
ST62 - ST63

March 1993

PROGRAMMING MANUAL

INTRODUCTION

This manual deals with the description of the in-
struction set and addressing modes of ST62,63
microcontroller series. The manual is divided in
two main sections. The first one includes, after a
general family description, the addressing modes
description. The second section includes the de-
tailed description of ST62,63 instruction set. Each
instruction is described in detail with the differ-
ences between each ST6 series.
ST6 software has been designed to fully use the
hardware in the most efficient way possible while
keeping byte usage to a minimum; in short to pro-
vide byte efficient programming capability.

PROGRAMMING MODEL

It is useful at this stage to outline the programming
model of the ST62,63 series, by which we mean
the available memory spaces, their relation to one
another, the interrupt philosophy and so on.
Memory Spaces. The ST6 devices have three dif-
ferent memory spaces: data, program and stack.
All addressing modes are memory space specific
so there is no need for the user to specify which
space is being used as in more complex systems.
The stack space, which is used automatically with
subroutine and interruptmanagement for program
counter storage, is not accessible to the user.

ST62,63 Series

Stack Levels 6

Interrupt Vectors 5

NMI YES

Flags Sets 3

Program ROM
2K + 2K• n
20K Max

Data RAM 64 byte • m

Data ROM 64 byte pages
in ROM

Carry Flag SUB
Instruction

Reset if A > Source

Carry Flag CP
Instruction

Set if A < Source

Table 1. ST62,63 Series Core Characteristics

SHORT
DIRECT

ADDRESSING
MODEV REGISTER

W REGISTER

PROGRAM COUNTER

SIX LEVELS
STACK REGISTER

C

C

C

Z

Z

Z

NORMAL FLAGS

INTERRUPT FLAGS

NMI FLAGS

INDEX
REGISTER

VA000423

b7

b7

b7

b7

b7

b0

b0

b0

b0

b0

b0b11

ACCUMULATOR

Y REG. POINTER

X REG. POINTER

Figure 1. ST6 Family Programming Model

1/43

b7

Data Memory Space. The following registers in
the data space have fixed addresses which are
hardware selected so as to decrease access times
and reduce addressing requirements and hence
program length. The Accumulator is an 8 bit regis-
ter in location 0FFh. TheX, Y, V & W registers have
the addresses 80h-83h respectively. These are
used for short direct addressing, reducing byte re-
quirements in the program while the first two, X &
Y, can also be used as index registers in the indi-
rect addressing mode. These registers are part of
the data RAM space. In the ST62 and ST63 for
data space ROM a 6 bit (64 bytes addressing) win-
dow multiplexing in program ROM is available
through a dedicated data ROM banking register.

NOT IMPLEMENTED
000h

03Fh

DATA ROM/EPROM WINDOW
64 BYTE

040h

07Fh

X REGISTER 080h

Y REGISTER 081h

V REGISTER 082h

W REGISTER 083h

DATA RAM 60 BYTES
084h

0BFh

PORT A DATA REGISTER 0C0h

PORT B DATA REGISTER 0C1h

PORT C DATA REGISTER 0C2h

RESERVED 0C3h

PORT A DIRECTION REGISTER 0C4h

PORT B DIRECTION REGISTER 0C5h

PORT C DIRECTION REGISTER 0C6h

RESERVED 0C7h

INTERRUPT OPTION REGISTER 0C8h

DATA ROM WINDOW REGISTER 0C9h

RESERVED
0CAh
0CBh

PORT A OPTION REGISTER 0CCh

PORT B OPTION REGISTER 0CDh

PORT C OPTION REGISTER 0CEh

RESERVED 0CFh

A/D DATA REGISTER 0D0h

A/D CONTROL REGISTER 0D1h

TIMER PSC REGISTER 0D2h

TIMER DATA REGISTER 0D3h

TIMER TSCR REGISTER 0D4h

RESERVED
0D5h

0D7h

WATCHDOG REGISTER 0D8h

RESERVED
0D9h

0FEh

ACCUMULATOR 0FFh

b0

Figure 2. ST62 Data Space Example

NOT IMPLEMENTED
0000h

07FFh

RESERVED
0800h
087Fh

USER PROGRAM ROM
1828 BYTES

0880h

0F9Fh

RESERVED
0FA0h
0FEFh

INTERRUPT VECTOR #4
A/D INTERRUPT

0FF0h
0FF1h

INTERRUPT VECTOR #3
TIMER INTERRUPT

0FF2h
0FF3h

INTERRUPT VECTOR #2
PORT B & C INTERRUPT

0FF4h
0FF5h

INTERRUPT VECTOR #1
PORT A INTERRUPT

0FF6h
0FF7h

RESERVED
0FF8h

0FFBh

INTERRUPT VECTOR #0
NMI INTERRUPT

0FFCh
0FFDh

USER RESET VECTOR
0FFEh
0FFFh

On EPROM versions there are no re-
served areas. These reserved bytes are
present on ROM/OTP versions.

b0b7

Figure 3. ST62 Program Memory Example

PROGRAMMING MODEL (Continued)



ST62,63 Programming Manual

2/43

For data RAM and I/O expansion the lowest 64
bytes of data space (00h-03Fh) are paged through
a data RAM banking register.
Self-check Interrupt Vector FF8h & FF9h:
jp (self-check interrupt routine)
A jump instruction to the reset and interrupt rou-
tines must be written into these locations.

ST62 & ST63 Program Memory Space. The
ST62 and ST63 devices can directly address up to
4K bytes (program counter is 12-bit wide). A
greater ROM size is obtained by paging the lower
2K of the program ROM through a dedicated bank-
ing register located in the data space. The higher
2K of the program ROM can be seen as static and
contains the reset, NMI and interrupt vectors at the
following fixed locations:
Reset Vector FFEh & FFFh:
jp (reset routine)

NMI Interrupt Vector FFCh & FFDh:
jp (NMI routine)
Non user Vector FFAh & FFBh
Non user Vector FF8h & FF9h

Interrupt #1 Vector FF6h & FF7h jp (Int 1 routine)
Interrupt #2 Vector FF4h & FF5h jp (Int 2 routine)
Interrupt #3 Vector FF2h & FF3h jp (Int 3 routine)

Interrupt #4 Vector FF0h & FF1h jp (Int 4 routine)
Program Counter & Stack Area. The program
counter is a twelve bit counter register since it has
to cover a direct addressing of 4K byte program
memory space. When an interrupt or a subroutine
occurs the current PC value is forward “pushed”
into a deep LIFO stacking area. On the return from
the routine the top (last in) PC value is “popped”
out and becomes the current PC value. The
ST60/61 series offer a 4-word deep stack for pro-
gram counterstorage during interrupt and sub-rou-
tines calls. In the ST62 and ST63 series the stack
is 6-word deep.

Status Flags. Three pairs of status flags, each pair
consisting of a Zero flag and a Carry flag, are avail-
able. In the ST62 and ST63 an additional third set
is available. One pair monitors the normal status
while the second monitors the state during inter-
rupts; the third flags set monitors the status during

Non Maskable interrupt servicing. The switching
from one set to another one is automatic as the in-
terrupt requests (or NMI request for ST62,ST63
only) are acknowledged and when the program re-
turns after an interrupt service routine. After reset,
NMI set is active, until the first RETI instruction is
executed.
ST62 & ST63 Interrupt Description. The ST62
and ST63 devices have 5 user interrupt vectors
(plus one vector for testing purposes). Interrupt
vector #0 is connected to the not maskable inter-
rupt input of the core. Interrupts from #1 to #4 can
be connected to different on-chip and external
sources (see individual datasheets for detailed in-
formation). All interrupts can be globally disabled
through the interrupt option register. After the reset
ST62 and ST63 devices are in NMI mode, so no
other interrupts can be accepted and the NMI flags
set is in use, until the RETI instruction is per-
formed. If an interrupt is detected, a special cycle
will be executed, during this cycle the program
counter is loaded with the related interrupt vector
address. NMI can interrupt other interrupt routines
at any time while normal interrupt can’t interrupt
each other. If more then one interrupt is waiting
service, they will be acceptedaccording to their pri-
ority. Interrupt #1 has the highest priority while in-
terrupt #4 the lowest. This priority relationship is
fixed.

