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ST6x86

1.0 ARCHITECTURE OVERVIEW

The ST6x86 CPU is a leader in the sixth genera-
tion of high performance, x86-compatible micro-
processors. Increased performance is
accomplished by the use of superscalar and
superpipelined design techniques.

The ST6x86 CPU is superscalar in that it contains
two separate pipelines that allow multiple instruc-
tions to be processed at the same time. The use of
advanced processing technology and the
increased number of pipeline stages (super-
pipelining) allow the ST6x86 CPU to achieve
clocks rates of 80 MHz and above.

Through the use of unique architectural features,
the ST6x86 processor eliminates many data
dependendes and resource conflicts, resulting in
optimal performance for both 16-bit and 32-bit x86
software.

The ST6x86 CPU contains two caches: a
16-KByte dual-ported unified cache and a
256-byte instruction line cache. Since the unified
cache can store instructions and data in any ratio,
the unified cache offers a higher hit rate than sep-
arate data and instruction caches of equal size. An
increase in overall cache-to-integer unit bandwidth
is achieved by supplementing the unified cache
with a small, high-speed, fully associative instruc-
tion line cache. The inclusion of the instruction line
cache avoids excessive conflicts between code
and data accesses in the unified cache.

ﬁ SGS-THOMSON

The on-chip FPU allows floating point instructions
to execute in parallel with integer instructions and
features a 64-bit data interface. The FPU incorpo-
rates a four-deep instruction queue and a
four-deep store queue to facilitate parallel execu-
tion.

The ST6x86 CPU operates froma 3.52 volt power
supply resulting in reasonable power consumption
at all frequencies. In addition, the ST6x86 CPU
incorporates a low power suspend mode, stop
clock capability, and system management mode
(SMM) for power sensitive applications.

1.1 Major Functional Blocks

The ST6x86 processor consists of five major func-
tional blocks, as shown in the overall block dia-
gram on the first page of this manual:

- Integer Unit

- Cache Unit

- Memory Management Unit
- Floating Point Unit

- Bus Interface Unit

Instructions are executed in the X and Y pipelines
within the Integer Unit and also in the Floating
Point Unit (FPU). The Cache Unit stores the most
recently used data and instructions to allow fast
access to the information by the Integer Unit and
FPU.

1-1
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Physical addresses are calculated by the Memory 1.2 Integer Unit

Management Unit and passed to the Cache Unit The | Unit (Fi 11 i llel
and the Bus Interface Unit (BIU). The BIU provides | n€ Integer Unit (Figure 1.1) provides paralle
instruction execution using two seven-stage inte-

the interface between the external system board eli Each of the two bioeli Kand Y
and the processor’s internal execution units. ger pipelines. tach of the two pipelnes, A and v,
can process several instructions simultaneously.

Figure 1.1. Integer Unit
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In-Order Instruction Instruction
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¥
X Pipeline Y Pipeline
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The Integer Unit consists of the following pipeline
stages:

- Instruction Fetch (IF)

- Instruction Decode 1 (ID1)

- Instruction Decode 2 (ID2)

- Address Calculation 1 (AC1)
- Address Calculation 2 (AC2)
- Execute (EX)

- Write-Back (WB)

The instruction decode and address calculation
functions are both divided into superpipelined
stages.

1.2.1 Pipeline Stages

The Instruction Fetch (IF) stage, shared by both
the X and Y pipelines, fetches 16 bytes of code
from the cache unit in a single clock cycle. Within
this section, the code stream is checked for any
branch instructions that could affect normal pro-
gram sequencing.

If an unconditional or conditional branch is
detected, branch prediction logic within the IF
stage generates a predicted target address for the
instruction. The IF stage then begins fetching
instructions at the predicted address.

The superpipelined Instruction Decode function
contains the ID1 and ID2 stages. ID1, shared by
both pipelines, evaluates the code stream pro-
vided by the IF stage and determines the number
of bytes in each instruction. Up to two instructions
per clock are delivered to the ID2 stages, one in
each pipeline.

The ID2 stages decode instructions and send the
decoded instructions to either the X or Y pipeline
for execution. The particular pipeline is chosen,
based on which instructions are already in each
pipeline and how fast they are expected to flow
through the remaining pipeline stages.

ﬁ SGS-THOMSON

The Address Calculation function contains two
stages, AC1 and AC2. If the instruction refers to a
memory operand, the AC1 calculates a linear
memory address for the instruction.

The AC2 stage performs any required memory
management functions, cache accesses, and reg-
ister file accesses. If a floating point instruction is
detected by AC2, the instruction is sent to the FPU
for processing.

The Execute (EX) stage executes instructions
using the operands provided by the address calcu-
lation stage.

The Write-Back (WB) stage is the last IU stage.
The WB stage stores execution results either to a
register file within the 1U or to a write buffer in the
cache control unit.

1.2.2 Out-of-Order Processing

If an instruction executes faster than the previous
instruction in the other pipeline, the instructions
may complete out of order. All instructions are pro-
cessed in order, up to the EX stage. While in the
EX and WB stages, instructions may be completed
out of order.

If there is a data dependency between two instruc-
tions, the necessary hardware interlocks are
enforced to ensure correct program execution.
Even though instructions may complete out of
order, exceptions and writes resulting from the
instructions are always issued in program order.

1-3
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1.2.3 Pipeline Selection

In most cases, instructions are processed in either
pipeline and without pairing constraints on the
instructions. However, certain instructions are pro-
cessed only in the X pipeline:

- Branch instructions
- Floating point instructions
- Exclusive instructions

Branch and floating point instructions may be
paired with a second instruction in the Y pipeline.

Exclusive Instructions  cannot be paired with
instructions in the Y pipeline. These instructions
typically require multiple memory accesses.
Although exclusive instructions may not be paired,
hardware from both pipelines is used to accelerate
instruction completion. Listed below are the
ST6x86 CPU exclusive instruction types:

- Protected mode segment loads
- Special register accesses
(Control, Debug, and Test Registers)
- String instructions
- Multiply and divide
- 1/0 port accesses
- Push all (PUSHA) and pop all (POPA)
- Intersegment jumps, calls, and returns

14 437 S6S-THOMSON

1.2.4 Data Dependency Solutions

When two instructions that are executing in paral-
lel require access to the same data or register, one
of the following types of data dependencies may
occur:

- Read-After-Write (RAW)
- Write-After-Read (WAR)
- Write-After-Write (WAW)

Data dependencies typically force serialized exe-
cution of instructions. However, the ST6x86 CPU
implements three mechanisms that allow parallel
execution of instructions containing data depen-
dencies:

- Register Renaming
- Data Forwarding
- Data Bypassing

The following sections provide detailed examples
of these mechanisms.

1.2.4.1 Register Renaming

The ST6x86 CPU contains 32 physical general
purpose registers. Each of the 32 registers in the
register file can be temporarily assigned as one of
the general purpose registers defined by the x86
architecture (EAX, EBX, ECX, EDX, ESI, EDI,
EBP, and ESP). For each register write operation
a new physical register is selected to allow previ-
ous data to be retained temporarily. Register
renaming effectively removes all WAW and WAR
dependencies. The programmer does not have to
consider register renaming; it is completely trans-
parent to both the operating system and applica-
tion software.
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Example #1 - Register Renaming Eliminates
Write-After-Read (WAR) Dependency

A WAR dependency exists when the firstin a pair
of instructions reads a logical register, and the
second instruction writes to the same logical regis-
ter. This type of dependency is illustrated by the
pair of instructions shown below:

X PIPE Y PIPE
(1) MOV BX, AX (2) ADD AX, CX
BX « AX AX « AX+CX

Note: In this and the following examples the origi-
nal instruction order is shown in parentheses.

In the absence of register renaming, the ADD
instruction in the Y pipe would have to be stalled to
allow the MOV instruction in the X pipe to read the
AX register.

The ST6x86 CPU, however, avoids the Y pipe stall
(Table 1.1). As each instruction executes, the
results are placed in new physical registers to
avoid the possibility of overwriting a logical register
value and to allow the two instructions to complete
in parallel (or out of order) rather than in
sequence.

Table 1.1. Register Renaming with WAR Dependency

Physical Register Contents Action
Instruction
Reg0 Regl Reg2 Reg3 Reg4 Pipe
(Initial) AX BX CX
MOV BX, AX AX CX BX X Reg3 ~ Reg0
ADD AX, CX CX BX AX Y Reg4 — Reg0 + Reg2

Note: The representation of the MOV and ADD instructions in the final column of Table 1.1

are completely independent.

1-5
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Example #2 - Register Renaming Eliminates
Write-After-Write (WAW) Dependency

A WAW dependency occurs when two consecu-
tive instructions perform writes to the same logical
register. This type of dependency is illustrated by
the pair of instructions shown below:

X PIPE Y PIPE
(1) ADD AX, BX (2) MOV AX, [mem]
AX < AX + BX AX — [mem]

Without register renaming, the MOV instruction in
the Y pipe would have to be stalled to guarantee
that the ADD instruction in the X pipe would write
its results to the AX register first.

The ST6x86 CPU uses register renaming and
avoids the Y pipe stall. The contents of the AX and
BX registers are placed in physical registers
(Table 1.2). As each instruction executes, the
results are placed in new physical registers to
avoid the possibility of overwriting a logical register
value and to allow the two instructions to complete
in parallel (or out of order) rather than in
sequence.

Table 1.2. Register Renaming with WAW Dependency

Physical Register Contents Action
Instruction
Reg0 Regl Reg?2 Reg3 Pipe
(Initial) AX BX
ADD AX, BX BX AX X Reg2 — Reg0+ Regl
MOV AX, [mem] BX AX Y Reg3 — [mem]

Note: All subsequent reads of the logical register AX will refer to Reg 3, the result of the MOV

instruction.

ﬁ SGS-THOMSON
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1.2.4.2 Data Forwarding

Register renaming alone cannot remove RAW
dependendes. The ST6x86 CPU uses two types
of data forwarding in conjunction with register
renaming to eliminate RAW dependencies:

- Operand Forwarding
- Result Forwarding

Operand forwarding takes place when the firstin a
pair of instructions performs a move from register
or memory, and the data that is read by the first
instruction is required by the second instruction.
The ST6x86 CPU performs the read operation and
makes the data read available to both instructions
simultaneously.

Result forwarding takes place when the first in a
pair of instructions performs an operation (such as
an ADD) and the result is required by the second
instruction to perform a move to a register or mem-
ory. The ST6x86 CPU performs the required oper-
ation and stores the results of the operation to the
destination of both instructions simultaneously.

s WIEROELECTROMICS

ﬁ SGS-THOMSON

1-7




ST6x86

Example #3 - Operand Forwarding Eliminates
Read-After-Write (RAW) Dependency

A RAW dependency occurs when the first in a
pair of instructions performs a write, and the sec-
ond instruction reads the same register. This type
of dependency is illustrated by the pair of
instructions shown below inthe X and Y pipelines:

X PIPE Y PIPE
(1) MOV AX, [mem] (2) ADD BX, AX
AX < [mem] BX — AX + BX

Table 1.3. Example of Operand Forwarding

The ST6x86 CPU uses operand forwarding and
avoids a Y pipe stall (Table 1.3). Operand for-
warding allows simultaneous execution of both
instructions by first reading memory and then
making the results available to both pipelines in
parallel.

Operand forwarding can only occur if the first
instruction does not modify its source data. In
other words, the instruction is a move type instruc-
tion (for example, MOV, POP, LEA). Operand for-
warding occurs for both register and memory
operands. The size of the first instruction destina-
tion and the second instruction source must
match.

Physical Register Contents Action
Instruction
Reg0 Regl Reg2 Reg3 Pipe
(Initial) AX BX
MOV AX, [mem] BX AX X Reg2 — [mem]
ADD BX, AX AX BX Y Reg3 — [mem] + Regl

ﬁ SGS-THOMSON
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Example #4 - Result Forwarding Eliminates
Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs
when the first in a pair of instructions performs a
write, and the second instruction reads the same
register. This dependency is illustrated by the pair
of instructions in the X and Y pipelines, as shown
below:

X PIPE Y PIPE
(1) ADD AX, BX (2) MOV [mem], AX
AX —AX +BX [mem] — AX

Table 1.4. Result Forwarding Example

The ST6x86 CPU uses result forwarding and
avoids a Y pipe stall (Table 1.4). Instead of trans-
ferring the contents of the AX register to memory,
the result of the previous ADD instruction (Reg0 +
Reg1l) is written directly to memory, thereby saving
a clock cycle.

The second instruction must be a move instruction
and the destination of the second instruction may
be either a register or memory.

Physical Register Contents Action
Instruction
Reg0 Regl Reg2 Pipe
(Initial) AX BX
ADD AX, BX BX AX X Reg2 —Reg0 + Regl
MOV [mem], AX BX AX Y [mem] « Reg0 +Regl

19
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1.2.4.3 Data Bypassing

In addition to register renaming and data forward-
ing, the ST6x86 CPU implements a third data
dependency-resolution technique called data
bypassing. Data bypassing reduces the perfor-
mance penalty of those memory data RAW depen-
dencies that cannot be eliminated by data
forwarding.

Data bypassing is implemented when the first in a
pair of instructions writes to memory and the sec-
ond instruction reads the same data from memoty.
The ST6x86 CPU retains the data from the first
instruction and passes it to the second instruction,
thereby eliminating a memory read cycle. Data
bypassing only occurs for cacheable memory loca-
tions.

Example #1- Data Bypassing with
Read-After-Write (RAW) Dependency

Table 1.5. Example of Data Bypassing

In this example, a RAW dependency occurs when
the first in a pair of instructions performs a write to
memory and the second instruction reads the
same memory location. This dependency is illus-
trated by the pair of instructions in the X and Y
pipelines as shown below:

X PIPE Y PIPE
(1) ADD [mem], AX (2) SUB BX, [mem]
[mem] ~ [mem]+ AX BX ~ BX-[mem]

The ST6x86 CPU uses data bypassing and stalls
the Y pipe for only one clock by eliminating the Y
pipe’s memory read cycle (Table 1.5). Instead of
reading memoty in the Y pipe, the result of the pre-
vious instruction ([mem] + Reg0) is used to sub-
tract from Regl, thereby saving a memory access
cycle.

Physical Register .
Contents Action
Instruction
Reg0 Regl Reg2 Pipe
(Initial) AX BX
ADD [mem], AX AX BX X [mem] — [mem] + RegO
SUB BX, [mem] AX BX Y Reg2 ~ Regl - {{mem] + Reg0}

ﬁ SGS-THOMSON
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1.2.5 Branch Control

Branch instructions occur on average every four to
six instructions in x86-compatible programs. When
the normal sequential flow of a program changes
due to a branch instruction, the pipeline stages
may stall while waiting for the CPU to calculate,
retrieve, and decode the new instruction stream.
The ST6x86 CPU minimizes the performance deg-
radation and latency of branch instructions through
the use of branch prediction and speculative exe-
cution.

1.2.5.1 Branch Prediction

The ST6x86 CPU uses a 256-entry, 4-way set
associative Branch Target Buffer (BTB) to store
branch target addresses and branch prediction
information. During the fetch stage, the instruction
stream is checked for the presence of branch
instructions. If an unconditional branch instruction
is encountered, the ST6x86 CPU accesses the
BTB to check for the branch instruction’s target
address. If the branch instruction’s target address
is foundin the BTB, the ST6x86 CPU begins fetch-
ing at the target address specified by the BTB.

In case of conditional branches, the BTB also pro-
vides history information to indicate whether the
branch is more likely to be taken or not taken. If
the conditional branch instruction is found in the
BTB, the ST6x86 CPU begins fetching instructions
at the predicted target address. If the conditional
branch misses in the BTB, the ST6x86 CPU pre-
dicts that the branch will not be taken, and instruc-
tion fetching continues with the next sequential
instruction. The decision to fetch the taken or not
taken target address is based on a four-state
branch prediction algorithm.

