: This instruction causes the zero (Z) flag to be tested and if this flag is setto one
then ajump is performed within the program memory. This jump is in the range
-15 to+16 and is relative to the PC value. The displacementis of five bits.
If Z=0 then next instruction is executed.

Operation: If Z=1, PC —« PC+e
where e=5 bit displacement

Inst. Format OPCODE (Hex) Bytes Cycles Flags

JRZ e el00 1 2 * *

Notes:
e.5 bitdisplacement in the range -15 to +16.

*.C,Z not affected

Example: If the zero flag is set then the instruction,

JRZ +8

will cause a branch forward to PC+8. The user can use labels as identifiers and
the assembler will automatically allow the jump if it is in the range -15 to +16.

Addressing Modes: Program Counter Relative
30/43 Ly SGS-THOMSON
Y/ VicRoGLECTRONICS

ST62,63 Programming Manual

LD
Load

Mnemonic: LD
Function: Load

Description: The contents of the source register are loaded into the destination register.
The source register remains unaltered and the previous contents of the destination
register are lost.

Operation: dst « src
Either the source or the destination must be the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
LD dst,src 4 C
LD AX 35 1 4 A *
LD AY 75 1 4 A *
LD AV B5 1 4 A *
LD AW F5 1 4 A *
LD X,A 3D 1 4 A *
LD YA 7D 1 4 A *
LD V,A BD 1 4 A *
LD W,A FD 1 4 A *
LD A,(X) 07 1 4 A *
LD (X), A 87 1 4 A *
LD A,(Y) OF 1 4 A *
LD (Y),A 8F 1 4 A *
LD A,rr 1F rr 2 4 A *
LD rr,A oF rr 2 4 A *

Notes:
rr.1 Byte dataspace address
*.C notaffected

A.Z issetifthe resultis zero. Cleared otherwise.
Example: If data space register 34h contains the value 45h then the instruction;

LD A,34h

will cause the accumulator to be loaded with the value 45h. Register 34h will keep
the value 45h.

Nz 56S-THOMSON 31/43
7lz MIERSELEECTRONIES

ST62,63 Programming Manual

LDI

Load Immediate

Mnemonic: LDI

Function: Load Immediate

Description: The immediately addressed data (source) is loaded into the destination data space
register.

Operation: dst « src

The sourceis always an immediate data while the destination can be the
accumulator, one of the X,Y,V,W registers or one of the available data space

registers.
Inst. Format OPCODE (Hex) Bytes Cycles Flags
LDI dst,src A C
LDI A,nn 17 nn 2 4 A *
LDI X,nn 0D 80nn 3 4 * *
LDI Y,nn 0D 81nn 3 4 * *
LDI V,nn 0D 82nn 3 4 * *
LDI W,nn 0D 83 nn 3 4 * *
LDI rr,nn OD rr nn 3 4 * *

Notes:

rr.1 Byte dataspace address

nn.1 Byteimmediate value

*Z, Cnot affected

A.Z issetifthe resultis zero. Cleared otherwise.
Example: The instruction

LDI 34h,45h

will cause the value 45h to be loaded into data register at location 34h.

Addressing Modes: Source: Immediate
Destination: Direct
32/43 Ly SGS-THOMSON
Y/ WICROGLECTROYICS

ST62,63 Programming Manual

NOP

No Operation

Mnemonic: NOP

Function: No Operation

Description: No action is performed by this instruction. Itis typically used for timing delay.

Operation: No Operation
Inst. Format OPCODE (Hex) Bytes Cycles Flags
C

NOP 04 1 2 *
Note: *. C,Z not affected
Addressing Modes: Program Counter Relative

‘_ $GS-THOMSON 33/43
VI IcReELECTRGNICS

ST62,63 Programming Manual

RES

Reset Bit

Mnemonic: RES
Function: Reset Bit

Description: The RESET instruction is used to reset a specified bit in a given register in the data

space.
Operation: dst(n) « 0,0=n<7
Inst. Format OPCODE (Hex) Bytes Cycles Flags
RES bit,dst VA C
RES b,A b01011 FF 2 4 * *
RES b,rr b01011 rr 2 4 * *

Notes:

b.3 bit-address

rr.1 Byte dataspace address

*.C,Z not affected

Example: If register 23h of the dataspace contains 11111111 then the instruction,
RES 4,23h

will cause register 23h to hold 11101111.