PROGRAMMING MODEL (Continued)

WHEN CALL
OR

INTERRUPT REQUEST
OCCURS

STACK LEVEL 1

STACK LEVEL 2

STACK LEVEL 3

STACK LEVEL 4

STACK LEVEL 5

STACK LEVEL 6

PROGRAM COUNTER

WHEN
RET OR RETI

OCCURS

VA000424

Figure 4. ST62/ST63 Stack Area



ST62,63 Programming Manual

3/43

ADDRESSING MODES
The ST6 family gives the user nine addressing
modes for access to data locations. Some of these
are specifically tailored to particular instruction
types or groups while others are designed to re-
duce program length and operating time by using
the hardware facilities such as the X, Y, V & W reg-
isters. The data locations can be in either the pro-
gram memory space or the data memory space
when the ST6 is operating due to user software. In
addition the ST6 has a stack space for the 12 bit
program counter but this is controlled by internal
programming and is not accessible by the user.
This section will describe all the addressing modes
which are provided to the user. The following is the
complete list of the ST6 available addressing
modes:

- Inherent

- Direct

- Short Direct

- Indirect

- Immediate

- Program Counter Relative

- Extended

- Bit Direct

- Bit Test & Branch
Inherent. For instructions using the inherent ad-
dressing mode the opcode contains all the infor-
mation necessary for execution. All instructions
using this mode are One Byte instructions.

Example:

Instruction Comments

WAIT Puts ST6 into the low power WAIT mode

STOP Puts the ST6 into the lowest power mode

RETI
Returns from interrupt. Pops the PC
from the PC stack.Sets the normal set of
flags

Direct. In the direct addressing mode the address
of the data is given by the program memory byte
immediately following the opcode. This data loca-
tion is in the data memory space. All instructions
using this mode are Two Bytes instructions, last-
ing Four Cycles .

Program Memory Data Memory

OPC

OPC = Opcode

Program Memory Data Memory

OPC

O.A. OPERAND

OPC = Opcode
O.A = Operand Address

Example:

Instruction Comments

LD A,0A3h
Loads the accumulator with the value
found in location A3h in the data space.

SUB A,11h
The value found in locations 11h in the
data memory is subtracted from the
value in the accumulator.



ST62,63 Programming Manual

4/43

Short Direct. ST6 core has four fixed location reg-
isters in the data space which may be addressed in
a short direct manner. The addresses and names
of these registers are 80h (X), 81h (Y), 82h (V) and
83h (W). When using this addressing mode the
data is in one of these registers and the address is
a part of the opcode. All instructions using this
mode are One Byte instructions, lasting Four Cy-
cles.

Example:

Instruction Comments

LD A,X
The value of the X register (80h) is
loaded into the accumulator.

INC X The X register is incremented.

Indirect. The indirect mode must use either the X
(80h) or Y (81h) register. This register contains the
address of the data. The operand is at the data
space address pointed to by the content of X or Y
registers. All instructions using this mode are One
Byte instructions, lasting Four Cycles .

Example:

Instruction Comments

LD A,(X)
The value in the registers pointed to by
the X register is loaded into the
accumulator.

ADD A,(Y)
The value in the register pointed to by
the Y register is added to the
accumulator value.

INC (Y)
The value in the register pointed to by
the Y register is incremented.

Immediate. In the immediate addressingmode the
operand is found in the program ROM in a byte
which is the last byte of the instruction. This ad-
dressing mode can be used for initializing data
space registers and supplying constants. Instruc-
tions using this mode can beTwo or Three Bytes
instructions, lasting Four Cycles .

Program Memory Data Memory

X

OPC & O.A. Y

V

W

OPC = Opcode
O.A .= Operand Address

Program Memory Data Memory

OPC & R.A. X,Y

OPC = Opcode
R.A. = Register Address

Program Memory Data Memory

OPC

D.A. DESTINATION

OPERAND

OPC = Opcode
D.A. = Destination Address

ADDRESSING MODES (Continued)



ST62,63 Programming Manual

5/43

Example:

Instruction Comments

LDI 34h,DFh
Loads immediate value DFh into
data space location 34h.

SUBI A,22h
The immediate value 22h is
substracted from the acc.

Program Counter Relative. This addressing
mode is used only with conditional branches within
the program. The opcode byte contains the data
which is a fixed offset value. This offset is added to
the programcounter togive the address of the next
instruction. The offset can have any value in the
range -15 to +16. It is determined by the last five
bits of the opcode. All instructions using this mode
are One Byte Instructions, lasting Two Cycles .

Example:

Instruction Comments

JRC 3 If the carry flag is set then PC = PC+3

JRNZ -7
If the zero flag is not set (i.e the result of
a previous instruction is not zero) then
PC = PC-7

The relative jump address can be also a label that
is automatically handled by the assembler.
Extended. The extended addressing mode is
used to make long jumps within the program mem-
ory space (4K). The data requires 12 bits and is
provided by half of the opcode byte and all of the
second byte. All instructions using this mode are
Two Bytes instructions, lastingFour Cycles .

Example:

Instruction Comments

JP 3FAh
Loads 3FAh into program counter and
continues with the instruction at 3FAh.

CALL ROU1
The current PC is pushed onto the stack
and PC loaded with the value
associated to the ROU1 label

The absolute jump address can be also a label that
is automaticallyhandled by the assembler.

Bit Direct. This addressing mode allows the user
to set or clear any specified bit in a data memory
register. The address of the bit is given in the form:
“b,R” where b is the number of the bit and R is the
address of the register. The bit is determined by
three bits in the opcode and the register address is
given by the second byte. All instructions using this
mode are Two Byte instructions, lasting Four Cy-
cles .

Program Memory

OPC & D.A. CURRENT PC

NEXT INSTRUC.

OPC = Opcode
D.A. = Destination Address

Program Memory Stack

OPC & 12 CURRENT PC

BIT ADDRESS

OPC = Opcode

Program Memory Data Memory

OPC & BIT ADD

D.A. 7 6 5 4 3 2 1 0

OPC = Opcode
D.A. = Destination Address

ADDRESSING MODES (Continued)



ST62,63 Programming Manual

6/43

Example:

Instruction Comments

SET 4,A Sets bit 4 of the accumulator to 1.

RES 0,PORT Clears bit 0 of PORT register

The register address can be associated to a label
that is automaticallyhandled by the assembler.

Bit Test & Branch. The bit test addressing mode
is used in conditional jump instructions in which the
jump depends on the result of a bit test. The op-
code specifies the bit to be tested, the byte follow-
ing the opcode in the register address in data
space, and the third byte is the jump displacement,
which is in the range -126 to +129. This displace-
ment can be determined using a label, which is
converted by the assembler. The state of the
tested bit is also copied into the carry flag. All in-

structions using this mode areThree Byte instruc-
tions, lasting Five Cycles .
Example:

Instruction Comments

JRS 3,PORT,LAB1

If bit three of data memory
register
associated to PORT label is
set then PC=PC+LAB1
(where LAB1 is the jump
displacement associated to
a label

JRR 0,0Ah,-72
If bit 0 of data memory
register OAh is reset to 0
then PC=PC-72.