ﬁ SGS-THOMSON

Once fetched, a conditional branch instruction is
first decoded and then dispatched to the X pipeline
only. The conditional branch instruction proceeds
through the X pipeline and is then resolved in
either the EX stage or the WB stage. The condi-
tional branch is resolved in the EX stage, if the
instruction responsible for setting the condition
codes is completed prior to the execution of the
branch. If the instruction that sets the condition
codes is executed in parallel with the branch, the
conditional branch instruction is resolved in the
WB stage.

Correctly predicted branch instructions execute in
a single core clock. If resolution of a branch indi-
cates that a misprediction has occurred, the
ST6x86 CPU flushes the pipeline and starts fetch-
ing from the correct target address. The ST6x86
CPU prefetches both the predicted and the
non-predicted path for each conditional branch,
thereby eliminating the cache access cycle on a
misprediction. If the branch is resolved in the EX
stage, the resulting misprediction latency is four
cycles. If the branch is resolved in the WB stage,
the latency is five cycles.

Since the target address of return (RET) instruc-
tions is dynamic rather than static, the ST6x86
CPU caches target addresses for RET instructions
in an eight-entry return stack rather than in the
BTB. The return address is pushed on the return
stack during a CALL instruction and popped during
the corresponding RET instruction.

1-11
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1.2.5.2 Speculative Execution

The ST6x86 CPU is capable of speculative execu-
tion following a floating point instruction or pre-
dicted branch. Speculative execution allows the
pipelines to continuously execute instructions fol-
lowing a branch without stalling the pipelines wait-
ing for branch resolution. The same mechanism is
used to execute floating point instructions (see
Section 1.5) in parallel with integer instructions.

The ST6x86 CPU is capable of up to four levels of
speculation (i.e., combinations of four conditional
branches and floating point operations). After
generating the fetch address using branch predic-
tion, the CPU checkpoints the machine state (reg-
isters, flags, and processor environment),
increments the speculation level counter, and
begins operating on the predicted instruction
stream.

Once the branch instruction is resolved, the CPU
decreases the speculation level. For a correctly
predicted branch, the status of the checkpointed
resources is cleared. For a branch misprediction,
the ST6x86 processor generates the correct fetch
address and uses the checkpointed values to
restore the machine state in a single clock.

In order to maintain compatibility, writes that result
from speculatively executed instructions are not
permitted to update the cache or external memory
until the appropriate branch is resolved. Specula-
tive execution continues until one of the following
conditions occurs:

1-12
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1) A branch or floating point operation is decoded
and the speculation level is already at four.

2) An exception or a fault occurs.
3) The write buffers are full.

4) An attempt is made to modify a non-check-
pointed resource (i.e., segment registers, system
flags).

1.3 Cache Units

The ST6x86 CPU employs two caches, the Unified
Cache and the Instruction Line Cache
(Figure 1.2).

1.3.1 Unified Cache

The 16-KByte unified write-back cache functions
as the primary data cache and as the secondary
instruction cache. Configured as a four-way
set-associative cache, the cache stores up to
16 KBytes of code and data in 512 lines. The
cache is dual-ported and allows any two of the fol-
lowing operations to occur in parallel:

- Code fetch
- Data read (X pipe, Y pipeline or FPU)
- Data write (X pipe, Y pipeline or FPU)

The unified cache uses a pseudo-LRU replace-
ment algorithm and can be configured to allocate
new lines on read misses only or on read and write
misses. More information concerning the unified
cache can be found in 2.7.1 (Page 52).
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1.3.2

The fully associative 256-byte instruction line
cache serves as the primary instruction cache.
The instruction line cache is filled from the unified
cache through the data bus. Fetches from the inte-
ger unit that hit in the instruction line cache do not
access the unified cache. If an instruction line
cache miss occurs, the instruction line data from
the unified cache is transferred to the instruction
line cache and the integer unit, simultaneously.

Figure 1.2. Cache Unit Operations

Instruction Line Cache

The instruction line cache uses a pseudo-LRU
replacement algorithm. To ensure proper opera-
tion in the case of self-modifying code, any writes
to the unified cache are checked against the con-
tents of the instruction line cache. If a hit occurs in
the instruction line cache, the appropriate line is
invalidated.
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1.4 Memory Management Unit

The Memory Management Unit (MMU), shown in
Figure 1.3, translates the linear address supplied
by the IU into a physical address to be used by the
unified cache and the bus interface. Memory man-
agement procedures are x86 compatible, adhering
to standard paging mechanisms.

The ST6x86 MMU includes two paging mecha-
nisms (Figure 1.3), a traditional paging mecha-
nism, and a ST6x86 variable-size paging
mechanism.

1.4.1 Variable-Size Paging Mechanism

The ST6x86 variable-size paging mechanism
allows software to map pages between 4 KBytes
and 4 GBytes in size. The large contiguous memo-
ries provided by this mechanism help avoid TLB
(Translation Lookaside Buffer) thrashing [see Sec-
tion 2.6.4] associated with some operating sys-
tems and applications. For example, use of a
single large page instead of a series of small
4-KByte pages can greatly improve performance
in an application using a large video memory
buffer.

Figure 1.3. Paging Mechanism within the Memory Management Unit

Control > Variable-Size Paging Mechanism
Linear -
Address
®
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— DTE Cache L. Main TLB
0 ¢ 0
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Victim TLB — %Y
0
— DTE —‘ — PTE Physical Page |*—
Directory Table Page Table Page Frame
CR3
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1-14

ﬁ SGS-THOMSON

s WIEROELECTROMICS




ST6x86

1.4.2 Traditional Paging Mechanism

The traditional paging mechanism has been
enhanced on the ST6x86 CPU with the addition of
the Directory Table Entry (DTE) cache and the
Victim TLB. The main TLB (Translation Lookaside
Buffer) is a direct-mapped 128-entry cache for
page table entries.

The four-entry fully associative DTE cache stores
the most recent DTE accesses. If a Page Table
Entry (PTE) miss occurs followed by a DTE hit,
only a single memory access to the PTE table is
required.

The Victim TLB stores PTEs which have been dis-
placed from the main TLB due to a TLB miss. If a
PTE access occurs while the PTE is stored in the
victim TLB, the PTE in the victim TLB is swapped
with a PTE in the main TLB. This has the effect of
selectively increasing TLB associativity. The
ST6x86 CPU updates the eight-entry fully associa-
tive victim TLB on an oldest entry replacement
basis.

1.5 Floating Point Unit

The ST6Xx86 Floating Point Unit (FPU) interfaces
to the integer unit and the cache unit through a
64-bit bus. The ST6x86 FPU is x87 instruction set
compatible and adheres to the IEEE-754 standard.
Since most applications contain FPU instructions
mixed with integer instructions, the ST6x86 FPU
achieves high performance by completing integer
and FPU operations in parallel.

ﬁ SGS-THOMSON

FPU Parallel Execution

The ST6x86 CPU executes integer instructions in
parallel with FPU instructions. Integer instructions
may complete out of order with respect to the FPU
instructions. The ST6x86 CPU maintains x86 com-
patibility by signaling exceptions and issuing write
cycles in program order.

As previously discussed, FPU instructions are
always dispatched to the integer unit's X pipeline.
The address calculation stage of the X pipeline
checks for memory management exceptions and
accesses memory operands used by the FPU. If
no exceptions are detected, the ST6x86 CPU
checkpoints the state of the CPU and, during AC2,
dispatches the floating point instruction to the FPU
instruction queue. The ST6x86 CPU can then
complete any subsequent integer instructions
speculatively and out of order relative to the FPU
instruction and relative to any potential FPU
exceptions which may occur.

As additional FPU instructions enter the pipeline,
the ST6x86 CPU dispatches up to four FPU
instructions to the FPU instruction queue. The
ST6x86 CPU continues executing speculatively
and out of order, relative to the FPU queue, until
the ST6x86 CPU encounters one of the conditions
that causes speculative execution to halt. As the
FPU completes instructions, the speculation level
decreases and the checkpointed resources are
available for reuse in subsequent operations. The
ST6x86 FPU also uses a set of four write buffers
to prevent stalls due to speculative writes.

1.6 Bus Interface Unit

The Bus Interface Unit (BIU) provides the signals
and timing required by external circuitry. The sig-
nal descriptions and bus interface timing informa-
tion is provided in Chapters 3 and 4 of this manual.

1-15
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2.0 PROGRAMMING INTERFACE

In this chapter, the internal operations of the
ST6x86 CPU are described mainly from an appli-
cation programmer’s point of view. Included in this
chapter are descriptions of processor initialization,
the register set, memory addressing, various types
of interrupts and the shutdown and halt process.
An overview of real, virtual 8086, and protected
operating modes is also included in this chapter.
The FPU operations are described separately at
the end of the chapter.

This manual does not—and is not intended to—
describe the ST6x86 microprocessor or its opera-
tions at the circuit level.

ﬁ SGS-THOMSON

2.1 Processor Initialization

The ST6x86 CPU is initialized when the RESET
signal is asserted. The processor is placed in real
mode and the registers listed in Table 2.1 are set
to their initialized values. RESET invalidates and
disables the cache and turns off paging. When
RESET is asserted, the ST6x86 CPU terminates
all local bus activity and all internal execution.
During the entire time that RESET is asserted, the
internal pipelines are flushed and no instruction
execution or bus activity occurs.

Approximately 150 to 250 external clock cycles
after RESET is negated, the processor begins
executing instructions at the top of physical mem-
ory (address location FFFF FFFOh). Typically, an
intersegment JUMP is placed at FFFF FFFOh. This
instruction will force the processor to begin execu-
tionin the lowest 1 MByte of address space.

Note: The actual time dependsz%n the clock scal-
ing in use. Also an additional 2<% clock cycles are
needed if self-test is requested

2-1
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Table 2.1. Initialized Register Controls

REGISTER REGISTER NAME INITIALIZED CONTENTS COMMENTS
EAX Accumulator XXXX Xxxxh 0000 0000h indicates self-test passed.
EBX Base XXXX XxXxxh
ECX Count XXXX XXxxXh
. Device ID = 31h or 33h (2X clock)
EDX Data 05 + Device ID Device ID = 35h or 37h (3X clock)
EBP Base Pointer XXXX XXxxh
ESI Source Index XXXX Xxxxh
EDI Destination Index XXXX Xxxxh
ESP Stack Pointer XXXX XxXxxh
EFLAGS Flag Word 0000 0002h
EIP Instruction Pointer 0000 FFFOh
Base address set to 0000 0000h.
ES Extra Segment 0000h Limit set to FEFEh.
Base address set to FFFF 0000h.
CSs Code Segment FOOOh Limit set to FEEE.
Base address set to 0000 0000h.
SS Stack Segment 0000h Limit set to FEFEh.
Base address set to 0000 0000h.
DS Data Segment 0000h Limit set to FEFEh.
Base address set to 0000 0000h.
FS Extra Segment 0000h Limit set to EEFFh.
Base address set to 0000 0000h.
GS Extra Segment 0000h Limit set to FEEE.
IDTR _Interrupt Descriptor Table Reg- Base = 0, Limit = 3FFh
ister
GDTR Glob_al Descriptor Table R
Register
LDTR Loca! Descriptor Table XXXX Xxxxh, xxxxh
Register
TR Task Register xxxxh
CRO Machine Status Word 6000 0010h
CR2 Control Register 2 XXXX XXXXh
CR3 Control Register 3 XXXX XXxxh
CCR (0-5) | Configuration Control (0-5) 00h
ARR (0-7) Address Region Registers 00h
(0-7)
RCR (0-7) | Region Control Registers (0-7) | 00h
. - 31h or 33h (2X clock)
DIRO Device Ildentification 0 35h or 37h (3X clock)
DIR1 Device Identification 1 Step ID + Revision ID
DR7 Debug Register 7 0000 0400h

Note: X = Undefined value

2-2
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2.2 Instruction Set Overview

The ST6x86 CPU instruction set performs nine
types of general operations:

- Arithmetic

- Bit Manipulation

- Control Transfer

- Data Transfer

- Floating Point

- High-Level Language Support
- Operating System Support

- Shift/Rotate

- String Manipulation

All ST6x86 CPU instructions operate on as few as
zero operands and as many as three operands. An
NOP instruction (no operation) is an example of a
zero operand instruction. Two operand instruc-
tions allow the specification of an explicit source
and destination pair as part of the instruction.
These two operand instructions can be divided
into eight groups according to operand types:

- Register to Register

- Register to Memory

- Memory to Register

- Memory to Memory

- Register to I/O

- I/O to Register

- Immediate Data to Register
- Immediate Data to Memory

An operand can be held in the instruction itself (as
in the case of an immediate operand), in one of the
processor’s registers or I/O ports, or in memory.
An immediate operand is prefetched as part of the
opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are supported
as well as 64-or 80-bit associated with floating
point instructions. Operand lengths of 8 or 32 bits
are generally used when executing code written for
386- or 486-class (32-bit code) processors. Oper-
and lengths of 8 or 16 bits are generally used
when executing existing 8086 or 80286 code
(16-bit code).The default length of an operand can
be overridden by placing one or more instruction
prefixes in front of the opcode. For example, by
using prefixes, a 32-bit operand can be used with
16-bit code, or a 16-bit operand can be used with
32-bit code.
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Chapter 6 of this manual lists each instruction in
the ST6x86 CPU instruction set along with the
associated opcodes, execution clock counts, and
effects on the FLAGS register.

2.2.1 Lock Prefix

The LOCK prefix may be placed before certain
instructions that read, modify, then write back to
memory. The prefix asserts the LOCK# signal to
indicate to the external hardware that the CPU is
in the process of running multiple indivisible mem-
ory accesses. The LOCK prefix can be used with
the following instructions:

- Bit Test Instructions (BTS, BTR, BTC)

- Exchange Instructions (XADD, XCHG,
CMPXCHG)

- One-operand Arithmetic and Logical
Instructions (DEC, INC, NEG, NOT)

- Two-operand Arithmetic and Logical
Instructions (ADC, ADD, AND, OR, SBB,
SUB, XOR).

An invalid opcode exception is generated if the
LOCK prefix is used with any other instruction, or
with the above instructions when no write opera-
tion to memory occurs (i.e., the destination is a
register). The LOCK# signal can be negated to
allow weak-locking for all of memory or on a
regional basis. Refer to the descriptions of the
NO-LOCK bit (within CCR1) and the WL bit (within
RCRX) later in this chapter.

2-3
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2.3 Register Sets

From the programmer’s point of view there are 58
accessible registers in the ST6x86 CPU. These
registers are grouped into two sets. The applica-
tion register set contains the registers frequently
used by application programmers, and the system
register set contains the registers typically
reserved for use by operating system program-
mers.

The application register set is made up of general
purpose registers, segment registers, a flag regis-
ter, and an instruction pointer register.

The system register set is made up of the remain-
ing registers which include control registers, sys-
tem address registers, debug registers,
configuration registers, and test registers.

Each of the registers is discussed in detail in the
following sections.

24 437 S6S-THOMSON

2.3.1 Application Register Set

The application register set, Figure 2.1 consists of
the registers most often used by the applications
programmer. These registers are generally acces-
sible and are not protected from read or write
access.

The General Purpose Register contents are fre-
guently modified by assembly language instruc-
tions and typically contain arithmetic and logical
instruction operands.

Segment Registers in real mode contain the base
address for each segment. In protected mode the
segment registers contain segment selectors. The
segment selectors provide indexing for tables
(located in memory) that contain the base address
and limit for each segment, as well as access con-
trol information.

The Flag Register contains control bits used to
reflect the status of previously executed instruc-
tions. This register also contains control bits that
affect the operation of some instructions.

The Instruction Pointer register points to the next
instruction that the processor will execute. This
register is automatically incremented by the pro-
Cessor as execution progresses.
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Figure 2.1. Application Register Set
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2.3.2 General Purpose Registers

The general purpose registers are divided into four
data registers, two pointer registers, and two index
registers as shown in (Figure 2.2).

The Data Registers are used by the applications
programmer to manipulate data structures and to
hold the results of logical and arithmetic opera-
tions. Different portions of the general data regis-
ters can be addressed by using different names.

An “E” prefix identifies the complete 32-bit register.
An “X" suffix without the “E” prefix identifies the
lower 16 bits of the register.