Addressing Modes: Bit Direct

34/43 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

ST62,63 Programming Manual

RET

Return from Subroutine

Mnemonic: RET
Function: Return From Subroutine

Description: This instruction is normally used at the end of a subroutine to return to the
previously executed procedure. The previously stacked program counter (stacked
during CALL) is popped back from the stack. The next statement executed is that
addressed by the new contents of the PC. If the stack had already reached its
highest level (no more PC stacked) before the RET is executed, program execution
will be continued at the next instruction after the RET.

Operation: PC ~ Stacked PC

Inst. Format OPCODE (Hex) Bytes Cycles Flags

RET CD 1 2 * *

Note: *. C,Z not affected

Example: If the current PC value is 456h and the PC value at the top of the stack is 3DFh
then theinstruction,

RET
will cause the PC value 456h to be lost and the current PC value to be 3DFh.

Addressing Modes: Inherent

Nz 56S-THOMSON 35/43
7lz MIERSELEECTRONIES

ST62,63 Programming Manual

RETI

Return from Interrupt

Mnemonic:

Function:

Description:

Operation:

RETI
Return from Interrupt

This instruction marks the end of the interrupt service routine and returns the
ST60/62/63 to the state it was in before the interrupt. It “pops” the top (last in) PC
value from the stack into the current PC. This instruction also causes the
ST60/62/63 to switch from the interrupt flags to the normal flags. The RETI
instruction also applies to the end of NMI routine for ST62/63 devices; in this case
the instruction causes the switch from NMI flags to normal flags (if NMI was
acknowledgedinside a normal routine) or to standard interrupt flags (if NMI was
acknowledged inside a standard interrupt service routine).

In addition the RETI instruction also clears the interrupt mask (also NMI mask for
ST62/63) which was set when the interrupt occurred. If the stack had already
reached its highest level (no more PC stacked) before the RETI is executed,
program execution will be continued with the next instruction after the RETI.
Because the ST60 is in interrupt mode after reset (NMI mode for ST62/63), RETI
has to be executed to switch to normal flags and enable interrupts at the end of the
starting routine. If no call was executed during the starting routine, program
execution will continue with the instruction after the RETI (supposed no interrupt is
active).

Actual Flags «— Normal Flags (1)

PC ~ Stacked PC

IM <0
(1) Standard Interrupt flags if NMI was acknowledged inside a standard interrupt
service (ST62/63 only).

Inst. Format OPCODE (Hex) Bytes Cycles Flags

RETI

4D 1 2 A A

Note: A C,Z normal flag will be used from now on.

Example:

36/43

If the current PC value is 456h and the PC value at the top of the stack is 3DFh
then theinstruction

RETI

"_I SGS-THOMSON

MICRGELECTRONICS

ST62,63 Programming Manual

RLC
Rotate Left Through Carry

Mnemonic: RLC
Function: Rotate Left through Carry

Description: This instruction moves each bit in the accumulator one place to the left
(i.e. towards the MSBit. The MSBIt (bit 7) is moved into the carry flag and the carry
flag is moved into the LSBiIt (bit0) of the accumulator.

Operation:
b7 b0
C ACCUMULATOR
dst(0) « C
C —dst(7)
dst(n+1) < dst(n),0<n< 6
This instruction can only be performed on the accumulator.
Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C
RLC A AD 1 4 A A
Note : A: Zissetifthe result iszero. Cleared otherwise.
C will contain the value of the MSBbefore the operation.
Example: If the accumulator contains the binary value 10001001 and the carry flag is set to

0 then the instruction,
RLC A

will cause the accumulator to have the binary value 00010010 and the carry flag to
be setto 1.

Addressing Modes: Inherent

Nz 56S-THOMSON 37/43
7lz MIERSELEECTRONIES

ST62,63 Programming Manual

SET
Set Bit

Mnemonic: SET

Function: Set Bit

Description: The SET instruction is used to set a specified bitin a given register in the data

space.
Operation: dst(n) « 1,0Sn<7
Inst. Format OPCODE (Hex) Bytes Cycles Flags
SET bit,dst z
SET b,A b11011 FF 2 4 *
SET b,rr b11011 rr 2 4 *

Notes:

b. 3 bit-address

rr. 1 Byte dataspace address

*. C,Z not affected

Example: If register 23h of the dataspace contains 00000000 then the instruction,
SET 4,23h

will cause register 23h to hold 00010000.

Addressing Modes: Bit Direct

38/43 Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

ST62,63 Programming Manual

SLA

Shift Left Accumulator

Mnemonic: SLA

Function: Shift Left Accumulator

Description: This instruction implements an addition of the accumulator to itself (i.e adoubling
of the accumulator) causing an arithmetic left shift of the value in the register.

Operation: ADD A,FFh
This instruction can only be performed on the accumulator.