The register address and the jump displacement
can be associated to labels that are automatically
handled by the assembler.

Program Memory Data Memory

OPC & BIT ADD

R.A. 7 6 5 4 3 2 1 0

J.D.

INSTRUCTION

PC

YES

NO

?

OPC = Opcode
R.A. = Relative Address
J.D. = Jump Displacement

ADDRESSING MODES (Continued)



ST62,63 Programming Manual

7/43

ST62 & ST63 INSTRUCTION SET

The ST62,63 instructions can be divided function-
ally into the following seven groups.

- LOAD AND STORE

- ARITHMETIC AND LOGIC

- CONDITIONAL BRANCH

- JUMP AND CALL

- BIT MANIPULATION

- CONTROL

- IMPLIED

The following summary shows the instructions be-
longing to each group, the number of operands re-
quired for each instructions and the number of
machine cycles. The flag behaviour is usually the
same for both ST62 and ST63. The only difference
is present for CP and SUB instructions as specified
in the detailed description.

Note: For the following tables:
∆: Affected
*: Not Affected

Instruction Bytes Cycles Flags

Z C

LD 1 4 ∆ *

LD rr 2 4 ∆ *

LDI A 2 4 ∆ *

LDI 3 4 * *

Table 2. Load & Store Instructions

Instruction
Bytes Cycles Flags

Z C

ADD 2 4 ∆ ∆

ADD (X,Y) 1 4 ∆ ∆

ADDI 2 4 ∆ ∆

AND 2 4 ∆ *

AND (X,Y) 1 4 ∆ *

ANDI 2 4 ∆ *

CLR A 2 4 ∆ ∆

CLR 3 4 * *

COM 1 4 ∆ ∆

Table 3. Arithmetic & Logic Instructions

Instruction
Bytes Cycles Flags

Z C

CP 2 4 ∆ ∆

CP (X,Y) 1 4 ∆ ∆

CPI 2 4 ∆ ∆

DEC 1 4 ∆ *

DEC A/rr 2 4 ∆ *

INC 1 4 ∆ *

INC A/rr 2 4 ∆ *

RLC 1 4 ∆ ∆

SLA 2 4 ∆ ∆

SUB 2 4 ∆ ∆

SUB (X,Y) 1 4 ∆ ∆

SUBI 2 4 ∆ ∆

Instruction Bytes Cycles Flags

Z C

JRC 1 2 * *

JRNC 1 2 * *

JRR 3 5 * ∆

JRS 3 5 * ∆

JRZ 1 2 * *

JRNZ 1 2 * *

Table 4. Conditional Branch Insructions

Instruction Bytes Cycles Flags

Z C

CALL 2 4 * *

JP 2 4 * *

Table 5. Jump & Call Instructions



ST62,63 Programming Manual

8/43

Instruction Bytes Cycles Flags

Z C

RES 2 4 * *

SET 2 4 * *

Table 6. Bit Manipulation Instructions

Instruction Bytes Cycles Flags
Z C

NOP 1 2 * *

RET 1 2 * *

RETI 1 2 ∆ ∆
STOP 1 2 * *

WAIT 1 2 * *

Table 7. Control Instructions

Instruction Inh Dir Sh Dir Ind Imm PCR Ext Bit Dir Bit
Test

Flags
Z C

ADD X X X ∆ ∆
AND X X X ∆ *

CALL X * *

CLR A X ∆ ∆
CLR X * *

COM X ∆ ∆
CP X X X ∆ ∆

DEC X X X ∆ ∗
INC X X X ∆ *

JP X ∗ *

JRC, JRNC X * *

JRZ, JRNZ X * *

JRR, JRS X * ∆
LD, LDI X ∆ *

NOP X * *

RES, SET X * *

RET X * *

RETI X ∆ ∆

RLC X ∆ ∆
SLA X ∆ ∆
STOP, WAIT X * *

SUB X X X ∆ ∆

Notes:

INH. Inherent, DIR: Direct, Sh.DIR: Short Direct,

IND. Indirect, IMM: Immediate, PCR: Program Counter Relative

EXT. Extended, BIT DIR: Bit Direct, BIT TEST.: Bit Test

∆ . Affected

* . Not Affected

Table 8. Addressing Modes/Instruction Table

ST62 & ST63 INSTRUCTION SET (Continued)



ST62,63 Programming Manual

9/43

LOW
0 1 2 3 4 5 6 7

0000 0001 0010 0011 0100 0101 0110 0111
HI

0
0000

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 LD
e abc e b0,rr,ee e # e a,(x)

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

1
0001

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 INC 2 JRC 4 LDI
e abc e b0,rr,ee e x e a,nn

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc 2 imm

2
0010

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 CP
e abc e b4,rr,ee e # e a,(x)

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

3
0011

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 LD 2 JRC 4 CPI
e abc e b4,rr,ee e a,x e a,nn

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc 2 imm

4
0100

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 ADD
e abc e b2,rr,ee e # e a,(x)

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

5
0101

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 INC 2 JRC 4 ADDI
e abc e b2,rr,ee e y e a,nn

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc 2 imm

6
0110

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 INC
e abc e b6,rr,ee e # e (x)

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

7
0111

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 LD 2 JRC
e abc e b6,rr,ee e a,y e #

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc

8
1000

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 LD
e abc e b1,rr,ee e # e (x),a

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

9
1001

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 INC 2 JRC
e abc e b1,rr,ee e v e #

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc

A
1010

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 AND
e abc e b5,rr,ee e # e a,(x)

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

B
1011

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 LD 2 JRC 4 ANDI
e abc e b5,rr,ee e a,v e a,nn

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc 2 imm

C
1100

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 SUB
e abc e b3,rr,ee e # e a,(x)

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

D
1101

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 INC 2 JRC 4 SUBI
e abc e b3,rr,ee e w e a,nn

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc 2 imm

E
1110

2 JRNZ 4 CALL 2 JRNC 5 JRR 2 JRZ 2 JRC 4 DEC
e abc e b7,rr,ee e # e (x)

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 prc 1 ind

F
1111

2 JRNZ 4 CALL 2 JRNC 5 JRS 2 JRZ 4 LD 2 JRC
e abc e b7,rr,ee e a,w e #

1 pcr 2 ext 1 pcr 3 bt 1 pcr 1 sd 1 prc

Table 9. Opcode Map
LOW

8 9 A B C D E F
1000 1001 1010 1011 1100 1101 1110 1111

HI
2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 4 LDI 2 JRC 4 LD

0
0000

e abc e b0,rr e rr,nn e a,(y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 3 imm 1 pcr 1 ind
2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 DEC 2 JRC 4 LD

1
0001

e abc e b0,rr e x e a,rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 pcr 2 dir
2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 4 COM 2 JRC 4 CP

2
0010

e abc e b4,rr e a e a,(y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 inh 1 pcr 1 ind
2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 LD 2 JRC 4 CP

3
0011

e abc e b4,rr e x,a e a,rr
1 pcr 2 ext 1 pcr 2 b.d . 1 pcr 1 sd 1 pcr 2 dir
2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 2 RETI 2 JRC 4 ADD

4
0100

e abc e b2,rr e e a,(y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 inh 1 pcr 1 ind
2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 DEC 2 JRC 4 ADD

5
0101

e abc e b2,rr e y e a,rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 pcr 2 dir
2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 2 STOP 2 JRC 4 INC

6
0110

e abc e b6,rr e e (y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 inh 1 pcr 1 ind
2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 LD 2 JRC 4 INC