The lower two bytes of a data register can be
addressed with an “H” suffix (identifies the upper
byte) or an “L” suffix (identifies the lower byte). The
_L and _H portions of a data registers act as inde-
pendent registers. For example, if the AH register
is written to by an instruction, the AL register bits
remain unchanged.

57 $55-THOMSON 2>
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Figure 2.2. General Purpose Registers
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CH C|X CL ECX (Count)

DA D|X DL EDX (Data)
Sl ESI (Source Index)
DI EDI (Destination Index)
BP EBP (Base Pointer)
SP ESP (Stack Pointer)

1746400

The Pointer and Index Registers arelisted below.

Sl or ESI Source Index
DI or EDI Destination Index
SP or ESP Stack Pointer
BP or EBP Base Pointer

These registers can be addressed as 16- or 32-bit
registers, with the “E” prefix indicating 32 bits. The
pointer and index registers can be used as general
purpose registers, however, some instructions use
a fixed assignment of these registers. For exam-
ple, repeated string operations always use ESI as
the source pointer, EDI as the destination pointer,
and ECX as the counter. The instructions using
fixed registers include multiply and divide, 1/O
access, string operations, translate, loop, variable
shift and rotate, and stack operations.

26 437 S6S-THOMSON

The ST6x86 CPU processor implements a stack
using the ESP register. This stack is accessed
during the PUSH and POP instructions, procedure
calls, procedure returns, interrupts, exceptions,
and interrupt/exception returns.

The microprocessor automatically adjusts the
value of the ESP during operation of these instruc-
tions.The EBP register may be used to reference
data passed on the stack during procedure calls.
Local data may also be placed on the stack and
referenced relative to BP. This register provides a
mechanism to access stack data in high-level lan-
guages.
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2.3.3 Segment Registers and Selectors

Segmentation provides a means of defining data
structures inside the memory space of the micro-
processor. There are three basic types of seg-
ments: code, data, and stack. Segments are used
automatically by the processor to determine the
location in memory of code, data, and stack refer-
ences.

There are six 16-bit segment registers:

CS Code Segment
DS Data Segment
ES Extra Segment
SS Stack Segment
FS Additional Data Segment
GS Additional Data Segment.

In real and virtual 8086 operating modes, a seg-
ment register holds a 16-bit segment base. The
16-bit segment is multiplied by 16 and a 16-bit or
32-bit offset is then added to it to create a linear
address. The offset size is dependent on the cur-

Figure 2.3. Segment Selector in Protected Mode

rent address size. In realmode and in virtual 8086
mode with paging disabled, the linear address is
also the physical address. In virtual 8086 mode
with paging enabled, the linear address is trans-
lated to the physical address using the current
page tables. Paging is described in Section 2.6.4
(Page 45).

In protected mode a segment register holds a
Segment Selector containing a 13-bit index, a
Table Indicator (TI) bit, and a two-bit Requested
Privilege Level (RPL) field as shown in Figure 2.3.

The Index points into a descriptor table in memory
and selects one of 8192 (21°) segment descriptors
contained in the descriptor table.

A segment descriptor is an eight-byte value used
to describe a memory segment by defining the
segment base, the segment limit, and access con-
trol information. To address data within a seg-
ment, a 16-bit or 32-bit offset is added to the
segment’s base address. Once a segment selec-
tor has been loaded into a segment register, an
instruction needs only to specify the segment reg-
ister and the offset.

15 Segment Selector 32 1 0
INDEX TI| RPL
8191
Limit
_ Segment
» Descriptor N Base
0
Descriptor Table
Main Memory 1741701
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The Table Indicator (TI) bit of the selector defines
which descriptor table the index points into. If
TI=0, the index references the Global Descriptor
Table (GDT). If TI=1, the index references the
Local Descriptor Table (LDT). The GDT and LDT
are described in more detail in Section Table 2.6.
Protected mode addressing is discussed further in
Sections 2.6.2 and 2.6.3.

The Requested Privilege Level (RPL) field in a
segment selector is used to determine the Effec-
tive Privilege Level of an instruction (where RPL=0
indicates the most privileged level, and RPL=3
indicates the least privileged level).

If the level requested by RPL is less than the Cur-
rent Program Level (CPL), the RPL level is
accepted and the Effective Privilege Level is
changed to the RPL value. If the level requested
by RPL is greater than CPL, the CPL overrides the
requested RPL and Effective Privilege Level
remains unchanged.

Table 2.2. Segment Register Selection Rules

When a segment register is loaded with a segment
selector, the segment base, segment limit and
access rights are loaded from the descriptor table
entry into a user-invisible or hidden portion of the
segment register (i.e., cached on-chip). The CPU
does not access the descriptor table entry again
until another segment register load occurs. If the
descriptor tables are modified in memory, the seg-
ment registers must be reloaded with the new
selector values by the software.

The processor automatically selects an implied
(default) segment register for memory references.
Table 2.2 describesthe selection rules. In general,
data references use the selector contained in the
DS register, stack references use the SS register
and instruction fetches use the CS register. While
some of these selections may be overridden,
instruction fetches, stack operations, and the desti-
nation write of string operations cannot be overrid-
den. Special segment override instruction prefixes
allow the use of alternate segment registers
including the use of the ES, FS, and GS segment
registers.

IMPLIED (DEFAULT) SEGMENT OVERRIDE PRE-
TYPE OF MEMORY REFERENCE SEGMENT FIX
Code Fetch CS None
Destination of PUSH, PUSHF, INT, CALL, ss None
PUSHA instructions
Source of POP, POPA, POPF, IRET,
. ! SS None
RET instructions
Destination of STOS, MOVS, REP STOS, ES None
REP MOVS instructions
Other data references with effective
address using base registers of:
EAX, EBX, ECX, DS CS,ES,FS, GS, SS
EDX, ESI, EDI
EBP, ESP SS CS,DS, ES,FS, GS

2-8
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2.3.4 Instruction Pointer Register 2.3.5 Flags Register

The Instruction Pointer (EIP) register contains The Flags Register , EFLAGS, contains status
the offset into the current code segment of the next  information and controls certain operations on the
instruction to be executed. The register is nomally  ST6x86 CPU microprocessor. The lower 16 bits of this
incremented with each instruction execution register are referred to as the FLAGS register that is
unless implicitly modified through an interrupt, used when executing 8086 or 80286 code. The flag
exception or an instruction that changes the bits are shown in Figure 2.4 and defined in Table
sequential execution flow (e.g., JMP, CALL). 2.3

Figure 2.4. EFLAGS Register

Flags
A

3 2 2 2 1111/111111 \
1 4=3 1 9 8 7 654 3,2 10 9 8 7 65 4 3 2 10
0000000000 oofpooelu[elo[¥] 2 [ele[i[t]e[2]o]2[o]¢]: ¢

Identification - S"

Alignment Check — S

Virtual 8086 Mode— S

Resume Flag — D

Nested Task Flag—™ S

I/O Privilege Level— S

Overflow —A

DirectonFlag —C

Interrupt Enable — S

Trap Flag — D

Sign Flag —A

Zero Flag —A

Auxiliary Carry — A

Parity Flag —A

Carry Flag —A
A = Arithmetic Flag, D =DebugFlag, S =System Flag, C= ControlFlag
0 or 1Indicates Reserved 1701105
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Table 2.3. EFLAGS Bit Definitions

BIT

POSITION

NAME

FUNCTION

0

CF

Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) the most
significant bit of the result occurs; cleared otherwise.

PF

Parity Flag: Set when the low-order 8 bits of the result contain an even number of ones;
cleared otherwise.

AF

Auxiliary Carry Flag: Set when a carry out of (addition) or borrow into (subtraction) bit posi-
tion 3 of the result occurs; cleared otherwise.

ZF

Zero Flag: Set if result is zero; cleared otherwise.

SF

Sign Flag: Set equal to high-order bit of result (0 indicates positive, 1 indicates negative).

TF

Trap Enable Flag: Once set, a single-step interrupt occurs after the next instruction
completes execution. TF is cleared by the single-step interrupt.

Interrupt Enable Flag: When set, maskable interrupts (INTR input pin) are acknowledged
and serviced by the CPU.

10

DF

Direction Flag: If DF=0, string instructions auto-increment (default) the appropriate index
registers (ESI and/or EDI). If DF=1, string instructions auto-decrement the appropriate index
registers.

11

OF

Overflow Flag: Setif the operation resulted in a carry or borrow into the sign bit of the result
but did not result in a carry or borrow out of the high-order bit. Also set if the

operation resulted in a carry or borrow out of the high-order bit but did not result in a carry or
borrow into the sign bit of the result.

12,13

IOPL

I/O Privilege Level: While executing in protected mode, IOPL indicates the maximum
current privilege level (CPL) permitted to execute I/O instructions without generating an
exception 13 fault or consulting the I/O permission bit map. IOPL also indicates the
maximum CPL allowing alteration of the IF bit when new values are popped into the EFLAGS
register.

14

NT

Nested Task: While executing in protected mode, NT indicates that the execution of the cur-
rent task is nested within another task.

16

RF

Resume Flag: Used in conjunction with debug register breakpoints. RF is checked at
instruction boundaries before breakpoint exception processing. If set, any debug fault is
ignored on the next instruction.

17

VM

Virtual 8086 Mode: If set while in protected mode, the microprocessor switches to virtual
8086 operation handling segment loads as the 8086 does, but generating exception 13 faults
on privileged opcodes. The VM bit can be set by the IRET instruction (if current privilege
level=0) or by task switches at any privilege level.

18

AC

Alignment Check Enable: In conjunction with the AM flag in CRO, the AC flag determines
whether or not misaligned accesses to memory cause a fault. If AC is set, alignment faults
are enabled.

21

Identification Bit: The ability to set and clear this bit indicates that the CPUID instruction is
supported. The ID can be modified only if the CPUID bitin CCR4 is set.

2-10
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2.4 System Register Set

The system register set, shown in Figure 2.5, con-
sists of registers not generally used by application
programmers.  These registers are typically
employed by system level programmers who gen-
erate operating systems and memory manage-
ment programs.

The Control Registers control certain aspects of
the ST6x86 microprocessor such as paging,
coprocessor functions, and segment protection.
When a paging exception occurs while paging is
enabled, some control registers retain the linear
address of the access that caused the exception.

The Descriptor Table Registers and the Task
Register can also be referred to as system
address or memory management registers.
These registers consist of two 48-bit and two
16-bit registers. These registers specify the loca-
tion of the data structures that control the segmen-
tation used by the ST6x86 microprocessor.
Segmentation is one available method of memory
management.

ﬁ SGS-THOMSON

The Configuration Registers are used to config-
ure the ST6x86 CPU on-chip cache operation,
power management features and System Man-
agement Mode. The configuration registers also
provide information on the CPU device type and
revision.

The Debug Registers provide debugging facilities
to enable the use of data access breakpoints and
code execution breakpoints.

The Test Registers provide a mechanism to test
the contents of both the on-chip 16 KByte cache
and the Translation Lookaside Buffer (TLB). In the
following sections, the system register set is
described in greater detail.

2-11
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Figure 2.5. System Register Set
31 16 15 0
CRO c |
g g ontro
Page Fault. Linear Address Reglster CR2 Registers
Page Directory Base Register CR3
47 16 15 0
Base Limit GDTR Descriptor
Base Limit IDTR Table
Selector LDTR Registers
Selector TR Task Register
31 0
Linear Breakpoint Address 0 DRO
Linear Breakpoint Address 1 DR1
Linear Breakpoint Address 2 DR2 Debug
Linear Breakpoint Address 3 DR3 Registers
Breakpoint Status DR6
Breakpoint Control DR7
7 0
CCR = Configuration Control Register CCRO CCRO
CCR1 CCR1
CCR2 CCR2
CCR3 CCR3
CCR4 CCR4
7 0 23 CCR5 CCR5
RCRO Address Region Register 0 ARRO
RCR1 Address Region Register 1 ARR1 . )
- - Configuration
RCR2 Address Region Register 2 ARR2 Registers
RCR3 Address Region Register 3 ARR3
RCR4 Address Region Register 4 ARR4
RCR5 Address Region Register 5 ARR5
RCR6 Address Region Register 6 ARRG6
RCR7 Address Region Register 7 ARR7
RCR = Region Control Register DIRO DIRO
DIR1 DIR1
DIR = Device Identification Register
31 0
Cache Test TR3
Cache Test TR4
Test
Cache Test TR5 Registers
TLB Test Control TR6
TLB Test Status TR7
1728200
2-12
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2.4.1 Control Registers

The Control Registers (CRO, CR2 and CR3), are
shown in Figure 2-6. The CRO register contains
system control bits which configure operating
modes and indicate the general state of the CPU.
The lower 16 bits of CRO are referred to as the
Machine Status Word (MSW). The CRO bit defini-
tions are described in Table 2.4 and Table 2.5.
The reserved bits in CRO should not be modified.

When paging is enabled and a page fault is gener-
ated, the CR2 register retains the 32-bit linear
address of the address that caused the fault.
When a double page fault occurs, CR2 contains
the address for the second fault. Register CR3
contains the 20 most significant bits of the physical

Figure 2.6. Control Registers

base address of the page directory. The page
directory must always be aligned to a 4-KByte
page boundary, therefore, the lower 12 bits of CR3
are not required to specify the base address.

CR3 contains the Page Cache Disable (PCD) and
Page Write Through (PWT) bits. During bus
cycles that are not paged, the state of the PCD bit
is reflected on the PCD pin and the PWT bit is
driven on the PWT pin. These bus cycles include
interrupt acknowledge cycles and all bus cycles,
when paging is not enabled. The PCD pin should
be used to control caching in an external cache.
The PWT pin should be used to control write policy
in an external cache.

3 2 2 2 1
1 4 .3 1 9

1
8

0 0000O0GOTO OO0 oo|'|00|A
D c

Identification —Ss
Alignment Check — S
Virtual 8086 Mode™ S

Resume Flag — D

Nested Task Flag — S

1/0 Privilege Level™ S

Overflow —A

Direction Flag — C

Interrupt Enable

Trap Flag

Sign Flag

Zero Flag

Auxiliary C arry

Parity Flag

Carry Flag

A = Arithmetic Flag, D = Debug Flag,
0 or1l Indicates Reserved

S = System Flag,

C = Control Flag
1701105
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Table 2.4. CRO Bit Definitions

BIT

POSITION

NAME

FUNCTION

PE

Protected Mode Enable: Enables the segment based protection mechanism. If PE=1, protected
mode is enabled. If PE=0, the CPU operates in real mode and addresses are formed as in an
8086-style CPU.

MP

Monitor Processor Extension: If MP=1 and TS=1, a WAIT instruction causes Device Not Avail-
able (DNA) fault 7. The TS bitis set to 1 on task switches by the CPU. Floating point instruc-
tions are not affected by the state of the MP bit. The MP bit should be set to one during normal
operations.

EM

Emulate Processor Extension: If EM=1, all floating point instructions cause a DNA fault 7.

TS

Task Switched: Set whenever atask switch operation is performed. Execution of a floating point
instruction with TS=1 causes a DNA fault. If MP=1 and TS=1, a WAIT instruction also causes a
DNA fault.

Reserved: Do not attempt to modify.

NE

Numerics Exception. NE=1 to allow FPU exceptions to be handled by interrupt 16. NE=0 if FPU
exceptions are to be handled by external interrupts.

16

WP

Write Protect: Protects read-only pages from supervisor write access. WP=0 allows a read-only
page to be written from privilege level 0-2. WP=1 forces a fault on a write to a
read-only page from any privilege level.

18

AM

Alignment Check Mask: If AM=1, the AC bit in the EFLAGS register is unmasked and allowed to
enable alignment check faults. Setting AM=0 prevents AC faults from occurring.

29

NW

Not Write-Back: If NW=1, the on-chip cache operates in write-through mode. In write-through
mode, all writes (including cache hits) are issued to the external bus. If NW=0, the on-chip cache
operates in write-back mode. In write-back mode, writes are issued to the external bus only for a
cache miss, a line replacement of a modified line, or as the result of a cache inquiry cycle.