Inst. Format OPCPDE (Hex) Bytes Cycles Flags
SLA A 5F FF 2 4

Note: A: Zis setifthe resultis zero. Cleared otherwise.

C will contain the value of the MSB before the operation.

Example:

Addressing Modes:

SLAA

If the accumulator contains the binary value 11001101 then the instruction,

will cause the accumulator to have the binary value 10011010 and the carry flag

to be set to 1.

Inherent

o7

o

S$GS-THOMSON
K EREELECTASHIES

39/43

ST62,63 Programming Manual

STOP

Stop Operation

Mnemonic: STOP

Function; Stop operation

Description: This instruction is used for putting the ST60/62/63 into a stand-by mode in which

the power consumption is reduced to a minimum. All the on-chipperipherals and
oscillator are stopped (for some peripherals,A/D for example, it is necessary to
individually turn-off the macrocell before entering the STOP instruction). To restart
the processor an external interrupt or a reset is needed.

Operation: Stop Processor

Inst. Format

OPCODE (Hex) Bytes Cycles Flags

STOP

6D 1 2 * *

Note : *: C,Z not affected

Addressing Mode:

40/43

Inherent

Lyy S36S-THOMSON
Y/ kicRosLEeTRGRICS

ST62,63 Programming Manual

SUB

Subtraction

Mnemonic: SUB

Function: Subtraction

Description: This instruction subtracts the source value from the destination value.

Operation: dst « dst-src
The destination must be the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
SUB dst,src z C
SUB AA DF FF 2 4 A A
SUB A X DF 80 2 4 A A
SUB AY DF 81 2 4 A A
SUB AV DF 82 2 4 A A
SUB AW DF 83 2 4 A A
SUB A,(X) c7 1 4 A A
SUB A,(Y) CF 1 4 A A
SUB A,Ir DF rr 2 4 A A
Note: rr.1 Byte dataspace address
ST60 A: Zis set if the resultis zero. Cleared otherwise.

C is setif Acc = src, cleared if Acc < src.

ST62/63 A\: Zis set if the resultis zero. Cleared otherwise.

C is setif Acc < src, cleared if Acc = src.

Example: If the Y register contains the value 23h, dataspace register 23h contains the value

Addressing Modes:

53h and the accumulator contains the value 78h then the instruction,

SUB A(Y)

will cause the accumulator to hold the value 25h (i.e. 78-53). The zeroflag is
cleared and the carry flag is set (on ST60), indicating that result is > 0.

Source: Indirect,Direct

Nz 56S-THOMSON 41/43
7lz MIERSELEECTRONIES

ST62,63 Programming Manual

SUBI

Subtraction Immediate

Mnemonic: SUBI
Function: Subtraction Immediate

Description: This instruction causes the immediately addressed source data to be subtracted
from the accumulator.

Operation: dst « dst-src
The destination must be the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
SUBI dst,src z C
SUBI A,nn D7 nn 2 4 A A

Note: nn. 1 Byte ofimmediate data

ST60 A\: Zis setifthe resultis zero. Cleared otherwise.

C is setif Acc = src, cleared if Acc < src.

ST62/63 A\: Zis set if the result is zero. Cleared otherwise.

C is setif Acc < src, cleared if Acc = src.

Example: If the accumulator contains the value 56h then the instruction,

SUBI A,25

will cause the accumulator to contain the value 31h. The zero flag is cleared and
the carry flag is set (on ST60), indicating that the resultis > 0.

Addressing Modes: Source: Immediate
Destination: Accumulator
42/43 Lyy S36S-THOMSON
Y/ VicRoGLECTRONICS

ST62,63 Programming Manual

WAIT

Wait Processor

Mnemonic: WAIT

Function: Wait Processor

Description: This instruction is used for putting the ST60/62/63 into a stand-by mode in which
the power consumption is reduced to a minimum. Instruction execution is stopped,
but the oscillator and some on-chip peripherals continue to work. To restart the
processor an interrupt from an active on-chip peripheral (eg. timer), an external
interrupt or reset is needed. For on-chip peripherals active during wait, see

ST60/62/63 data sheets.
Operation: Put ST6 in stand-by mode
Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C
WAIT ED 1 2 * *

Note : *.C,Z not affected

Addressing Modes: Inherent

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the
consequences of use ofsuch information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subjectto change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without the
express written approval of SGS-THOMSON Microelectronics.

0 1994 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I°C Components by SGS-THOMSON Microelectronics conveys alicense under the Philipg 1°C Patent.
Rights to use these components inan 1C system is granted provided that the system conforms to the I"C Standard
Specification as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

Nz 56S-THOMSON 43/43
7lz MIERSELEECTRONIES