7
0111

e abc e b6,rr e y,a e rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 pcr 2 dir
2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 2 JRC 4 LD

8
1000

e abc e b1,rr e # e (y),a
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 pcr 1 ind
2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 DEC 2 JRC 4 LD

9
1001

e abc e b1,rr e v e rr,a
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 pcr 2 dir
2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 4 RLC 2 JRC 4 AND

A
1010

e abc e b5,rr e a e a,(y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 inh 1 pcr 1 ind
2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 LD 2 JRC 4 AND

B
1011

e abc e b5,rr e v,a e a,rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 pcr 2 dir
2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 2 RET 2 JRC 4 SUB

C
1100

e abc e b3,rr e e a,(y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 inh 1 pcr 1 ind
2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 DEC 2 JRC 4 SUB

D
1101

e abc e b3,rr e w e a,rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 pcr 2 dir
2 JRNZ 4 JP 2 JRNC 4 RES 2 JRZ 2 WAIT 2 JRC 4 DEC

E
1110

e abc e b7,rr e e (y)
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 inh 1 pcr 1 ind
2 JRNZ 4 JP 2 JRNC 4 SET 2 JRZ 4 LD 2 JRC 4 DEC

F
1111

e abc e b7,rr e w,a e rr
1 pcr 2 ext 1 pcr 2 b.d 1 pcr 1 sd 1 pcr 2 dir

Abbreviations for Addressing Modes: Legend:

dir Direct # Indicates Illegal Instructions

sd Short Direct e 5 Bit Displacement

imm Immediate b 3 Bit Address

inh Inherent rr 1byte dataspace address

ext Extended nn 1 byte immediate data

b.d Bit Direct abc 12 bitaddress

bt Bit Test ee 8 bit Displacement

pcr Program Counter Relative

ind Indirect

Cycles 2 JRC Mnemonic
Operand e
Bytes 1 pcr
Addressing Mode

ST62 & ST63 INSTRUCTION SET (Continued)



ST62,63 Programming Manual

10/43

Instruction Cycles Cycles(#) Address Bus Data Bus CPU Activity Notes

Indirect Addressing Mode

ADD, AND, CP,
DEC, INC, LD,
SUB

4

1
2
3
4

Opcode Address(*)
Opcode Address +1
Opcode Address +1
Opcode Address +1

Opcode (*)
Next Instruction
Next Instruction
Next Instruction

Decode Opcode
Read Operand Address
Read Operand
Execute Instruction

ROM
Data
Space not
Addressed

ADD, AND, CP,
DEC, INC, LD,
SUB

4

1
2
3
4

Opcode Address(*)
Opcode Address +1
Opcode Address +1
Data Space Rom Add

Opcode (*)
Next Instruction
Next Instruction
Rom Data (#)

Decode Opcode
Read Operand Address
Read Operand
Execute Instruction

ROM
Data
Space
Addressed

Direct Addressing Mode

ADD, AND, CP,
DEC, INC, LD,
RES, SET, LSA,
SUB, CLR

4

1
2
3
4

Opcode Address(*)
Opcode Address +1
Opcode Address +1 (*)
Opcode Address +2

Opcode (*)
Operand Address
Operand Address(*)
Next Instruction

Decode Opcode
Address Data Space
Read Operand
Execute Instruction

ROM
Data
Space not
Addressed

ADD, AND, CP,
DEC, INC, LD,
RES, SET, LSA,
SUB, CLR

4

1
2
3
4

Opcode Address(*)
Opcode Address +1
Opcode Address +1 (*)
Data Space Rom Add. (*)

Opcode (*)
Operand Address
Operand Address(#)
Rom Data (#)

Decode Opcode
Address Data Space
Read Operand
Execute Instruction

ROM
Data
Space
Addressed

Immediate Addressing Mode

ADDI, ANDI,
CPI, LDI,
SUBI

4

1
2
3
4

Opcode Address(*)
Opcode Address +1
Opcode Address +1(*)
Opcode Address +2(*)

Opcode (*)
Immediate Operand
Immediate Operand
Next Instruction

Decode Opcode
Idle
Read Operand
Execute Instruction

LDI rr 4

1
2
3
4

Opcode Address(*)
Opcode Address +1
Opcode Address +2
Opcode AdDress +3

Opcode (*)
Register Address
Immediate Operand
Next Opcode

Decode Opcode
Read Register Address
Read Immediate Operand
Write Operand To Reg.

ROM
Data
Space not
Addressed

LDI rr 4

1
2
3
4

Opcode Address(*)
Opcode Address +1 (*)
Opcode Address +2 (#)
Data Space Rom Add.

Opcode (*)
Register Address
Immediate Operand
Rom Operand (#)

Decode Opcode
Read Register Address
Read Immediate Operand
Write Operand To Reg.

ROM
Data
Space
Addressed

Short Direct Addressing Mode

DEC, INC, LD 4

1
2
3
4

Opcode Address(*)
Opcode Address +1
Opcode Address +1
Opcode Address +1

Opcode (*)
Next Opcode
Next Opcode
Next Opcode

Decode Opcode
Define Data Space
Add.
Read Operand
Execute Instruction

Other Instructions

Table 10. Instruction Set Cycle-by-Cycle Summary

Notes: *. Valid only at the beginning of the cycle

#. Valid only until t18 of the cycle

ST62 & ST63 INSTRUCTION SET (Continued)



ST62,63 Programming Manual

11/43

Instruction Cycles Cycles(#) Address Bus Data Bus CPU Activity Notes

CALL 4

1
2
3
4

Opcode Address(*)
Opcode Address +1
Opcode Address +1
Opcode Address +2(*)

Opcode (*)
Subroutine Address
Subroutine Address
Next Instruction

Decode Opcode
Increment Stack Pointer
Push Return Address
Calculate Subroutine Add.

COM 4

1
2
3
4

Opcode Address(*)
Opcode Address +1
Opcode Address +1
Opcode Address +1

Opcode (*)
Next Opcode
Next Opcode
Next Opcode

Decode Opcode
Calculate Acc. Address
Read Accumulator
Complement Accumulator

INTERRUPT 1 1 Next opcode address Next Opcode (*)
Calculate Interrupt Add.
Push Return Address
Switch Flag Set

Note 1

JP 4

1
2
3
4

Opcode Address(*)
Opcode Address +1
Opcode Address +1
Opcode Address +2

Opcode (*)
Jump Address
Following Instr.
Following Instr. (*)

Decode Opcode
Idle
Read Jump Address
Calculate Jump Address

JRC, JRNC,
JRZ, JRNZ

2
1
2

Opcode Address(*)
Opcode Address +1

Opcode (*)
Following Instr.

Decode Opcode
Calculate Offset

JRR, JRS 5

1
2
3
4
5

Opcode Address(*)
Opcode Address +1(*)
Opcode Address +2(*)
Opcode Address +2(*)
Opcode Address +3(*)

Opcode (*)
Operand Address (*)
Branch Value
Branch Value (*)
Following Instr.