30

CD

Cache Disable: If CD=1, no further cache line fills occur. However, data already present in the
cache continues to be used if the requested address hits in the cache. Writes continue to
update the cache and cache invalidations due to inquiry cycles occur normally. The cache must
also be invalidated to completely disable any cache activity.

31

PG

Paging Enable Bit: If PG=1 and protected mode is enabled (PE=1), paging is enabled. After
changing the state of PG, software must execute an unconditional branch instruction (e.g., JMP,
CALL) to have the change take effect.

Table 2.5. Effects of Various Combinations of EM, TS, and MP Bits

2-14

CRO BIT INSTRUCTION TYPE
EM TS MP WAIT ESC
0 0 0 Execute Execute
0 0 1 Execute Execute
0 1 0 Execute Fault 7
0 1 1 Fault 7 Fault 7
1 0 0 Execute Fault 7
1 0 1 Execute Fault 7
1 1 0 Execute Fault 7
1 1 1 Fault 7 Fault 7

ﬁ SGS-THOMSON
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Table 2.6 Descriptor Table Registers
and Descriptors

Descriptor Table Registers

The Global, Interrupt, and Local Descriptor Table
Registers (GDTR, IDTR and LDTR), shown in Fig-
ure 2.7, are used to specify the location of the data
structures that control segmented memory man-
agement. The GDTR, IDTR and LDTR are loaded
using the LGDT, LIDT and LLDT instructions,
respectively. The values of these registers are
stored using the corresponding store instructions.
The GDTR and IDTR load instructions are privi-
leged instructions when operating in protected
mode. The LDTR can only be accessed in protected
mode.

The Global Descriptor Table Register (GDTR)
holds a 32-bit linear base address and 16-bit limit
for the Global Descriptor Table (GDT). The GDT is
an array of up to 8192 8-byte descriptors. When a
segment register is loaded from memory, the Tl bit
in the segment selector chooses either the GDT or
the Local Descriptor Table (LDT) to locate a
descriptor. If Tl = 0, the index portion of the selec-
tor is used to locate the descriptor within the GDT
table. The contents of the GDTR are completely

Figure 2.7. Descriptor Table Registers

visible to the programmer by using a SGDT
instruction. The first descriptor in the GDT (loca-
tion 0) is not used by the CPU and is referred to as
the “null descriptor”. The GDTR is initialized using
a LGDT instruction.

The Interrupt Descriptor Table Register  (IDTR)
holds a 32-bit linear base address and 16-bit limit
for the Interrupt Descriptor Table (IDT). The IDT is
an array of 256 interrupt descriptors, each of which
is used to point to an interrupt service routine.
Every interrupt that may occur in the system must
have an associated entry in the IDT. The contents
of the IDTR are completely visible to the program-
mer by using a SIDT instruction. The IDTR is initial-
ized using the LIDT instruction.

The Local Descriptor Table Register (LDTR)
holds a 16-bit selector for the Local Descriptor
Table (LDT). The LDT is an array of up to 8192
8-byte descriptors. When the LDTR is loaded, the
LDTR selector indexes an LDT descriptor that
must reside in the Global Descriptor Table
(GDT). The base address and limit are loaded
automatically and cached from the LDT descriptor
within the GDT.

47 16 15 0
BASE ADDRESS LIMIT GDTR
BASE ADDRESS LIMIT IDTR
1
SELECTOR LDTR

1708003
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Subsequent access to entries in the LDT use the
hidden LDTR cache to obtain linear addresses. If
the LDT descriptor is modified in the GDT, the
LDTR must be reloaded to update the hidden por-
tion of the LDTR.

When a segment register is loaded from memory,
the TI bit in the segment selector chooses either
the GDT or the LDT to locate a segment descrip-
tor. If Tl = 1, the index portion of the selector is
used to locate a given descriptor within the LDT.
Each task in the system may be given its own LDT,
managed by the operating system. The LDTs pro-
vide a method of isolating a given task’s segments
from other tasks in the system.

The LDTR can be read or written by the LLDT and
SLDT instructions.

Descriptors
There are three types of descriptors:

- Application Segment Descriptors that define
code, data and stack segments.

- System Segment Descriptors that define an
LDT segment or a Task State Segment
(TSS) table described later in this text.

- Gate Descriptors that define task gates,
interrupt gates, trap gates and call gates.

Application Segment Descriptors can be located in
either the LDT or GDT. System Segment Descrip-
tors can only be located in the GDT. Dependent
on the gate type, gate descriptors may be located
in either the GDT, LDT or IDT. Figure 2.8 illus-
trates the descriptor format for both Application
Segment Descriptors and System Segment
Descriptors. Table 2.7 lists the corresponding bit
definitions.

Figure 2.8. Application and System Segment Descriptors

31 24 23 22 21 2019 161514 131211 87 0
A
BASE 31-24 G D|0|Y|LMT1916 P | DPL [T) TYPE BASE 23-16 | +4
BASE 15-0 LIMIT 15-0 +0
1707803
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Table 2.7. Segment Descriptor Bit Definitions

BIT MEMORY
posiTion| OFFSET NAME DESCRIPTION
3%:34 :3 BASE Segment base address.
32-hit linear address that points to the beginning of the segment.
31-16 +0
19-16 +4 -
150 +0 LIMIT | Segment limit.
23 4 G Lll‘_nlt granularity blt: ~ _
0 = byte granularity, 1 = 4 KBytes (page) granularity.
22 +a4 D Default length for operands and effective addresses.
Valid for code and stack segments only: 0 = 16 bit, 1 = 32-bit.
20 +4 AVL | Segment available.
15 +4 P Segment present.
14-13 +4 DPL | Descriptor privilege level.
12 +4 DT D(iscrlptor typ(i: o
0 = system, 1 = application.
11-8 +4 TYPE | Segment type. See Tables 2-7 and 2-8.

Table 2.8. TYPE Field Definitions with DT =0

(BI'-II:\S(F:)IE-S) DESCRIPTION
0001 TSS-16 descriptor, task not busy.
0010 LDT descriptor.
o011 TSS-16 descriptor, task busy.
1001 TSS-32 descriptor, task not busy
1011 TSS-32 descriptor, task busy.

2-17
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Table 2.9. TYPE Field Definitions with DT = 1

TYPE
APPLICATION DESCRIPTOR INFORMATION
E C/D R/W A
0 0 X X data, expand up, limit is upper bound of segment
0 1 X X data, expand down, limit is lower bound of segment
1 0 X X executable, non-conforming
1 1 X X executable, conforming (runs at privilege level of calling procedure)
0 X 0 X data, non-writable
0 X 1 X data, writable
1 X 0 X executable, non-readable
1 X 1 X executable, readable
X X X 0 not-accessed
X X X 1 accessed
2-18
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Gate Descriptors provide protection for execut-
able segments operating at different privilege lev-
els. Figure 2.9 illustrates the format for Gate
Descriptors and Table 2.10 lists the corresponding
bit definitions.

Task Gate Descriptors are used to switch the
CPU’s context during a task switch. The selector
portion of the task gate descriptor locates a Task
State Segment. These descriptors can be located
inthe GDT, LDT or IDT tables.

Figure 2.9. Gate Descriptor

Interrupt Gate Descriptors are used to enter a
hardware interrupt service routine. Trap Gate
Descriptors are used to enter exceptions or soft-
ware interrupt service routines. Trap Gate and
Interrupt Gate Descriptors can only be located in
the IDT.

Call Gate Descriptors are used to enter a proce-
dure (subroutine) that executes at the same or a
more privileged level. A Call Gate Descriptor pri-
marily defines the procedure entry point and the
procedure’s privilege level.

31 16 15 14 13 12 11 87 0
OFFSET 31-16 P | DPL 0 TYPE o| ol o [PARAMETERS | +4
SELECTOR 15-0 OFESET 15-0 +0
1707903
Table 2.10. Gate Descriptor Bit Definitions
BIT MEMORY
POsITION | OFFSET NAME DESCRIPTION

31-16 +4 .

150 +0 OFFSET Offset used during a call gate to calculate the branch target.

3116 +0 SELECTOR | Segment selector used during a call gate to calculate the branch target.

15 +4 P Segment present.

1413 +4 DPL Descriptor privilege level.
Segment type:
0100 = 16-bit call gate
0101 = task gate
0110 = 16-bit interrupt gate

n-8 4 TYPE 0111 = 16-bit trap gate
1100 = 32-bit call gate
1110 = 32-bit interrupt gate
1111 = 32-bit trap gate.

40 +a PARAMETERS Number of 32-bit parameters to copy from the caller's stack to the called
procedure’s stack (valid for calls).

437 SGS-THOMSON
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2.4.2 Task Register

The Task Register (TR) holds a 16-bit selector for
the current Task State Segment (TSS) table as
shown in Figure 2.10. The TR is loaded and
stored via the LTR and STR instructions, respec-
tively. The TR can only be accessed during pro-
tected mode and can only be loaded when the
privilege level is O (most privileged). When the TR
is loaded, the TR selector field indexes a TSS
descriptor that must reside in the Global Descrip-
tor Table (GDT). The contents of the selected
descriptor are cached on-chip in the hidden por-
tion of the TR.

2-20
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During task switching, the processor saves the
current CPU state in the TSS before starting a new
task. The TR points to the current TSS. The TSS
can be either a 386/486-style 32-bit TSS Figure 2.11
or a 286-style 16-hit TSS type Figure 2.12. An I/O
permission bit map is referenced in the 32-bit TSS
by the I/O Map Base Address.

Figure 2.10. Task Register

15 0

SELECTOR

1708103
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Figure 2.11. 32-Bit Task State Segment (TSS) Table

31 16 15 0
/O MAP BASE ADDRESS 000000000000000|T +64h
0O000O0O00O00OO0OO0ODOO0OO0OO0O0OO SELECTOR FOR TASK'S LDT +60h
0000O0O0O0OO00OO0OO0OO0OO0OO0OO0O GS +5Ch
0O000O00000OO0O0ODOO0OOO0O0OO FS +58h
00O0O0O0O0O0OO0O0O0OO0O0O0OOOO0OOO DS +54h
00O0O0O0OO0O0O0OO0O0O0OO0OODOOOOOOO SS +50h
00O0O0O0O0O0OO0O0O0OO0O0OD0OOOOOO CS +4Ch
00O0O0OO0O0OO0OO0OO0OODOOOOOOO ES +48h
EDI +44h
ESI +40h
EBP +3Ch
ESP +38h
EBX +34h
EDX +30h
ECX +2Ch
EAX +28h
EFLAGS +24h
EIP +20h
CR3 +1Ch
OOOOOOOOOOOOOOOO| SS for CPL = 2 +18h
ESP for CPL = 2 +14h
0000000000000000| SS for CPL = 1 +10h
ESP for CPL = 1 +Ch
OOOOOOOOOOOOOOOO| SS for CPL = 0 +8h
ESP for CPL = 0 +4h
0000000000000000| BACK LINK (OLD TSS SELECTOR) | +0Oh
0 = RESERVED 1708203

2-21

ﬁ SGS-THOMSON

s WIEROELECTROMICS




ST6x86

Figure 2.12. 16-Bit Task State Segment (TSS) Table

SELECTOR FOR TASK'S LDT

DS

SS

Cs

ES

DI

Sl

BP

SP

BX

DX

CX

AX

FLAGS

IP

SS FOR PRIVILEGE LEVEL 2

SP FOR PRIVILEGE LEVEL 2

SS FOR PRIVILEGE LEVEL 1

SP FOR PRIVILEGE LEVEL 1

SS FOR PRIVILEGE LEVEL O

SP FOR PRIVILEGE LEVEL O

BACK LINK (OLD TSS SELECTOR)

1708803

+2Ah

+28h

+26h

+24h

+22h

+20h

+1Eh

+16h

+1Ah

+18h

+16h

+14h

+12h

+10h

+Eh

+Ah

+8h

+6h

+4h

+2h

+0h
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2.4.3 6x86 Configuration Registers

A set of 24 on-chip ST6x86 configuration registers
are used to enable features in the ST6x86 CPU.
These registers assign non-cached memory
areas, set up SMM, provide CPU identification
information and control various features such as
cache write policy, and bus locking control. There
are four groups of registers within the ST6x86 con-
figuration register set:

- 6 Configuration Control Registers (CCRX)
- 8 Address Region Registers (ARRX)

- 8 Region Control Registers (RCRx)

- 2 Device Identification Registers (DIRX)

Access to the configuration registers is achieved
by writing the register index number for the config-
uration register to 1/0 port 22h. /O port 23h is
then used for data transfer.

Each 1/O port 23h data transfer must be preceded
by a valid 1/0 port 22h register index selection.
Otherwise, the current 22h, and the second and
later I/O port 23h operations communicate through
the 1/0 port to produce external I/O cycles. All
reads from 1/O port 22h produce external 1/O
cycles. Accesses that hit within the on-chip config-
uration registers do not generate external 1/O
cycles.

ﬁ SGS-THOMSON

After reset, configuration registers with indexes
CO-CFh and FE-FFh are accessible. To prevent
potential conflicts with other devices which may
use ports 22 and 23h to access their registers, the
remaining registers (indexes DO-FDh) are accessi-
ble only if the MAPEN(3-0) bits in CCR3 are set to
1h. See Figure 2.16 for more information on the
MAPEN(3-0) bit locations.

If MAPEN[3-0] = 1h, any access to indexes in the
range 00-FFh will not create external I/O bus
cycles. Registers with indexes C0-CFh, FE, FFh
are accessible regardless of the state of
MAPEN[3-0]. If the register index number is out-
side the CO-CFh or FE-FFh ranges, and
MAPEN[3-0] are set to Oh, external /0O bus cycles
occur. Table 2.11 lists the MAPEN[3-0] values
required to access each ST6x86 configuration
register. All bits in the configuration registers are
initialized to zero following reset unless specified
otherwise.

Valid register index numbers include COh to E3h,
E8h, E9h, FEh and FFh (if MAPEN[3-0] = 1).

2.4.3.1 Configuration Control Registers

(CCRO - CCR5) control several functions, includ-
ing non-cacheable memory, write-back regions,
and SMM features. A list of the configuration reg-
isters is listed in Table 2.11. The configuration reg-
isters are described in greater detail in the
following pages.

2-23
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Table 2.11. ST6x86 CPU Configuration Registers

REGISTER

WIDTH

MAPEN VALUE

REGISTER NAME ACRONYM INDEX (Bits) NEAE;%'[EEDSSFOR
Configuration Control 0 CCRO COh 8 X
Configuration Control 1 CCR1 Cih 8 X
Configuration Control 2 CCR2 C2h 8 X
Configuration Control 3 CCR3 C3h 8 X
Configuration Control 4 CCR4 E8h 8 1
Configuration Control 5 CCR5 ESh 8 1
Address Region 0 ARRO C4h -Cé6h 24 X
Address Region 1 ARR1 C7h-Coh 24 X
Address Region 2 ARR2 CAh-CCh 24 X
Address Region 3 ARR3 CDh-CFh 24 X
Address Region 4 ARR4 DOh -D2h 24 1
Address Region 5 ARR5 D3h - D5h 24 1
Address Region 6 ARR6 D6h - D8h 24 1
Address Region 7 ARR7 D9h - DBh 24 1
Region Control 0 RCRO DCh 8 1
Region Control 1 RCR1 DDh 8 1
Region Control 2 RCR2 DEh 8 1
Region Control 3 RCR3 DFh 8 1
Region Control 4 RCR4 EOh 8 1
Region Control 5 RCR5 Elh 8 1
Region Control 6 RCR6 E2h 8 1
Region Control 7 RCR7 E3h 8 1
Device Identification 0 DIRO FEh 8 X
Device Identification 1 DIR1 FFh 8 X

Note: x = Don’t Care
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Figure 2.13. ST6x86 Configuration Control Register 0 (CCRO)

7 6 5 4 3 2 1 0

Table 2.12. CCRO Bit Definitions

BIT

POSITION NAME DESCRIPTION

No Cache 640 KByte - 1 MByte
1 NC1 If = 1: Address region 640 KByte to 1 MByte is non-cacheable.
If = 0: Address region 640 KByte to 1 MByte is cacheable.

Note: Bits 0, 2 through 7 are reserved.
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Figure 2.14. ST6x86 Configuration Control Register 1 (CCR1)

7 6 5 4 3 2 1 0
SMAC USE_SMI
Table 2.13. CCRL1 Bit Definitions
BIT NAME DESCRIPTION
POSITION

Enable SMM and SMIACT# Pins

1 USE_SMI |If = 1: SMI# and SMIACT# pins are enabled.
If = 0: SMI# pin ignored and SMIACT# pin is driven inactive.
System Management Memory Access
If = 1: Any access to addresses within the SMM address space, access system manage-

2 SMAC ment memory instead of main memory. SMI# input is ignored. Used when initializing or
testing SMM memory.
If = 0: No effect on access.
Negate LOCK#
If = 1: All bus cycles are issued with LOCK# pin negated except page table accesses and
interrupt acknowledge cycles. Interrupt acknowledge cycles are executed as locked

4 NO_LOCK | cycles even though LOCK# is negated. With NO_LOCK set, previously noncacheable
locked cycles are executed as unlocked cycles and therefore, may be cached. This
results in higher performance. Refer to Region Control Registers for information on elimi-
nating locked CPU bus cycles only in specific address regions.

7 SM3 SMM Address Space Address Region 3
If = 1: Address Region 3 is designated as SMM address space.

Note: Bits 0, 3, 5 and 6 are reserved.
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Figure 2.15. ST6x86 Configuration Control Register 2 (CCR2)

7 6 5 4 3 2 1 0

USE_SUSP WPR1 SUSP_HLT LOCK_NW

Table 2.14. CCR2 Bit Definitions

PO|83II:I!ION NAME DESCRIPTION
Lock NW
2 LOCK_NW :IIVTI l1)|tNW bit in CRO becomes read only and the CPU ignores any writes to the
If = 0: NW bit in CRO can be modified.
Suspend on Halt
3 SUSP_HLT If = 1: Execution of the HLT instruction causes the CPU to enter low power sus-

pend mode.

Write-Protect Region 1
4 WPR1 If = 1: Designates any cacheable accesses in 640 KByte to 1 MByte address
region are write protected.

Use Suspend Mode (Enable Suspend Pins)
7 USE_SUSP If = 1: SUSP# and SUSPA# pins are enabled.
If =0: SUSP# pin is ignored and SUSPA# pin floats.

Note: Bits 0,1, 5 and 6 are reserved.
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Figure 2.16. ST6x86 Configuration Control Register 3 (CCR3)

7 6

5 4 3 2 1 0

MAPEN

| Rieseived | LINBRST NMI_EN SMI_LOCK

Table 2.15. CCR3 Bit Definitions

BIT

POSITION NAME

DESCRIPTION

0 SMI_LOCK

SMI Lock
If = 1: The following SMM configuration bits can only be modified while in an SMI
service routine:
CCR1: USE_SMI, SMAC, SM3
CCR3: NMI_EN
ARR3: Starting address and block size.
Once set, the features locked by SMI_LOCK cannot be unlocked until the
RESET pin is asserted.

1 NMI_EN

NMI Enable

If = 1: NMl interrupt is recognized while servicing an SMI interrupt.

NMI_EN should be set only while in SMM, after the appropriate SMI interrupt ser-
vice routine has been setup.

2 LINBRST

If = 1: Use linear address sequence during burst cycles.
If = 0: Use “1 + 4” address sequence during burst cycles. The “1 + 4” address
sequence is compatible with Pentium’s burst address sequence.

4-7 MAPEN

MAP Enable

If = 1h: All configuration registers are accessible.

If = Oh: Only configuration registers with indexes CO-CFh, FEh and FFh
are accessible.

Note: Bit 3 is reserved.
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Figure 2.17. ST6x86 Configuration Control Register 4 (CCR4)

IORT

Table 2.16. CCR4 Bit Definitions

BIT
POSITION NAME DESCRIPTION
1/0O Recovery Time
Specifies the minimum number of bus clocks between I/O accesses:
Oh =1 clock delay
1h = 2 clock delay
2h = 4 clock delay
0-2 IORT 3h = 8 clock delay
4h = 16 clock delay
5h = 32 clock delay (default value after RESET)
6h = 64 clock delay
7h = no delay
4 DTE EN Enable Directory Table Entry Cache
- If = 1: the Directory Table Entry cache is enabled.
Enable CPUID instruction.
If = 1: the ID bit in the EFLAGS register can be modified and execution of the
7 CPUID CPUID instruction occurs as documented in section 6.3.
If = 0: the ID bit in the EFLAGS register can not be modified and execution of the
CPUID instruction causes an invalid opcode exception.

Note: Bits 3 and bits 5 and 6 are reserved.
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Figure 2.18. ST6x86 Configuration Control Register 5 (CCR5)

7 6 5 4 3 2 1 0
ARREN LBR1 WT_ALLOC
Table 2.17. CCRS5 Bit Definitions
BIT NAME DESCRIPTION
POSITION

Write-Through Allocate

0 WT_ALLOC If = 1: New cache lines are allocated for read and write misses.
If = 0: New cache lines are allocated only for read misses.
Local Bus Region 1

4 LBR1 If = 1: LBA# pin is asserted for all accesses to the 640 KByte to 1 MByte address

region.

Enable ARR Registers

If = 1: Enables all ARR registers.

If = 0: Disables the ARR registers. If SM3 is set, ARR3 is enabled regardless of
the setting of ARREN.

5 ARREN

Note: Bits 1 through 3 and 6 though 7 are reserved.
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2.4.3.2 Address Region Registers

The Address Region Registers (ARRO - ARR7)
(Figure 2.19) are used to specify the location and
size for the eight address regions.

Attributes for each address region are specified in
the Region Control Registers (RCRO-RCR7).
ARR7 and RCR7 are used to define system main
memory and differ from ARRO-6 and RCRO-6.

With non-cacheable regions defined on-chip, the
ST6x86 CPU delievers optimum performance by
using advanced techniques to eliminate data
dependencies and resource conflicts in its execu-
tion pipelines. If KEN# is active for accesses to
regions defined as non-cacheable by the RCRs,

the region is not cached. The RCRs take prece-
dence in this case.

A register index, shown in Table 2.18 is used to
select one of three bytes in each ARR.

The starting address of the ARR address region,
selected by the START ADDRESS field, must be
on a block size boundary. For example, a
128 KByte block is allowed to have a starting
address of 0 KBytes, 128 KBytes, 256 KBytes,
and so on.

The SIZE field bit definition is listed in Table 2.19.
If the SIZE field is zero, the address region is of
zero size and thus disabled.

Figure 2.19. Address Region Registers (ARRO - ARR7)

START ADDRESS SIZE
Memory Address Memory Address Memory Address Size Bits
Bits A31-A24 Bits A23-A16 Bits A15-A12 30
7 0o 7 0 7 4 3 0
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Table 2.18. ARRO - ARR7 Register Index Assignment

ARR Memory Address Memory Address Memory Address Address Region
Register (A31 - A24) (A23 - A16) (A15 - A12) Size (3-0)
ARRO C4h C5h Cé6h Cé6h
ARR1 C7h C8h C%h C%h
ARR2 CAh CBh CCh CCh
ARR3 CDh CEh CFh CFh
ARR4 DOh D1h D2h D2h
ARRS D3h D4h D5h D5h
ARRG D6h D7h D8h D8h
ARR7 D9h DAh DBh DBh
Table 2.19. Bit Definitions for SIZE Field
BLOCK SIZE BLOCK SIZE
SIZE (3-0) SIZE (3-0)
ARRO-6 ARR7 ARRO-6 ARR7
Oh Disabled Disabled 8h 512 KBytes 32 MBytes
1h 4 KBytes 256 KBytes %h 1 MBytes 64 MBytes
2h 8 KBytes 512 KBytes Ah 2 MBytes 128 MBytes
3h 16 KBytes 1 MBytes Bh 4 MBytes 256 MBytes
4h 32 KBytes 2 MBytes Ch 8 MBytes 512 MBytes
5h 64 KBytes 4 MBytes Dh 16 MBytes 1 GBytes
6h 128 KBytes 8 MBytes Eh 32 MBytes 2 GBytes
7h 256 KBytes 16 MBytes Fh 4 GBytes 4 GBytes
2-32
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2.4.3.3 Region Control Registers

The Region Control Registers (RCRO - RCRY7)
specify the attributes associated with the ARRx
address regions. The bit definitions for the region
control registers are shown in Figure 2.20 and in
Table 2.20. Cacheability, weak write ordering,
weak locking, write gathering, cache write through
policies and control of the LBA# pin can be acti-
vated or deactivated using the attribute bits.

If an address is accessed that is not in a memory
region defined by the ARRX registers, the following
conditions will apply:

- LBA# pin is asserted

- If the memory address is cached, write-back is
enabled if WB/WT# is returned high.

- Writes are not gathered

- Strong locking takes place

- Strong write ordering takes place

- The memory access is cached, if KEN# is
returned asserted.

ﬁ SGS-THOMSON

Overlapping Conditions Defined. If two regions
specified by ARRX registers overlap and conflict-
ing attributes are specified, the following attributes
take precedence:

- LBA# pin is asserted

- Write-back is disabled

- Writes are not gathered

- Strong locking takes place

- Strong write ordering takes place

- The overlapping regions are non-cacheable.

2-33

s WIEROELECTROMICS



ST6x86

Figure 2.20. Region Control Registers (RCR0-RCR7)

7 6 5 4

3 2 1 0

WG WL WwWO RCD/RCE*

*Note: RCD is defined for RCR0O-RCR6. RCE is defined for RCR7.

Table 2.20. RCRO0-RCRY7 Bit Definitions

RCRx POSBII:II:ION NAME DESCRIPTION
0-6 0 RCD If = 1. Disables caching for address region specified by ARRX.
7 0 RCE If = 1: Enables caching for address region ARR7.
0-7 1 WWwWO If = 1: Weak write ordering for address region specified by ARRX.
0-7 2 WL If = 1: Weak locking for address region specified by ARRX.
0-7 3 WG If = 1: Write gathering for address region specified by ARRX.
0-7 4 WT If = 1: Address region specified by ARRX is write-through.
0-7 5 NLB If = 1:LBA# pin is not asserted for access to address region specified by ARRX

Note: Bits 6 and 7 are reserved.

Region Cache Disable (RCD). Setting RCD to a
one defines the address region as non-cacheable.
Whenever possible, the RCRs should be used to
define non-cacheable regions rather than using
external address decoding and driving the KEN#
pin.

Region Cache Enable (RCE). Setting RCE to a
one defines the address region as cacheable.
RCE is used to define the system main memory as
cacheable memory. It is implied that memory out-
side the region is non-cacheable.

Weak Write Ordering (WWO).  Setting WWO=1
enables weak write ordering for that address
region. Enabling WWO allowsthe ST6x86 CPU to
issue writes in its internal cache in an order differ-
ent than their order in the code stream. External
writes always occur in order (strong ordering).
Therefore, this should only be enabled for memory
regions that are NOT sensitive to this condition.
WWO should not be enabled for memory mapped
I/0. WWO only applies to memory regions that
have been cached and designated as write-back.
It also applies to previously cached addresses
even if the cache has been disabled (CD=1).
Enabling WWO removes the write-ordering restric-
tion and improves performance due to reduced
pipeline stalls.

2-34
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Weak Locking (WL). Setting WL=1 enables weak
locking for that address region. With WL enabled,
all bus cycles are issued with the LOCK# pin
negated except for page table accesses and inter-
rupt acknowledge cycles. Interrupt acknowledge
cycles are executed as locked cycles even though
LOCK# is negated. With WL=1, previously
non-cacheable locked cycles are executed as
unlocked cycles and therefore, may be cached,
resulting in higher performance. The NO_LOCK
bit of CCR1 enables weak locking for the entire
address space. The WL bit allows weak locking
only for specific address regions. WL is indepen-
dent of the cacheability of the address region.
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Write Gathering (WG). Setting WG=1 enables
write gathering for the associated address region.
Write gathering allows multiple byte, word, or
dword sequential address writes to accumulate in
the on-chip write buffer. (As instructions are exe-
cuted, the results are placed in a series of output
buffers. These buffers are gathered into the final
output buffer).

When access is made to a non-sequential memory
location or when the 8-byte buffer becomes full,
the contents of the buffer are written on the exter-
nal 64-bit data bus. Performance is enhanced by
avoiding as many as seven memory write cycles.

WG should not be used on memory regions that
are sensitive to write cycle gathering. WG can be
enabled for both cacheable and non-cacheable
regions.

ﬁ SGS-THOMSON

Write Through (WT).  Setting WT=1 defines the
address region as write-through instead of
write-back, assuming the region is cacheable.
Regions where system ROM are loaded (shad-
owed or not) should be defined as write-through.

LBA# Not Asserted (NLB). Setting NLB=1 pre-
vents the microprocessor from asserting the Local
Bus Access (LBA#) output pin for accesses to that
address region. The RCR regions may be used to
define non-local bus address regions. The LBA#
pin could then be asserted for all regions, except
those defined by the RCRs. The LBA# signal may
be used by the external hardware (e.g., chipsets)
as an indication that local bus accesses are occur-
ring.
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2.4.3.4 Device Identification Registers 2.22 respectively. Data in these registers cannot be

The Device ldentification Registers (DIRO, DIR1)

changed. Theseregisters can be read by using I/O
ports 22 and 23. The register index for DIRO is

contain CPU identification, CPU stepping and ; i ;
CPU revision information. Bit definitions are shown FEh and the register index for DIR1 is FFh.

in (Figure 2.21), Table 2.21, Figure 2.22 and Table

Figure 2.21. Device Identification Register O (DIRO)

7

DEVID

Table 2.21. DiRO Bit Definitions

BIT
POSITION NAME DESCRIPTION
7-0 DEVID CPU Device Identification Number (read only).

Figure 2.22. Device Identification Register 1 (DIR1)

7

4 3 0

SID

RID

Table 2.22. DIR 1 Bit Definitions

BIT

POSITION NAME DESCRIPTION
7-4 SID CPU Step Identification Number (read only).
3-0 RID CPU Revision Identification (read only).
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2.4.4 Debug Registers

Six debug registers (DR0O-DR3, DR6 and DR7Y),
shown in Figure 2.23, support debugging on the
ST6x86 CPU. The bit definitions for the debug
registers are listed in Table 2.23.

Memory addresses loaded in the debug registers,
referred to as “breakpoints”, generate a debug
exception when a memory access of the specified
type occurs to the specified address. A data
breakpoint can be specified for a particular kind of
memory access such as a read or a write. Code
breakpoints can also be set allowing debug excep-
tions to occur whenever a given code access (exe-
cution) occurs.

The size of the debug target can be set to 1, 2, or
4 bytes. The debug registers are accessed via
MOV instructions which can be executed only at
privilege level 0.

Figure 2.23. Debug Registers

The Debug Address Registers (DR0-DR3) each
contain the linear address for one of four possible
breakpoints. Each breakpoint is further specified
by bits in the Debug Control Register (DR7). For
each breakpoint address in DRO-DR3, there are
corresponding fields L, R/W, and LEN in DR7 that
specify the type of memory access associated with
the breakpoint.

The R/W field can be used to specify instruction
execution as well as data access breakpoints.
Instruction execution breakpoints are always taken
before execution of the instruction that matches
the breakpoint.

The Debug Status Register (DR6) reflects condi-
tions that were in effect at the time the debug
exception occurred. The contents of the DR6 reg-
ister are not automatically cleared by the proces-
sor after a debug exception occurs and, therefore,
should be cleared by software at the appropriate
time.