Decode Opcode
Read Operand
Test Operand
Fetch Branch Value
Calculate New Address

ROM
Data
Space not
Addressed

JRR, JRS 5

1
2
3
4
5

Opcode Address(*)
Opcode Address +1(*)
Data Space Rom Add.(#)
Opcode Address +2(*)
Data Space Rom Add.(#)

Opcode (*)
Operand Address (*)
Rom Data (#)
Branch Value (*)
Rom Data (#)

Decode Opcode
Read Operand
Test Operand
Fetch Branch Value
Calculate New Address

ROM
Data
Space
Addressed

RET 2
1
2

Opcode Address(*)
Return Address

Opcode (*)
Next Opcode

Decode Opcode
Pop Return Address

RETI 2
1
2

Opcode Address(*)
Return Address

Opcode (*)
Next Opcode

Decode Opcode
Pop Return Address
Switch Flag Set

RLC 4

1
2
3
4

Opcode Address(*)
Opcode Address +1
Opcode Address +1
Opcode Address +1

Opcode (*)
Next Opcode
Next Opcode
Next Opcode

Decode Opcode
Calculate Acc. Address
Read Accumulator Shifted

STOP, WAIT 2
1
2

Opcode Address(*)
Opcode Address +1

Opcode (*)
Next Opcode

Decode Opcode
Stop/Wait the Oscillator

Notes : *. Valid only at the beginning of the cycle
#. Valid only until t18 of the cycle

1. Add oscillator build up time plus 16 oscillator clocks if a stop instruction has been executed before the interrupt occured

Table 10. Instruction Set Cycle-by-Cycle Summary (Continued)

ST62 & ST63 INSTRUCTION SET (Continued)



ST62,63 Programming Manual

12/43

ADD
Addition

Mnemonic: ADD

Function: Addition

Description: The contents of the source byte is added to the accumulator leaving the result in
the accumulator. The source register remains unaltered.

Operation: dst ← dst + src

The destination must be the accumulator.

Instruction Format Opcode (Hex) Bytes Cycles Flags
ADD dst,src Z C

ADD A,A 5F FF 2 4 ∆ ∆
ADD A,X 5F 80 2 4 ∆ ∆
ADD A,Y 5F 81 2 4 ∆ ∆

ADD A,V 5F 82 2 4 ∆ ∆
ADD A,W 5F 83 2 4 ∆ ∆
ADD A,(X) 47 1 4 ∆ ∆

ADD A,(Y) 4F 1 4 ∆ ∆
ADD A,rr 5F rr 2 4 ∆ ∆

Notes:
rr.1 Byte dataspace address.

∆:Z is set if the result is zero. Cleared otherwise.
C is cleared before the operation and than set if there is an overflow from the 8-bit result.

Example: If data space register 22h contains the value 33h and the accumulator holds the
value 20h then the instruction,

ADD A,22h

will cause the accumulator to hold 53h (i.e. 33+20).

Addressing Modes: Source: Direct, Indirect
Destination: Accumulator



ST62,63 Programming Manual

13/43

ADDI
Addition Immediate

Mnemonic: ADDI

Function: Addition Immediate

Description: The immediately addressed data (source) is added to the accumulator leaving the
result in the accumulator.

Operation: dst ← dst + src

The destination must be the accumulator.

Instruction Format Opcode (Hex) Bytes Cycles Flags
ADDI dst,src Z C

ADDI A,nn 57 nn 2 4 ∆ ∆

Notes:
nn.1 Byte immediate data
∆: Z is set if result is zero. Cleared otherwise
C is cleared before the operation and than set if there is an overflow from the 8-bit result

Example: If the accumulator holds the value 20h then the instruction,

ADDI A,22h

will cause the accumulator to hold 42h (i.e. 22+20).

Addressing Modes: Source: Immediate
Destination: Accumulator



ST62,63 Programming Manual

14/43

AND
Logical AND

Mnemonic: AND

Function: Logical AND

Description: This instruction logically ANDs the source register and the accumulator. The result
is left in the destination register and the source is unaltered.

Operation: dst ←src AND dst
The destination must be the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
AND dst,src Z C

AND A,A BF FF 2 4 ∆ *

AND A,X BF 80 2 4 ∆ *

AND A,Y BF 81 2 4 ∆ *

AND A,V BF 82 2 4 ∆ *

AND A,W BF 83 2 4 ∆ *

AND A,(X) A7 1 4 ∆ *

AND A,(Y) AF 1 4 ∆ *

AND A,rr BF rr 2 4 ∆ *

Notes:
rr.1 Byte dataspace address

*.C isunaffected

∆.Z is set if the result is zero. Cleared otherwise.

Example: If data space register 54h contains the binary value11110000 and the
accumulator contains the binary value 11001100 then the instruction,

AND A,54h

will cause the accumulator to be altered to11000000.

Addressing Modes: Source: Direct, Indirect.
Destination: Accumulator



ST62,63 Programming Manual

15/43

ANDI
Logical AND Immediate

Mnemonic: ANDI

Function: Logical AND Immediate

Description: This instruction logically ANDs the immediate data byte and the accumulator.
The result is left in the accumulator.

Operation: dst ← src AND dst
The source is immediate data and the destination must be the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
ANDI dst,src Z C

ANDI A,nn B7 nn 2 4 ∆ *

Notes:
nn.1 Byte immediate data

*.C isunaffected

∆. Z is set if the result is zero. Cleared otherwise.

Example: If the accumulator contains the binary value 00001111 then the instruction,

ANDI A,33h

will cause the accumulator to hold the value00000011.

Addressing Modes: Source: Immediate

Destination: Accumulator



ST62,63 Programming Manual

16/43

CALL
Call Subroutine

Mnemonic: CALL

Function: Call Subroutine

Description: The CALL instruction is used to call a subroutine. It “pushes” the current contents
of the program counter (PC) onto the top of the stack. The specified destination
address is then loaded into the PC and points to the first instruction of a procedure.
At the end of the procedure a RETurn instruction can be used to return to the
original program flow. RET pops the top of the stack back into the PC.
Because the ST6 stack is 4 levels deep (ST60) and 6 levels deep (ST62,ST63),
a maximum of four/six calls or interrupts may be nested. If more calls are nested,
the PC values stacked latest will be lost. In this case returns will return to the PC
values stacked first.

Operation: PC ← dst; Top of stack ← PC

Inst. Format OPCODE (Hex) Bytes Cycles Flags
CALL dst Z C

CALL abc c0001 ab 2 4 * *

Notes:
abc.the three half bytes of a twelve bit address, the start location of the subroutine.

*. C,Z not affected

Example: If the current PC is 345h then the instruction,

CALL 8DCh

The current PC 345h is pushed onto the top of the stack and the PC will beloaded
with the value 8DCh. The next instruction to be executed will be the instruction at
8DCh, the first instruction of the called subroutine.

Addressing Modes: Extended



ST62,63 Programming Manual

17/43

CLR
Clear

Mnemonic: CLR

Function: Clear

Description: The destination register is cleared to 00h.

Operation: dst ← 0

Inst. Format OPCDE (Hex) Bytes Cycles Flags
CLR dst Z C

CLR A DF FF 2 4 ∆ ∆
CLR X 0D 80 00 3 4 * *

CLR Y 0D 81 00 3 4 * *

CLR V 0D 82 00 3 4 * *

CLR W 0D 83 00 3 4 * *

CLR rr 0D rr 00 3 4 * *

Notes:
rr. 1 Byte dataspace address

∆. Z set, ∆. C reset

*. C,Z unaffected

Example: If data space register 22h contains the value 33h,

CLR 22h

will cause register 22h to hold 00h.

Addressing Modes: Direct



ST62,63 Programming Manual

18/43

COM
Complement

Mnemonic: COM

Function: Complement

Description: This instruction complements each bit of the accumulator; all bits which are set to
1 are cleared to 0 and vice-versa.

Operation: dst ← NOT dst
The destination must be the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
COM dst Z C

COM A 2D 1 4 ∆ ∆

Note :

∆:Z is set if the result is zero. Cleared otherwise.

C will contain the value of the MSB before the operation.

Example: If the accumulator contains the binary value 10111001 then the instruction

COM A

will cause the accumulator to be changed to 01000110and the carry flag to be set
(since the original MSB was 1).