ﬁ SGS-THOMSON

33 22222 22 22 211111 11111
1098765 43 21 098 7 65 432109 87 6543210
LEN | R/W | LEN | R/W | LEN | R/W | LEN | R/W G Jdelilefele|t (o]t |e|L]pry
3 3 2 2 1 1 0 o |0 0|p|0O01E|E|3]|3|2]|2|1|1]|0]|0
© 0000000000000 00]|F8lofor1111111|5[BF[E[ore
BREAKPOINT 3 LINEAR ADDRESS DR3
BREAKPOINT 2 LINEAR ADDRESS DR2
BREAKPOINT 1 LINEAR ADDRESS DR1
BREAKPOINT 0 LINEAR ADDRESS DRO
ALL BITS MARKED AS 0 OR 1 ARE RESERVED AND SHOULD NOT BE MODIFIED. 1703203
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Code execution breakpoints may also be generated by placing the breakpoint instruction (INT 3) at the
location where control is to be regained. Additionally, the single-step feature may be enabled by setting
the TF flag in the EFLAGS register. This causes the processor to perform a debug exception after the
execution of every instruction.

Table 2.23. DR6 and DR7 Debug Register Field Definitions

NUMBER
REGISTER FIELD OF BITS DESCRIPTION

Bi is set by the processor if the conditions described by DRI, R/Wi, and LENi
Bi 1 occurred when the debug exception occurred, even if the breakpoint is not
enabled via the Gi or Li bits.

DR6 BT is set by the processor before entering the debug handler if a task switch

BT 1 has occurred to a task with the T bit in the TSS set.

BS is set by the processor if the debug exception was triggered by the sin-

BS L gle-step execution mode (TF flag in EFLAGS set).

Specifies type of break for the linear address in DRO, DR1, DR3, DR4:
00 - Break on instruction execution only

R/Wi 2 01 - Break on data writes only

10 - Not used

11 - Break on data reads or writes.

Specifies length of the linear address in DRO, DR1, DR3, DR4:
00 - One byte length

LENi 2 01 - Two byte length

DR7 10 - Not used

11 - Four byte length.

If setto a 1, breakpoint in DRI is globally enabled for all tasks and is not
cleared by the processor as the result of a task switch.

If set to a 1, breakpoint in DRI is locally enabled for the current task and is

L 1 cleared by the processor as the result of a task switch.

Global disable of debug register access. GD bit is cleared whenever a

GD 1 debug exception occurs.
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2.4.5 Test Registers

The test registers can be used to test the on-chip
unified cache and to test the main TLB. The test
registers are also used to enable ST6x86 CPU
variable-size paging.

Test registers TR3, TR4, and TR5 are used to test
the unified cache. Use of these registers is
described with the memory caches later in this
chapter in Section 2.7.1.1.

Test registers TR6 and TR7 are used to test the
TLB. Use of these test registers is described in
Section 2.6.4.2.

57 $55-THOMSON 239
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2.5 Address Space

The ST6x86 CPU can directly address 64 KBytes

of 1/0 space and 4 GBytes of physical memory
(Fig. 2.24).

Memory Address Space. Access can be made to
memory addresses between 0000 0000h and

Figure 2.24. Memory and I/O Address Spaces

FFFF FFFFh. This 4 GByte memory space can
be accessed using byte, word (16 bits), or double-
word (32 bits) format. Words and doublewords are
stored in consecutive memory bytes with the
low-order byte located in the lowest address. The
physical address of a word or doubleword is the
byte address of the low-order byte.

Physical
Memory Space
I/O Adress Space
FFFF FFFFh FFFF FFFFh
Physical Memory Not.
4 GBytes Accessible
6x86
0000 FFFFh Configuration
Register 1/0
64 KBytes Space
. 00000023h
0000 0000h 0000 0000h 0000 0022h
1730900
2-40
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I/O Address Space

The ST6x86 I/O address space is accessed using
IN and OUT instructions to addresses referred to
as “ports”. The accessible 1/0 address space size
is 64 KBytes and can be accessed through 8-bit,
16-bit or 32-bit ports. The execution of any IN or
OUT instruction causes the M/IO# pin to be driven
low, thereby selecting the 1/0O space instead of
memory space.

The accessible I/O address space ranges between
locations 0000 0000h and 0000 FFFFh (64
KBytes). The 1/O locations (ports) 22h and 23h
can be used to access the ST6x86 configuration
registers.

ﬁ SGS-THOMSON

2.6 Memory Addressing Methods

With the ST6x86 CPU, memory can be addressed
using nine different addressing modes (Table
2.24). These addressing modes are used to cal-
culate an offset address often referred to as an
effective address. Depending on the operating
mode of the CPU, the offset is then combined
using memory management mechanisms to cre-
ate a physical address that actually addresses the
physical memory devices.

Memory management mechanisms on the ST6x86
CPU consist of segmentation and paging. Seg-
mentation allows each program to use several
independent, protected address spaces. Paging
supports a memory subsystem that simulates a
large address space using a small amount of RAM
and disk storage for physical memory. Either or
both of these mechanisms can be used for man-
agement of the ST6x86 CPU memory address
space.
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2.6.1 Offset Mechanism

The offset mechanism computes an offset (effec-
tive) address by adding together one or more of
three values: abase, an index and a displacement.
When present, the base is the value of one of the
eight 32-bit general registers. The index if
present, like the base, is a value that is in one of
the eight 32-bit general purpose registers (not
including the ESP register). The index differs from
the base in that the index is first multiplied by a
scale factor of 1, 2, 4 or 8 before the summation is
made. The third component added to the memory
address calculation is the displacement. The dis-
placement is a value of up to 32-bits in length sup-
plied as part of the instruction. Figure 2.25
illustrates the calculation of the offset address.

Nine valid combinations of the base, index, scale
factor and displacement can be used with the
ST6x86 CPU instruction set. These combinations
are listed in Table 2.24. The base and index both
refer to contents of a register as indicated by
[Base] and [Index].

Table 2.24. Memory Addressing Modules

Figure 2.25. Offset Address Calculation

Index

Base

Displacement

Scaling
X1, x2, x4, X8

Offset Address
(Effective Address)

1706603

SCALE
ADDRESSING DISPLACEMENT OFFSET ADDRESS (OA)
MODE BASE | INDEX FA((;I;())R (DP) CALCULATION
Direct X OA =DP
Register Indirect X OA =[BASE]
Based X X OA =[BASE] + DP
Index X X OA = [INDEX] + DP
Scaled Index X X X OA = ([INDEX] * SF) + DP
Based Index X X OA = [BASE] + [INDEX]
Based Scaled Index X X X OA = [BASE] + ([INDEX] * SF)
Based Index with X X X OA = [BASE] + [INDEX] + DP
Displacement
Based Scaled Index with| X X X OA = [BASE] + (INDEX] * SF) + DP
Displacement
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2.6.2 Memory Addressing
Real Mode Memory Addressing

In real mode operation, the ST6x86 CPU only
addresses the lowest 1 MByte of memory. To cal-
culate a physical memory address, the 16-bit seg-
ment base address located in the selected
segment register is multiplied by 16 and then the
16-bit offset address is added. The resulting 20-bit
address is then extended. Three hexadecimal
zeros are added as upper address bits to create
the 32-bit physical address. Figure 2.26 illustrates
the real mode address calculation.

The addition of the base address and the offset
address may result in a carry. Therefore, the
resulting address may actually contain up to 21
significant address bits that can address memory
in the first 64 KBytes above 1 MByte.

Figure 2.26. Real Mode Address Calculation

Protected Mode Memory Addressing

In protected mode, three mechanisms calculate a
physical memory address (Figure 2.27).

- Offset Mechanism that produces the offset or
effective address as in real mode.

- Selector Mechanism
address.

- Optional Paging Mechanism that translates a
linear address to the physical memory
address.

that produces the base

The offset and base address are added together to
produce the linear address. If paging is not
enabled, the linear addressis used as the physical
memory address. If paging is enabled, the paging
mechanism is used to translate the linear address
into the physical address. The offset mechanism
is described earlier in this section and applies to
both real and protected mode. The selector and
paging mechanisms are described in the following
paragraphs.

000h
Offset Address  , 16 12
Offset Mechanism / l /
v
20 32 :
®_/_ >~ Linear Address
. (Physical Address)
16 20
Selected.Segment / X 16 '
Register
1708304
Figure 2.27. Protected Mode Address Calculation
» Offset
) ;- Address
Offset Mechanism | 7 l
Linear . .
32 Optional Physical
Addr p 32 yS
Segment @_/_dd_e;s_, Paging 7~ Memay
Base Mechanism Address
32
Selector Mechanism
1706504
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2.6.3 Selector Mechanism

Using segmentation, memory is divided into an
arbitrary number of segments, each containing
usually much less than the 232 byte (4 GByte)
maximum.

The six segment registers (CS, DS, SS, ES, FS
and GS) each contain a 16-bit selector that is used
when the register is loaded to locate a segment
descriptor in either the global descriptor table
(GDT) or the local descriptor table (LDT). The
segment descriptor defines the base address,

Figure 2.28. Selector Mechanism

limit, and attributes of the selected segment and is
cached on the ST6x86 CPU as a result of loading
the selector. The cached descriptor contents are
not visible to the programmer. When a memory
reference occurs in protected mode, the linear
address is generated by adding the segment base
address in the hidden portion of the segment reg-
ister to the offset address. If paging is not
enabled, this linear address is used as the physical
memory address. Figure 2.28 illustrates the oper-
ation of the selector mechanism.

SELECTOR LOAD INSTRUCTION

SEGMENT REGISTER
SELECTED BY DECODED

Segment
Descriptor

Local Descriptor
Table

Selector 15 0 INSTRUCTION
In Segment |_INDEX [Tt [RPL]
Register
Segment
Register
Identification
Segment
Descriptor
TI=0 Segment
Global Descriptor ° Register Segment
Table Fileand ™ B ce Address
Descriptor
TI=1 Cache

1739100
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2.6.4 Paging Mechanisms

The paging mechanisms (Figure 2.29) translate
linear addresses to their corresponding physical
addresses. For traditional paging, the page size is
always 4 KBytes. If ST6x86 Variable-Size Paging
is selected, a page size may be as large as
4 GBytes. Use of larger page sizes allows large
memory areas such as video memory to be placed
in a single page, eliminating page table thrashing.

Paging is activated when the PG and the PE bits
within the CRO register are set.

2.6.4.1 Traditional Paging Mechanism

The traditional paging mechanism translates the
20 most significant bits of a linear address to a
physical address. The linear address is divided
into three fields DTI, PTI, PFO (Figure 2.30).
These fields respectively select:

- an entry in the directory table,

- an entry in the page table selected by the
directory table

- the offset in the physical page selected by the
page table

Figure 2.29. Paging Mechanisms

The directory table and all the page tables can be
considered as pages as they are 4-KBytes in size
and are aligned on 4-KByte boundaries. Each
entry in these tables is 32 bits in length. The fields
within the entries are detailed in Figure 2.30 and
Table 2.25.

A single page directory table can address up to
4 GBytes of virtual memory (1,024 page tables—
each table can select 1,024 pages and each page
contains 4 KBytes).

Translation Lookaside Buffer (TLB)
of three caches Figure 2.30.

is made up

- the DTE Cache caches directory table entries

- the Main TLB caches page tables entries

- the Victim TLB stores PTEs that have been
evicted from the Main TLB

The DTE cache is a 4-entry fully associative
cache, the main TLB is a 128-entry direct mapped
cache and the victim TLB is an 8-entry fully asso-
ciative cache.The DTE cache caches the four
most recent DTEs so that future TLB misses only
require a single page table read to calculate the
physical address. The DTE cache is disabled fol-
lowing RESET and is enabled by setting the
DTE_EN bit (CCRA4 bit4).

ﬁ SGS-THOMSON
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Paging Mechanism—©
Linear Address A®——PPhysical Address
Traditional Paging ——©
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Figure 2.30. Traditional Paging Mechanism

Linear
Address,) 22 21 12 11 0
Directory Table Index Page Table Index Page Frame Offset
(DTI) (PTI) (PFO)
127
Main TLB
| 128 Entry 4 Gb
Direct Mapped
3 0
DTE Cache
4 Entry
Fully Associative o 7
Victim TLB
0 . 8 Entry
Fully Associative 0
4 Kb
4 Kb 4 Kb
Physical Page
DTE — PTE
0
CR3 0
Directory Table Page Table Memory
Control 1728800
Register
Figure 2.31. Directory and Page Table Entry (DTE and PTE) Format
31 1211 10 9 8 7 5 4 3 2 1 0]
PIPlUIlwW
BASE ADDRESS AVAILABLE |RESERVED A 8 \_/I_V é Ié P
Note: In DTE format, bit 6 is reserved 1708503
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Table 2.25. Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT POSITION FIELD NAME DESCRIPTION
31-12 BASE Specifies the base address of the page or page table
ADDRESS P page orpag '
19 -- Undefined and available to the programmer.
8-7 -- Reserved and not available to the programmer.
6 D Dirty Bit. If set, indicates that a write access has occurred to the page (PTE only,
undefined in DTE).
5 A Accessed Flag. If set, indicates that a read access or write access has occurred
to the page.
Page Caching Disable Flag. If set, indicates that the page is not cacheable in
4 PCD ;
the on-chip cache.
3 PWT Page Write-Through Flag. If set, indicates that writes to the page or page tables
that hit in the on-chip cache must update both the cache and external memory.
User/Supervisor Attribute. If set (user), page is accessible at privilege level 3. If
2 u/s : - .
clear (supervisor), page is accessible only when CPL < 2.
1 W/R Write/Read Attribute. If set (write), page is writable. If clear (read), page is read
only.
Present Flag. If set, indicates that the page is present in RAM memory, and
0 P validates the remaining DTE/PTE bits. If clear, indicates that the page is not
present in memory and the remaining DTE/PTE bits can be used by the
programmer.

For a TLB hit, the TLB eliminates accesses to
external directory and page tables.

The victim TLB increases the apparent associativ-
ity of the main TLB and helps eliminate TLB trash-
ing (unproductive TLB management). When an
entry in the main TLB is replaced, a copy of the
replaced entry is sent to the victim TLB before the
entry in the main TLB is overwritten. If the victim
TLB receives a hit, its entry is swapped with a
main TLB entry.

The TLB must be flushed by the software when
entries in the page tables are changed. The TLB
is flushed whenever the CR3 register is loaded. A
particular page can be flushed from the TLB by
using the INVLPG instruction. This instruction also
flushes the entire DTE cache.

ﬁ SGS-THOMSON

2.6.4.2 Translation Lookaside Buffer Testing

The TLB can be tested by writing to a main TLB
followed by performing a TLB lookup (TLB read) to
see if the expected contents are within the TLB.
TLB test operations are performed using test reg-
ister TR6 and TR7 shown in

Figure 2.32. Tables 2.26 through 2.28 list the bit
definitions for TR6 and TR7.
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Main TLB Write. To perform a direct write to a
main TLB entry, the TR7 register is configured with
the desired physical address as well as the PCD
and PWT bits. The BI, HV, HD and HB bits are not
used. The TR6 register is then configured with the
linear address, D, U, W and V bits. The D, U, and
W bits must be complements of the D#, U#, and
W# bits during a write. When the TR6 register is
configured, the ST6x86 CPU writes the linear and
physical address into the main TLB along with the
A, D, U, and W bits. The main TLB entry is
selected by bits 12 through 18 of the linear
address field.

TLB Lookup. During a TLB lookup, the ST6x86
CPU queries the TLB with a given linear address
and expected A, W, U and D values. The query
returns a corresponding physical address, and the

Figure 2.32. TLB Test Registers

source of the address. The address source could
be from the main TLB, from the victim TLB or from
the variable-size paging mechanism.

The TLB lookup involves a single TR6 register
write. The CMD bits are setto Ox1. The D, U, W,
D#, U# and W# bits are not used during TLB look-
ups.

After a TLB lookup, the HV, HD and HB bits in TR7
indicate which (if any) PTEs were found with the
requested linear address. If a TLB entry was
found for a PTE in the victim or variable size-pag-
ing cache, the BI bit in the TR7 register will contain
the index of the particular entry. If multiple entries
respond, only the HV, HD and HB bits are valid
and all TR7 fields are undefined.

ADRT (PHYSICAL ADDRESS / BC MASK) PCOPWT BI DHV HD |HB DTR‘!
3 21110 9 8 7 6 5§ 4 3 2 1 0
ADRS (LINEAR ADDRESS) VID|DE|IU|U#\WI[WH| A|AE| CMD |TR6
K} 21 10 ¢ 8 7 6 5 4 3 2 1 0
|:|= Reservall 1720100
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Table 2.26. TLB Test Register Bit Definitions

REGISTER

NAME NAME RANGE DESCRIPTION
Physical address or variable page size mechanism mask.
ADR7 31-12 TLB lookup: data field from the TLB.
TLB write: data field written into the TLB.
PCD 1 Page-level cache disable bit (PCD).
Corresponds to the PCD bit of a page table entry.
Page-level cache write-through bit (PWT).
TR7 PWT 10 Corresponds to the PWT bit of a page table entry.
Bl 9-7 Cell index for victim TLB and block cache operations.
HV Victim TLB hit.
HD 4 Main TLB hit.
HB Variable-Size Paging Mechanism hit.
Linear Address.
TLB lookup: The TLB is interrogated per this address. If one and only
ADRG6 3112 one match occurs in the TLB, the rest of the fields in TR6 and TR7 are
updated per the matching TLB entry.
TLB write: A TLB entry is allocated to this linear address.
v PTE Valid.
1 TLB write: If set, indicates that the TLB entry contains valid data. If
clear, target entry is invalidated.
D,D# 109 Dirty Attribute Bit and its complement.
Refer to Table 2.27.
TR6 U, U# 87 User/Supervisor Attribute Bit and its complement.
Refer to Table 2.27.
W, W# 65 Write Protect bit and its complement.
Refer to Table 2.27.
A Al Accessed Bitand its complement.
’ 4-3 Used for block cache entries only.
Refer to Table 2.27.
CMD Array Command Select.
20 Determines TLB array command.

Refer to Table 2.28.
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Table 2.27. TR6 Attribute Bit Pairs
BIT BIT# EFFECT ON TLB LOOKUP EFFECT ON TLB WRITE
0 0 Do not match. Undefined.
0 1 If bit = 0, match. Bit is cleared.
1 0 If bit = 1, match. The bit is set.
1 1 If bit = 0 or 1, match. Undefined.

Note: “BIT” applies to A, D, U or W fields in TR6; “BIT#” applies to A#, D#, U#, or W# fields in TR6.

Table 2.28. TR6 Command Bits

CMD Command

0x0 Direct write to main TLB.

Ox1 TLB lookup for a linear address in all arrays.

100 Write to variable page size mask only.

110 Write to variable page size linear and physical address fields.
101 Read variable page size mask and linear address.

m Read variable page size cache physical and linear address.

Note: x = don't care
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2.6.5 Variable-Size Paging Mechanism

The Variable-Size Paging Mechanism (VSPM) is
an advanced alternative to traditional paging. As
shown in Figure 2.33, VSPM allows the creation
of pages ranging in size from 4 KBytes to
4 GBytes. The larger page size nearly eliminates
page table thrashing associated with using multi-
ple 4-KByte pages.

For example, paging 1 MByte of memory requires
256 4-KByte pages using traditional paging. The
software not only incurs overhead during setting
up the 256 pages, but also incurs additional over-
head accessing the page tables each time a page
is not found in the on-chip TLB. In contrast, a sin-
ﬁle d1-MByte page virtually eliminates the over-
ead.

Figure 2.33. Variable-Size Paging Mechanism

Configuring Variable-Size Pages. The VSPM is
configured using TLB test registers, TR6 and
TR7 (These registers are also used to test the
TLB). The VSPM configuration is performed in
much the same manner as when writing to a line of
the TLB (Refer to Section 2.6.4.2.). The major
exception to this, is that a mask field is written to
the VSPM as part of the VSPM configuration.

The physical address, linear address, valid bit and
attribute bits in a main TLB write all have the same
meaning as in a main TLB read except for that
CMD=110. The Bl field is used to select the VSPM
cell to be written.

A VSPM mask setup operation is performed when
CMD=100 and a test register write is performed.
During a VSPM mask setup, the TR7 address field
is used as the mask field. The mask field selec-
tively masks linear address bits 31-12 from the
VSPM tag compare. This has the effect of allow-
ing the VSPM to map pages greater than
4 KBytes.

Linear
Address

4 GByte

Variable-Size

Paging Mechanism

< 4 GByte

Physical
Address

Physical Page
0

0

Memory
1739200
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After a VSPM mask setup, the valid bit, attribute
bits, and the linear address are left in undefined
states. Therefore, the VSPM mask setup should
be performed prior to other VSPM operations.

Unlike the victim and main TLBs, the VSPM opera-
tions make use of the accessed bit. During a
VSPM mask or physical address write the A and
A# fields are written to the VSPM.

VSPM Reads. VSPM reads are performed with
the address of the entry to be read in the Bl field of
the TR7 register and with CMD=111. The entry’s
and physical address is read into the TR6 and TR7
address fields as well as the valid bit, and attribute
bits.

If CMD=101, the linear address, mask, valid bit
and attribute bits are read.

2.7 Memory Caches

The ST6x86 CPU contains two memory caches as
described in Chapter 1. The Unified Cache acts as
the primary data cache, and secondary instruction
cache. The Instruction Line Cache is the primary
instruction cache and provides a high speed
instruction stream for the Integer Unit.

The unified cache is dual-ported allowing simulta-
neous access to any two unique banks. Two differ-
ent banks may be accessed at the same time
permitting any two of the following operations to
occur in parallel:

- Code fetch
- Data read (X pipe, Y pipe or FPU)
- Data write (X pipe, Y pipe or FPU).

2-52
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2.7.1 Unified Cache MESI States

The unified cache lines are assigned one of four
MESI states as determined by MESI bits stored in
tag memory. Each 32-byte cache line is divided
into two 16-byte sectors. Each sector contains its
own MESI bits. The four MESI states are
described below:

Modified MESI cache lines are those that have
been updated by the CPU, but the corresponding
main memory location has not yet been updated
by an external write cycle. Modified cache lines
are referred to as dirty cache lines.

Exclusive MESI lines are lines that are exclusive to
the ST6x86 CPU and are not duplicated within
another caching agent’'s cache within the same
system. A write to this cache line may be per-
formed without issuing an external write cycle.

Shared MESI lines may be present in another
caching agent’s cache within the same system. A
write to this cache line forces a corresponding
external write cycle.

Invalid MES] lines are cache lines that do not con-
tain any valid data.
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2.7.1.1 Unified Cache Testing

The unified cache can be tested through the use of
TR3, TR4, and TR5 on-chip test registers. Fields
within these test registers identify which area of
cache will be selected for testing.

Cache Organization. The unified cache (Figure
2.34) is divided into 32-bytes lines. This cache is
divided into four sets. Since a set (as well as the
cache) is smaller than main memory, each line in
the set corresponds to more than one line in main
memory. When a cache line is allocated, bits
A31-Al12 of the main memory address are stored

Figure 2.34. Unified Cache

in the cache line tag. The remaining address bits
are used to identify the specific 32-byte cache line
(A11-A5), and the specific 4-byte entry within the
cache line (A4-A2).

Test Initiation. A test register operation is initiated
by writing to the TR5 register shown in Figure 2.35
using a special MOV instruction. The TR5 CTL
field, detailed in Table 2.29, determines the func-
tion to be performed. For cache writes, the regis-
ters TR4 and TR3 must be initialized before a write
is made to TR5. Eight 4-byte accesses are
required to access a complete cache line.

e 32 Bytes of Data >
A
SET O 128 Lines
SET 1
512 Lines

SET 2
SET 3

H Upper Sector ’ < Lower Sector 4’ Typical

Single
ENT ‘ ENT ’ ENT | ENT | ENT ‘ ENT [ ENT ‘ ENT Line
ENT = 4-byte entry 1739700
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Figure 2.35. Cache Test Registers

RESERVED SET LINE ENT CTL |TR5

31 1312 11 10 9 8 7 6 5 4 3 2 1 0
TAG (CACHE TAG ADDRESS) RESERVED MESIU | MESIL MRU TR4

31 12 11 10 9 8 7 6 5 4 3 2 1 0
DATA (CACHE DATA) TR3

31 0
1729400

Table 2.29. Cache Test Register Bit Definitions

REGISTER FIELD
NAME NAME RANGE DESCRIPTION
SET 13-12 Cache set selection (one of four “sets”).
LINE -5 Cache line selection (one of 128 lines).
ENT 4-2 Entry selection (one of eight 4-byte entries in a line).
TRS Control field
If = 00: flush cache without invalidate
CTL 1-0 If = 01: write cache
If =10: read cache
If = 11: no cache or test register modification
TAG 31-12 Physical address for selected line
If =00, Modified Upper Sector MESI bits
If =01, Shared Upper Sector MESI bits
MESIU 7-6 If = 10, Exclusive Upper Sector MESI bits
TR4 If =11, Invalid Upper Sector MESI bits*
If = 00, Modified Lower Sector MESI bits
If =01, Shared Lower Sector MESI bits
MESIL 5-4 If = 10, Exclusive Lower Sector MESI bits
If =11, Invalid Lower Sector MESI bits*
MRU 3-0 Used to determine the Least Recently Used (LRU) line.
TR3 DATA 31-0 Data written or read during a cache test.

*Note: All 32 bytes should contain valid data before a line is marked as valid.

2-54

ﬁ SGS-THOMSON

s WIEROELECTROMICS




ST6x86

Write Operations. During a write, the TR3 DATA
(32-bits) and TAG field information is written to the
address selected by the SET, LINE, and ENT
fieldsin TR5.

Read Operations. During a read, the cache
address selected by the SET, LINE and ENT fields
in TR5 are used to read data into the TR3 DATA
(32-bits) field. The TAG, MESI and MRU fields in
TR4 are updated with the information from the
selected line. TR3 holds the selected read data.

Cache Flushing. A cache flush occurs during a
TR5 write if the CTL field is set to zero. During
flushing, the CPU’s cache controller reads through
all the lines in the cache. “Modified” lines are rede-
fined as “shared” by setting the shared MESI bit.
Clean lines are left in their original state.

2.8 Interrupts and Exceptions

The processing of either an interrupt or an excep-
tion changes the normal sequential flow of a pro-
gram by transferring program control to a selected
service routine. Except for SMM interrupts, the
location of the selected service routine is deter-
mined by one of the interrupt vectors stored in the
interrupt descriptor table.

Hardware interrupts are generated by signal
sources external to the CPU. All exceptions (includ-
ing so-called software interrupts) are produced inter-
nally by the CPU.

ﬁ SGS-THOMSON

28.1

External events can interrupt normal program exe-
cution by using one of the three interrupt pins on
the ST6x86 CPU.

- Non-maskable Interrupt (NMI pin)
- Maskable Interrupt (INTR pin)
- SMM Interrupt (SMI# pin).

For most interrupts, program transfer to the inter-
rupt routine occurs after the current instruction has
been completed. When the execution retums to the
original program, it begins immediately following the
last completed instruction.

Interrupts

With the exception of string operations, interrupts
are acknowledged between instructions. Long
string operations have interrupt windows between
memory moves that allow interrupts to be
acknowledged.

The NMI interrupt cannot be masked by software
and always uses interrupt vector 2 to locate its ser-
vice routine. Since the interrupt vector is fixed and
is supplied internally, no interrupt acknowledge
bus cycles are performed. This interrupt is nor-
mally reserved for unusual situations such as par-
ity errors and has priority over INTR interrupts.

Once NMI processing has started, no additional
NMIs are processed until an IRET instruction is
executed, typically at the end of the NMI service
routine. If NMI is re-asserted prior to execution of
the IRET instruction, one and only one NMI rising
edge is stored and processed after execution of
the next IRET.
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During the NMI service routine, maskable inter-
rupts may be enabled (unmasked). If an
unmasked INTR occurs during the NMI service
routine, the INTR is serviced and execution
returns to the NMI service routine following the next
IRET. If a HALT instruction is executed within the
NMI service routine, the ST6x86 CPU restarts exe-
cution only in response to RESET, an unmasked INTR
or an SMM interrupt. NMI does not restart CPU
execution under this condition.

The INTR interrupt is unmasked when the Inter-
rupt Enable Flag (IF) in the EFLAGS register is set
to 1. When an INTR interrupt occurs, the CPU
performs two locked interrupt acknowledge bus
cycles. During the second cycle, the CPU reads
an 8-bit vector that is supplied by an external inter-
rupt controller. This vector selects one of the 256
possible interrupt handlers which will be executed
in response to the interrupt.

The SMM interrupt has higher priority than either
INTR or NMI. After SMI# is asserted, program
execution is passed to an SMI service routine that
runs in SMM address space reserved for this pur-
pose. The remainder of this section does not
apply to the SMM interrupts. SMM interrupts are
described in greater detail later in this chapter.
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2.8.2 Exceptions

Exceptions are generated by an interrupt instruc-
tion or a program error. Exceptions are classified
as traps, faults or aborts depending on the mecha-
nism used to report them and the restartability of
the instruction that first caused the exception.

A Trap Exception is reported immediately follow-
ing the instruction that generated the trap excep-
tion. Trap exceptions are generated by execution
of a software interrupt instruction (INTO, INT 3,
INT n, BOUND), by a single-step operation or by a
data breakpoint.

Software interrupts can be used to simulate hard-
ware interrupts. Forexample, an INT n instruction
causes the processor to execute the interrupt ser-
vice routine pointed to by the nth vector in the
interrupt table. Execution of the interrupt service
routine occurs regardless of the state of the IF flag
in the EFLAGS register.

The one byte INT 3, or breakpoint interrupt (vector
3), is a particular case of the INT n instruction. By
inserting this one byte instruction in a program, the
user can set breakpoints in the code that can be
used during debug.

Single-step operation is enabled by setting the TF
bit in the EFLAGS register. When TF is set, the
CPU generates a debug exception (vector 1) after
the execution of every instruction. Data break-
points also generate a debug exception and are
specified by loading the debug registers
(DRO-DR7) with the appropriate values.
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A Fault Exception is reported prior to completion
of the instruction that generated the exception.
By reporting the fault prior to instruction comple-
tion, the CPU is left in a state that allows the
instruction to be restarted and the effects of the
faulting instruction to be nullified. Fault exceptions
include divide-by-zero errors, invalid opcodes,
page faults and coprocessor errors. Instruction
breakpoints (vector 1) are also handled as faults.
After execution of the fault service routine, the
instruction pointer points to the instruction that
caused the fault.

An Abort Exception is a type of fault exception
that is severe enough that the CPU cannot restart
the program at the faulting instruction. The double
fault (vector 8) is the only abort exception that
occurs on the ST6x86 CPU.

ﬁ SGS-THOMSON

2.8.3

When the CPU services an interrupt or exception,
the current program’s FLAGS, code segment and
instruction pointer are pushed onto the stack to
allow resumption of execution of the interrupted
program. In protected mode, the processor also
saves an error code for some exceptions. Pro-
gram control is then transferred to the interrupt
handler (also called the interrupt service routine).
Upon execution of an IRET at the end of the ser-
vice routine, program execution resumes by pop-
ping from the stack, the instruction pointer, code
segment, and FLAGS.

Interrupt Vector Assignments

Interrupt Vectors

Each interrupt (except SMI#) and exception is
assigned one of 256 interrupt vector numbers
Table 2.30. The first 32 interrupt vector assign-
ments are defined or reserved. INT instructions
acting as software interrupts may use any of the
interrupt vectors, O through 255.
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Table 2.30. Interrupt Vector Assignments

INTERRUPT VECTOR FUNCTION EXCEPTION TYPE

0 Divide error FAULT
1 Debug exception TRAP/FAULT*
2 NMI interrupt
3 Breakpoint TRAP
4 Interrupt on overflow TRAP
5 BOUND range exceeded FAULT
6 Invalid opcode FAULT
7 Device not available FAULT
8 Double fault ABORT
9 Reserved
10 Invalid TSS FAULT
1 Segment not present FAULT
12 Stack fault FAULT
13 General protection fault TRAP/FAULT
14 Page fault FAULT
15 Reserved
16 FPU error FAULT
17 Alignment check exception FAULT

1831 Reserved

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP

*Note: Data breakpoints and single-steps are traps. All other debug exceptions are faults.
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In response to a maskable hardware interrupt
(INTR), the ST6x86 CPU issues interrupt acknowl-
edge bus cycles used to read the vector humber
from external hardware. These vectors should be in
the range 32 - 255 as vectors O - 31 are reserved.