Addressing Modes: Inherent



ST62,63 Programming Manual

19/43

CP
Compare

Mnemonic: CP

Function: Compare

Description: This instruction compares the source byte (subtracted from) with the destination
byte, which must be the accumulator. The carry and zero flags record the result of
this comparison.

Operation: dst - src
The destination must be the accumulator, but it will not be changed.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
CP dst,src Z C

CP A,A 3F FF 2 4 ∆ ∆
CP A,X 3F 80 2 4 ∆ ∆
CP A,Y 3F 81 2 4 ∆ ∆
CP A,V 3F 82 2 4 ∆ ∆
CP A,W 3F 83 2 4 ∆ ∆
CP A,(X) 27 1 4 ∆ ∆
CP A,(Y) 2F 1 4 ∆ ∆
CP A,rr 3F rr 2 4 ∆ ∆

Note: rr. 1Byte dataspace address

ST60 ∆: Z is set if the result is zero. Cleared otherwise.

C is set if Acc ≥ src, cleared if Acc < src.

ST62/63 ∆: Z is set if the result is zero. Cleared otehrwise.

C is set if Acc < src, cleared if Acc ≥ src.

Example: If the accumulator contains the value11111000 and the register 34h contains the
value 00011100 then the instruction,

CP A,34h

will clear the Zero flag Z and set the Carry flag C, indicating that Acc≥ src (on ST60)



ST62,63 Programming Manual

20/43

CPI
Compare Immediate

Mnemonic: CPI

Function: Compare Immediate

Description: This instruction compares the immediately addressed source byte (subtracted from)
with the destination byte, which must be the accumulator. The carry and zero flags
record the result of this comparison.

Operation: dst-src
The source must be the immediately addressed data and the destination must be
the accumulator, that will not be changed.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
CPI dst,src Z C

CPI A,nn 37 nn 2 4 ∆ ∆

Note: nn.1 Byte immediate data.

ST60 ∆: Z is set if the result is zero. Cleared otherwise.

C is set if Acc ≥ src, cleared if Acc < src.

ST62/63 ∆: Z is set if the result is zero. Cleared otherwise.

C is set if Acc < src, cleared if Acc ≥ src.

Example: If the accumulator contains the value11111000 then the instruction,

CPI A,00011100B

will clear the Zero flag Z and set the Carry flag C indicating that Acc≥ src (on ST60).

Addressing Modes: Source: Immediate

Destination: Accumulator



ST62,63 Programming Manual

21/43

DEC
Decrement

Mnemonic: DEC

Function: Decrement

Description: The destination register’s contents are decremented by one.

Operation: dst ← dst-1

Inst. Format OPCODE (Hex) Bytes Cycles Flags
DEC dst Z C

DEC A FF FF 2 4 ∆ *

DEC X 1D 1 4 ∆ *

DEC Y 5D 1 4 ∆ *

DEC V 9D 1 4 ∆ *

DEC W DD 1 4 ∆ *

DEC (X) E7 1 4 ∆ *

DEC (Y) EF 1 4 ∆ *

DEC rr FF rr 2 4 ∆ *

Notes:
rr.1 Byte dataspace address

*.C isunaffected

∆.Z is set if the result is zero. Cleared otherwise.

Example: If the X register contains the value 45h and the data space register 45h contains
the value 16h then the instruction,

DEC (X)

will cause data space register 45h to contain the value 15h.

Addressing Modes: Short direct, Direct, Indirect.



ST62,63 Programming Manual

22/43

INC
Increment

Mnemonic: INC

Function: Increment

Description: The destination register’s contents are incremented by one.

Operation: dst ← dst+1

Inst. Format OPCODE (Hex) Bytes Cycles Flags
INC dst Z C

INC A 7F FF 2 4 ∆ *

INC X 15 1 4 ∆ *

INC Y 55 1 4 ∆ *

INC V 95 1 4 ∆ *

INC W D5 1 4 ∆ *

INC (X) 67 1 4 ∆ *

INC (Y) 6F 1 4 ∆ *

INC rr 7F rr 2 4 ∆ *

Notes:

rr.1 Byte dataspace address

*. C is unaffected

∆.Z is set if the result is zero. Cleared otherwise.

Example: If the X register contains the value 45h and the data space register 45h contains
the value 16h then the instruction

INC (X)

will cause data space register 45h to contain the value 17h.

Addressing Modes: Short direct, Direct, Indirect.



ST62,63 Programming Manual

23/43

JP
Jump

Mnemonic: JP

Function: Jump (Unconditional)

Description: The JP instruction replaces the PC value with a twelve bit value thus causing a
simple jump to another location in the program memory. The previous PC value is
lost, not stacked.

Operation: PC ← dst

Inst. Format OPCODE (Hex) Bytes Cycles Flags
JP dst Z C

JP abc c1001 ab 2 4 * *

Notes:

abc.the three half bytes of a twelve bit address.

*. C,Z not affected

Example: The instruction,

JP 5CDh

will cause the PC to be loaded with 5CDh and the program will continue from that
location.

Addressing Modes: Extended



ST62,63 Programming Manual

24/43

JRC
Jump Relative on Carry Flag

Mnemonic: JRC

Function: Jump Relative on Carry Flag

Description: This instruction causes the carry (C) flag to be tested and if this flag is set then a
jump is performed within the program memory. This jump is in the range -15 to +16
and is relative to the PC value. Thedisplacemente is of five bits. If C=0 than the
next instruction is executed.

Operation: If C=1, PC ← PC + e
where e= 5 bit displacement

Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C

JRC e e110 1 2 * *

Notes:

e.5 bit displacement in the range –15 to + 16

*.C,Z not affected

Example: If the carry flag is set then the instruction,

JRC + 8

will cause a branch forward to PC+8. The user can use labels asindentifiers and
the assembler will automatically allow the jump if it is in the range -15 to +16.

Addressing Modes: Program Counter Relative



ST62,63 Programming Manual

25/43

JRNC
Jump Relative on Non Carry Flag

Mnemonic: JRNC

Function: Jump Relative on Non Carry Flag

Description: This instruction causes the carry (C) flag to be tested and if this flag is cleared to
zero then a jump is performed within the program memory. This jump is in the
range -15 to +16 and is relative to the PC value. The dispacement is of five bits.
If C=1 then the next instruction is executed.

Operation: If C=0, PC ← PC + e
where e= 5 bit displacement

Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C

JRNC e e010 1 2 * *

Notes:

e:5 bit displacement in the range -15 to +16

*:C,Z not affected

Example: If the carry flag is cleared then the instruction,

JRNC -5

will cause a branch backward to PC-5. The user can use labels as identifiers and
the assembler will automatically allow the jump if it is in the range -15 to +16.

Addressing Modes: Program Counter Relative



ST62,63 Programming Manual

26/43

JRNZ
Jump Relative on Non Zero Flag

Mnemonic: JRNZ

Function: Jump Relative on Non Zero Flag

Description: This instruction causes the zero (Z) flag to be tested and if this flag is cleared to
zero then a jump is performed within the program memory. This jump is in the
range -15 to +16 and is relative to the PC value. The displacement is of five bits.
If Z=1 then the next instruction is executed.

Operation: If Z=0, PC ← PC + e
where e= 5 bit displacement

Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C

JRNZ e e000 1 2 * *

Notes:

e.5 bit displacement in the range -15 to +16.

*.C,Z not affected

Example: If the zero flag is cleared then the instruction,

JRNZ -5

will cause a branch backward to PC-5. The user can use labels as identifiers and
the assembler will automatically allow the jump if it is in the range -15 to +16.

Addressing Modes: Program Counter Relative



ST62,63 Programming Manual

27/43

JRR
Jump Relative if Reset

Mnemonic: JRR

Function: Jump Relative if RESET

Description: This instruction causes a specified bit in a given dataspace register to be tested.
If this bit is reset (=0) then the PC value will be changed and a relative jump will be
performed within the program. The relative jump range is -126 to +129. If the
tested bit is not reset then the next instruction is executed.

Operation: If bit=0, PC ← PC + ee
where ee= 8 bit displacement

Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C

JRR b,rr,ee b00011 rr ee 3 5 * ∆

Notes:

b.3 bit-address

rr.1 Byte dataspace address

ee.8 bit displacement in the range -126 to +129

*.Z is not affected

∆.The tested bit is shifted into carry.

Example: If bit 4 of dataspace register 70h is reset and the PC=110 then the instruction,

JRR 4, 70h, -20

will cause the PC to be changed to 90 (110-20) and the instruction starting at that
address in the program memory to be the next instruction executed.

The user is advised to use labels for conditional jumps. The relative jump will be
calculated by the assembler. The jump must be in the range -126 to +129.

Addressing Modes: Bit Test



ST62,63 Programming Manual

28/43

JRS
Jump Relative if Set

Mnemonic: JRS

Function: Jump Relative if set

Description: This instruction causes a specified bit in a given dataspace register to be tested.
If this bit is set (=1) then the PC value will be changed and a relative jump will be
performed within the program. The relative jump range is -126 to +129. If the
tested bit is not set then the next instruction is executed.

Operation: If bit=1, PC ← PC + ee
where ee= 8 bit displacement

Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C

JRS b,rr,ee b10011 rr ee 3 5 * ∆

Notes:

b.3 bit-address

rr.1 Byte dataspace address

ee.8 bit displacement in the range -126 to +129

*.Z is not affected

∆.The tested bit is shifted into carry.

Example: If bit 7 of dataspace register AFh is set and the PC=123 then the instruction,

JRS 7,AFh,+25

will cause the PC to be changed to 148 (123+25) and the instruction starting at
that address in the program memory to be the next instruction executed.

The user is advised to use labels for conditional jumps. The relative jump will be
calculated by the assembler. The jump must be in the range -126 to +129.

Addressing Modes: Bit Test



ST62,63 Programming Manual

29/43

JRZ
Jump Relative on Zero Flag

Mnemonic: JRZ

Function: Jump Relative on Zero Flag

Description: This instruction causes the zero (Z) flag to be tested and if this flag is set to one
then a jump is performed within the program memory. This jump is in the range
-15 to +16 and is relative to the PC value. The displacement is of five bits.
If Z=0 then next instruction is executed.

Operation: If Z=1, PC ← PC + e
where e= 5 bit displacement

Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C

JRZ e e100 1 2 * *

Notes:

e.5 bit displacement in the range -15 to +16.

*.C,Z not affected

Example: If the zero flag is set then the instruction,

JRZ +8

will cause a branch forward to PC+8. The user can use labels as identifiers and
the assembler will automatically allow the jump if it is in the range -15 to +16.

Addressing Modes: Program Counter Relative



ST62,63 Programming Manual

30/43

LD
Load

Mnemonic: LD

Function: Load

Description: The contents of the source register are loaded into the destination register.
The source register remains unaltered and the previous contents of the destination
register are lost.

Operation: dst ← src
Either the source or the destination must be the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
LD dst,src Z C

LD A,X 35 1 4 ∆ *

LD A,Y 75 1 4 ∆ *

LD A,V B5 1 4 ∆ *

LD A,W F5 1 4 ∆ *

LD X,A 3D 1 4 ∆ *

LD Y,A 7D 1 4 ∆ *

LD V,A BD 1 4 ∆ *

LD W,A FD 1 4 ∆ *

LD A,(X) 07 1 4 ∆ *

LD (X), A 87 1 4 ∆ *

LD A,(Y) 0F 1 4 ∆ *

LD (Y),A 8F 1 4 ∆ *

LD A,rr 1F rr 2 4 ∆ *

LD rr,A 9F rr 2 4 ∆ *

Notes:

rr.1 Byte dataspace address

*.C not affected

∆.Z is set if the result is zero. Cleared otherwise.

Example: If data space register 34h contains the value 45h then the instruction;

LD A,34h

will cause the accumulator to be loaded with the value 45h. Register 34h will keep
the value 45h.



ST62,63 Programming Manual

31/43

LDI
Load Immediate

Mnemonic: LDI

Function: Load Immediate

Description: The immediately addressed data (source) is loaded into the destination data space
register.

Operation: dst ← src
The source is always an immediate data while the destination can be the
accumulator, one of the X,Y,V,W registers or one of theavailable data space
registers.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
LDI dst,src Z C

LDI A,nn 17 nn 2 4 ∆ *

LDI X,nn 0D 80 nn 3 4 * *

LDI Y,nn 0D 81 nn 3 4 * *

LDI V,nn 0D 82 nn 3 4 * *

LDI W,nn 0D 83 nn 3 4 * *

LDI rr,nn 0D rr nn 3 4 * *

Notes:

rr.1 Byte dataspace address

nn.1 Byte immediate value

*.Z, C not affected

∆.Z is set if the result is zero. Cleared otherwise.

Example: The instruction

LDI 34h,45h

will cause the value 45h to be loaded into data register at location 34h.

Addressing Modes: Source: Immediate

Destination: Direct



ST62,63 Programming Manual

32/43

NOP
No Operation

Mnemonic: NOP

Function: No Operation

Description: No action is performed by this instruction. It is typically used for timing delay.

Operation: No Operation

Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C

NOP 04 1 2 * *

Note: *. C,Z not affected

Addressing Modes: Program Counter Relative



ST62,63 Programming Manual

33/43

RES
Reset Bit

Mnemonic: RES

Function: Reset Bit

Description: The RESET instruction is used to reset a specified bit in a given register in the data
space.

Operation: dst (n) ← 0, 0 ≤ n ≤ 7

Inst. Format OPCODE (Hex) Bytes Cycles Flags
RES bit,dst Z C

RES b,A b01011 FF 2 4 * *

RES b,rr b01011 rr 2 4 * *

Notes:

b.3 bit-address

rr.1 Byte dataspace address

*.C,Z not affected

Example: If register 23h of the dataspace contains11111111 then the instruction,

RES 4,23h

will cause register 23h to hold 11101111.

Addressing Modes: Bit Direct



ST62,63 Programming Manual

34/43

RET
Return from Subroutine

Mnemonic: RET

Function: Return From Subroutine

Description: This instruction is normally used at the end of a subroutine to return to the
previously executed procedure. The previously stacked program counter (stacked
during CALL) is popped back from the stack. The next statement executed is that
addressed by the new contents of the PC. If the stack had already reached its
highest level (no more PC stacked) before the RET is executed, program execution
will be continued at the next instruction after the RET.

Operation: PC ← Stacked PC

Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C

RET CD 1 2 * *

Note: *. C,Z not affected

Example: If the current PC value is 456h and the PC value at the top of the stack is 3DFh
then the instruction,

RET

will cause the PC value 456h to be lost and the current PC value to be 3DFh.

Addressing Modes: Inherent



ST62,63 Programming Manual

35/43

RETI
Return from Interrupt

Mnemonic: RETI

Function: Return from Interrupt

Description: This instruction marks the end of the interrupt service routine and returns the
ST60/62/63 to the state it was in before the interrupt. It “pops” the top (last in) PC
value from the stack into the current PC. This instruction also causes the
ST60/62/63 to switch from the interrupt flags to the normal flags. The RETI
instruction also applies to the end of NMI routine for ST62/63 devices; in this case
the instruction causes the switch from NMI flags to normal flags (if NMI was
acknowledged inside a normal routine) or to standard interrupt flags (if NMI was
acknowledged inside a standard interrupt service routine).

In addition the RETI instruction also clears the interrupt mask (also NMI mask for
ST62/63) which was set when the interrupt occurred. If the stack had already
reached its highest level (no more PC stacked) before the RETI is executed,
program execution will be continued with the next instruction after the RETI.
Because the ST60 is in interrupt mode after reset (NMI mode for ST62/63), RETI
has to be executed to switch to normal flags and enable interrupts at the end of the
starting routine. If no call was executed during the starting routine, program
execution will continue with the instruction after the RETI (supposed no interrupt is
active).

Operation: Actual Flags ← Normal Flags (1)
PC ← Stacked PC
IM ← 0

(1) Standard Interrupt flags if NMI was acknowledged inside a standard interrupt
service (ST62/63 only).

Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C

RETI 4D 1 2 ∆ ∆

Note: ∆ C,Z normal flag will be used from now on.

Example: If the current PC value is 456h and the PC value at the top of the stack is 3DFh
then the instruction

RETI



ST62,63 Programming Manual

36/43

RLC
Rotate Left Through Carry

Mnemonic: RLC

Function: Rotate Left through Carry

Description: This instruction moves each bit in the accumulator one place to the left
(i.e. towards the MSBit. The MSBit (bit 7) is moved into the carry flag and the carry
flag is moved into the LSBit (bit0) of the accumulator.

Operation:

dst(0) ← C
C ←dst(7)
dst(n+1) ← dst(n), 0 ≤ n ≤ 6
This instruction can only be performed on the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C

RLC A AD 1 4 ∆ ∆

Note : ∆: Z is set if the result is zero. Cleared otherwise.

C will contain the value of the MSBbefore the operation.

Example: If the accumulator contains the binary value 10001001and the carry flag is set to
0 then the instruction,

RLC A

will cause the accumulator to have the binary value00010010 and the carry flag to
be set to 1.

Addressing Modes: Inherent

C ACCUMULATOR

b7 b0



ST62,63 Programming Manual

37/43

SET
Set Bit

Mnemonic: SET

Function: Set Bit

Description: The SET instruction is used to set a specified bit in a given register in the data
space.

Operation: dst (n) ← 1, 0 ≤ n ≤ 7

Inst. Format OPCODE (Hex) Bytes Cycles Flags
SET bit,dst Z C

SET b,A b11011 FF 2 4 * *

SET b,rr b11011 rr 2 4 * *

Notes:

b. 3 bit-address

rr. 1 Byte dataspace address

*. C,Z not affected

Example: If register 23h of the dataspace contains00000000 then the instruction,

SET 4,23h

will cause register 23h to hold 00010000.

Addressing Modes: Bit Direct



ST62,63 Programming Manual

38/43

SLA
Shift Left Accumulator

Mnemonic: SLA

Function: Shift Left Accumulator

Description: This instruction implements an addition of the accumulator to itself (i.e adoubling
of the accumulator) causing an arithmetic left shift of the value in the register.

Operation: ADD A,FFh
This instruction can only be performed on the accumulator.

Inst. Format OPCPDE (Hex) Bytes Cycles Flags
Z C

SLA A 5F FF 2 4 ∆ ∆

Note: ∆: Z is set if the result is zero. Cleared otherwise.

C will contain the value of the MSB before the operation.

Example: If the accumulator contains the binary value 11001101 then the instruction,

SLA A

will cause the accumulator to have the binary value10011010 and the carry flag
to be set to 1.

Addressing Modes: Inherent



ST62,63 Programming Manual

39/43

STOP
Stop Operation

Mnemonic: STOP

Function: Stop operation

Description: This instruction is used for putting the ST60/62/63 into a stand-by mode in which
the power consumption is reduced to a minimum. All the on-chipperipherals and
oscillator are stopped (for some peripherals,A/D for example, it is necessary to
individually turn-off the macrocell before entering the STOP instruction). To restart
the processor an external interrupt or a reset is needed.

Operation: Stop Processor

Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C

STOP 6D 1 2 * *

Note : *: C,Z not affected

Addressing Mode: Inherent



ST62,63 Programming Manual

40/43

SUB
Subtraction

Mnemonic: SUB

Function: Subtraction

Description: This instruction subtracts the source value from the destination value.

Operation: dst ←dst-src
The destination must be the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
SUB dst,src Z C

SUB A,A DF FF 2 4 ∆ ∆
SUB A,X DF 80 2 4 ∆ ∆
SUB A,Y DF 81 2 4 ∆ ∆
SUB A,V DF 82 2 4 ∆ ∆
SUB A,W DF 83 2 4 ∆ ∆
SUB A,(X) C7 1 4 ∆ ∆
SUB A,(Y) CF 1 4 ∆ ∆
SUB A,rr DF rr 2 4 ∆ ∆

Note: rr.1 Byte dataspace address

ST60 ∆: Z is set if the result is zero. Cleared otherwise.

C is set if Acc ≥ src, cleared if Acc < src.

ST62/63 ∆: Z is set if the result is zero. Cleared otherwise.

C is set if Acc < src, cleared if Acc ≥ src.

Example: If the Y register contains the value 23h, dataspace register 23h contains the value
53h and the accumulator contains the value 78h then the instruction,

SUB A,(Y)

will cause the accumulator to hold the value 25h (i.e. 78-53). The zero flag is
cleared and the carry flag is set (on ST60), indicating that result is > 0.

Addressing Modes: Source: Indirect,Direct



ST62,63 Programming Manual

41/43

SUBI
Subtraction Immediate

Mnemonic: SUBI

Function: Subtraction Immediate

Description: This instruction causes the immediately addressed source data to be subtracted
from the accumulator.

Operation: dst ← dst - src
The destination must be the accumulator.

Inst. Format OPCODE (Hex) Bytes Cycles Flags
SUBI dst,src Z C

SUBI A,nn D7 nn 2 4 ∆ ∆

Note: nn. 1 Byte of immediate data

ST60 ∆: Z is set if the result is zero. Cleared otherwise.

C is set if Acc ≥ src, cleared if Acc < src.

ST62/63 ∆: Z is set if the result is zero. Cleared otherwise.

C is set if Acc < src, cleared if Acc ≥ src.

Example: If the accumulator contains the value 56h then the instruction,

SUBI A,25

will cause the accumulator to contain the value 31h. The zero flag is cleared and
the carry flag is set (on ST60), indicating that the result is > 0.

Addressing Modes: Source: Immediate

Destination: Accumulator



ST62,63 Programming Manual

42/43

WAIT
Wait Processor

Mnemonic: WAIT

Function: Wait Processor

Description: This instruction is used for putting the ST60/62/63 into a stand-by mode in which
the power consumption is reduced to a minimum. Instruction execution is stopped,
but the oscillator and some on-chip peripherals continue to work. To restart the
processor an interrupt from an active on-chip peripheral (eg. timer), an external
interrupt or reset is needed. For on-chip peripherals active during wait, see
ST60/62/63 data sheets.

Operation: Put ST6 in stand-by mode

Inst. Format OPCODE (Hex) Bytes Cycles Flags
Z C

WAIT ED 1 2 * *

Note : *. C,Z not affected

Addressing Modes: Inherent

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without the
express written approval of SGS-THOMSON Microelectronics.

 1994 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I2C Components by SGS-THOMSON Microelectronics conveys a license under the Philips I2C Patent.
Rights to use these components in an I2C system is granted provided that the system conforms to the I2C Standard

Specification as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.



ST62,63 Programming Manual

43/43