Interrupt Descriptor Table

The interrupt vector number is used by the ST6x86
CPU to locate an entry in the interrupt descriptor
table (IDT). Inreal mode, each IDT entry consists
of a four-byte far pointer to the beginning of the
corresponding interrupt service routine. In pro-
tected mode, each IDT entry is an eight-byte
descriptor. The Interrupt Descriptor Table Register
(IDTR) specifies the beginning address and limit of
the IDT. Following reset, the IDTR contains a base
address of Oh with a limit of 3FFh.

The IDT can be located anywhere in physical
memory as determined by the IDTR register. The
IDT may contain different types of descriptors:
interrupt gates, trap gates and task gates. Inter-
rupt gates are used primarily to enter a hardware
interrupt handler. Trap gates are generally used to
enter an exception handler or software interrupt
handler. If an interrupt gate is used, the Interrupt
Enable Flag (IF) in the EFLAGS register is cleared
before the interrupt handler is entered. Task gates
are used to make the transition to a new task.

ﬁ SGS-THOMSON

2.8.4

As the ST6x86 CPU executes instructions, it fol-
lows a consistent policy for prioritizing exceptions
and hardware interrupts. The priorities for compet-
ing interrupts and exceptions are listed in Table
2.31. Debug traps for the previous instruction and
the next instructions always take precedence.
SMM interrupts are the next priority. When NMI
and maskable INTR interrupts are both detected at
the same instruction boundary, the ST6x86 micro-
processor services the NMI interrupt first.

Interrupt and Exception Priorities

The ST6x86 CPU checks for exceptions in parallel
with instruction decoding and execution. Several
exceptions can result from a single instruction.
However, only one exception is generated upon
each attempt to execute the instruction. Each
exception service routine should make the appro-
priate corrections to the instruction and then
restart the instruction. In this way, exceptions can
be serviced until the instruction executes properly.

The ST6x86 CPU supports instruction restart after
all faults, except when an instruction causes a task
switch to a task whose task state segment (TSS) is
partially not present. A TSS can be partially not
present if the TSS is not page aligned and one of
the pages where the TSS resides is not currently
in memory.
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Table 2.31. Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES
0 Warm Reset Caused by the assertion of WM_RST.
1 Debug traps and faults from previous | Includes single-step trap and data breakpoints specified
instruction. in the debug registers.
2 Debug traps for next instruction. Includes instruction execution breakpoints specified in
the debug registers.
3 Hardware Cache Flush Caused by the assertion of FLUSH#.
4 SMM hardware interrupt, SMM interrupts are caused by SMI# asserted and always
have highest priority.
Non-maskable hardware interrupt. Caused by NMI asserted.
Maskable hardware interrupt. Caused by INTR asserted and IF = 1.
7 Faults resulting from fetching the next|Includes segment not present, general protection fault
instruction. and page fault.
8 Faults resulting from instruction decoding. Ir)cIU(_jes illegal opcode, instruction too long, or privilege
violation.
9 WAIT instruction and TS =1 and MP = 1. Device not available exception generated.
10 Egi Tstructlon and EM =1 or Device not available exception generated.
n Floating point error exception. C_aused Ey unmasked floating point exception
with NE = 1.
Segmentation faults (for each memory ref-
12 erence required by the instruction) that pre-| Includes segment not present, stack fault, and general
vent transferring the entire memory | protection fault.
operand.
13 Page Faults that prevent transferring the
entire memory operand.
14 Alignment check fault.
2-60
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2.8.5 Exceptions in Real Mode Other exceptions have slightly different meanings

Many of the exceptions describedin Table 2.31 are in real mode as listed in Table 2.32.

not applicable in real mode. Exceptions 10, 11,
and 14 do not occur in real mode.

Table 2.32. Exception Changes in Real Mode

l\\llLEJE:/I-I;CI;E PROTECTED MODE FUNCTION REAL MODE FUNCTION
8 Double fault. Interrupt table limit overrun.
10 Invalid TSS. X
1 Segment not present. X
12 Stack fault. SS segment limit overrun.
13 General protection fault. CS, DS, ES, FS, GS segment limit overrun.
14 Page fault. X

Note: x = does not occur
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2.8.6 Error Codes

When operating in protected mode, the following
exceptions generate a 16-bit error code:

«Double Fault
«Alignment Check
«Page Fault

eInvalid TSS
*Segment Not Present
«Stack Fault

*General Protection Fault

Figure 2.36. Error Code Format

The error code is pushed onto the stack prior to
entering the exception handler. The error code for-
mat is shown in Figure 2.36 and the error code bit
definitions are listed in Table 2.33. Bits 15-3
(selector index) are not meaningful if the error
code was generated as the result of a page fault.
The error code is always zero for double faults and
alignment check exceptions.

15 3 1 0
Selector Index S1 SO
Table 2.33. Error Code Bit Definitions
FAULT SELECTOR s2 s1 S0
TYPE (BITS 15-3) (BIT 2) (BIT 1) (BIT 0)
Double Fault or Align-
ment Check 0 0 0 0
ga_ult caused by Fault occurred during: | Fault occurred during:
= not present page — T -
Page Fault Reserved. _ 0 = read access 0 = supervisor access
1 = page-level o _
- S 1 = write access. 1 = user access.
protection violation.
If = 1, exception
occurred while trying
IDT Fault Index of faulty Reserved. 1 to invoke exception
IDT selector. A
or hardware interrupt
handler.
If =1, exception
Segment Index of faulty TI bit of faulty occgrred while try_lng
0 to invoke exception
Fault selector. selector. .
or hardware interrupt
handler.
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2.9 System Management Mode

System Management Mode (SMM) provides an
additional interrupt which can be used for system
power management or software transparent emu-
lation of I/O peripherals. SMM is entered using the
System Management Interrupt (SMI#) that has a
higher priority than any other interrupt, including
NMI. An SMI interrupt can also be triggered via
software using an SMINT instruction.  After an
SMI interrupt, portions of the CPU state are auto-

matically saved, SMM is entered, and program
execution begins at the base of SMM address
space (Figure 2.37). Running in SMM address
space, the interrupt routine does not interfere with
the operating system or any application program.

Eight SMM instructions have been added to the
x86 instruction set that permit software initiated
SMM, and saving and restoring of the total CPU
state when in SMM mode. Two SMM pins, SMI#
and SMIACT#, support SMM functions.

Figure 2.37. System Management Memory Address Space

Physica| Potential
Memory Space SMI\éF,)AadCc‘isress
FFFF FFFFh FFFF FFFFh
4 KB ) Defined
Physical Memory yiesto o SMM ~ SMIACT# Active
4 GBytes Address
4 GBytes Space
0000 0000h 0000 0000h
Non-SMM Mode
SMIACT# Negated SMM Mode 1713604
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2.9.1 SMM Operation

SMM operation is summarized in Figure 2.38.
Entering SMM requires the assertion of the SMI#
pin for at least two CLK periods or execution of the
SMINT instruction. For the SMI# or SMINT instruc-
tion to be recognized, the following configuration
register bits must be set as shown in Figure 2.38.
The configuration registers are discussed in detail
earlier in this chapter.

Table 2.34. Requirements for
Recognizing SMI# and SMINT

REGISTER (Bit) SMI# SMINT
SMI CCR1 (1) 1 1
SMAC CCR1 (2) 0 1
ARRS3 SIZE (3-0) >0 >0
SM3 CCR1 (7) 1 1

After recognizing SMI# or SMINT and prior to exe-
cuting the SMI service routine, some of the CPU
state information is changed. Prior to modification,
this information is automatically saved in the SMM
memory space header located at the top of SMM
memory space. After the header is saved, the
CPU enters real mode and begins executing the
SMI service routine starting at the SMM memory
base address.

The SMI service routine is user definable and may
contain system or power management software. If
the power management software forces the CPU
to power down, orthe SMI service routine modifies
more than what is automatically saved, the com-
plete CPU state information can be saved.

264 437 S6S-THOMSON
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Figure 2.38. SMI Execution Flow Diagram

SMI# Sampled Active or
SMINT Instruction Executed

v

CPU State Stored in SMM
Address Space Header

CPU Enters Real Mode

h 4

Execution Begins at SMM
Address Space Base Address

v

RSM Instruction Restores CPU
State Using Header Information

Normal Execution Resumes
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2.9.2 SMM Memory Space Header

With every SMI interrupt or SMINT instruction, cer-
tain CPU state information is automatically saved
in the SMM memory space header located at the
top of SMM address space as shown Figure 2.39
and Table 2.35.

Figure 2.39. SMM Memory Space Header

The header contains CPU state information that is
modified when servicing an SMI interrupt.
Included in this information are two pointers. The
Current IP points to the instruction that was exe-
cuting when the SMI was detected.

= I ' ' Top of SMM
DR7 Address Space
- - T -4h
EFLAGS
: : T -8h
CRO
' ' T -Ch
Current IP
| Next [P ' -10n
31 22 21 16 15 0
T I I -14h
Reserved CPL | Reserved CS Selector
-18h
CS Descriptor (Bits 63-32)
' ' T -1Ch
31 CS Descriptor (Bits 31-0) 43210
-20h
Reserved HIS|PII'| T Reserved
' 16(15 ' -24n
I/O Write Data Size I/O Write Address
' T -28h
I/0 Write Data
' ' ' -2Ch
ESI or EDI
-30h 1713504
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The Next IP points to the instruction that will be
executed after exiting SMM. Also saved are the
contents of debug register 7 (DR7), the extended
flags register (EFLAGS), and control register 0
(CR0O). If SMM has been entered due to an 1/O
trap for a REP INSx or REP OUTSx instruction,
the Current IP and Next IP fields contain the same
addresses and the | and P field contain valid infor-
mation.

Table 2.35. SMM Memory Space Header

If entry into SMM was caused by an /O trap it is
useful for the programmer to know the port
address, data size and data value associated with
that I/O operation. This information is also saved in
the header and is only valid for an 1/O write opera-
tion. The 1/O write information is not restored within
the CPU when executing a RSM instruction.

NAME DESCRIPTION SIZE
DR7 The contents of Debug Register 7. 4 Bytes
EFLAGS The contents of Extended Flags Register. 4 Bytes
CRO The contents of Control Register 0. 4 Bytes
Current IP The address of the instruction executed prior to servicing SMI interrupt. 4 Bytes
Next IP The address of the next instruction that will be executed after exiting SMM mode. 4 Bytes
CS Selector Code segment register selector for the current code segment. 2 Bytes
CPL Current privilege level for current code segment. 2Bits
CS Descriptor Code segment register descriptor for the current code segment. 8 Bytes
H If set indicates the processor was in a halt or shutdown prior to servicing the SMM 1Bt
interrupt.
Software SMM Entry Indicator.
S S = 1, if current SMM is the result of an SMINT instruction. 1Bit
S = 0, if current SMM is not the result of an SMINT instruction.
REP INSx/OUT Sx Indicator.
P P = 1if current instruction has a REP prefix. 1Bit
P = 0if current instruction does not have a REP prefix.
IN, INSx, OUT, or OUTSx Indicator.
| | = 1 if current instruction performed is an 1/0 WRITE. 1Bt
| = 0 if current instruction performed is an 1/0 READ.
Indicates size of data for the trapped 1/O write.
. . 01h = byte
1/0O Write Data Size 03h = word 2 Bytes
OFh = dword
1/0O Write Address Processor port used for the trapped /O write. 2 Bytes
1/0 Write Data Data associated with the trapped 1/O write. 4 Bytes
ES| or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or 4Bytes
REP INSx instruction when one of the 1/O cycles caused an SMI# trap.

Note: INSx = INS, INSB, INSW or INSD instruction.
Note: OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.
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2.9.3 SMM Instructions

The ST6x86 CPU automatically saves the minimal
amount of CPU state information when entering
SMM which allows fast SMI service routine entry
and exit. After entering the SMI service routine,
the MOV, SVDC, SVLDT and SVTS instructions
can be used to save the complete CPU state infor-
mation. If the SMI service routine modifies more
than what is automatically saved or forces the CPU
to power down, the complete CPU state informa-
tion must be saved. Since the CPU is a static
device, its internal state is retained when the input
clock is stopped. Therefore, an entire CPU state
save is not necessary prior to stopping the input
clock.

Table 2.36. SMM Instruction Set

The new SMM instructions, listed in Table 2.36,
can only be executed if:

1)SMI# =0

2)SM3=1

3)ARR3 SIZE >0

4) Current Privilege Level =0

5) SMAC bit is set or the CPU isin an
SMI service routine.

If the above conditions are not met and an attempt
is made to execute an SVDC, RSDC, SVLDT,
RSLDT, SVTS, RSTS, SMINT or RSM instruction,
an invalid opcode exception is generated. These
instructions can be executed outside of defined
SMM space provided the above conditions are met.

The SMINT instruction may be used as a software
controlled mechanism to enter SMM.

INSTRUC- OPCODE FORMAT DESCRIPTION

TION
Save Segment Register and Descriptor

SvVDC OF 78 [mod sreg3 r/m] | SVDC mem80, sreg3 Saves reg (DS, ES, FS, GS, or SS) to mem8o0.
Restore Segment Register and Descriptor
Restores reg (DS, ES, FS, GS, or SS) from mem80.

RSDC OF 79 [mod sreg3 r/m] | RSDC sreg3, mem80 | Use RSM to restore CS.
Note: Processing “RSDC CS, Mem80” will
produce an exception.
Save LDTR and Descriptor

SVLDT OF 7A [mod 000 r/m] SVLDT mem80 Saves Local Descriptor Table (LDTR) to mem80.
Restore LDTR and Descriptor

RSLDT | OF 78 [mod 000 r/m] RSLDT mem80 Restores Local Descriptor Table (LDTR) from mem80.
Save TSR and Descriptor

SVTS OF 7C [mod 000 r/m] SVTS mem&0 Saves Task State Register (TSR) to mem80.
Restore TSR and Descriptor

RSTS OF 7D [mod 000 r/m] RSTS memg0 Restores Task State Register (TSR) from mem80.
Software SMM Entry

SMINT OF 7E SMINT CPU enters SMM mode. CPU state |nf0rmat|on_ is
saved in SMM memory space header and execution
begins at SMM base address.
Resume Normal Mode
Exits SMM mode. The CPU state is restored using

RSM OF AA RSM the SMM memory space header and execution
resumes at interrupted point.

Note: mem80 = 80-bit memory location
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All of the SMM instructions (except RSM and
SMINT) save or restore 80 bits of data, allowing
the saved values to include the hidden portion of
the register contents.

2.9.4 SMM Memory Space

SMM memory space is defined by setting the SM3
bit and specifying the base address and size of the
SMM memory space in the ARR3 register. The
base address must be a multiple of the SMM
memory space size. For example, a 32 KByte
SMM memory space must be located at a
32 KByte address boundary. The memory space
size can range from 4 KBytesto 4 GBytes.

SMM memory space accesses are always
non-cacheable. SMM accesses ignore the state of
the A20M# input pin and drive the A20 address bit
to the unmasked value.

SMM memory space can be accessed while in
normal mode by setting the SMAC bit in the CCR1
register. This feature may be used to initialize the
SMM memory space.

2.9.5 SMI Service Routine Execution

Upon entry into SMM, after the SMM header has
been saved, the CRO, EFLAGS, and DRY registers
are set to their reset values. The Code Segment
(CS) register is loaded with the base, as defined
by the ARR3 register, and a limit of 4 GBytes. The
SMI service routine then begins execution at the
SMM base address in real mode.
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The programmer must save the value of any regis-
ters that may be changed by the SMI service rou-
tine. For data accesses immediately after entering
the SMI service routine, the programmer must use
CS as a segment override. /O port access is pos-
sible during the routine but care must be taken to
save registers modified by the 1/O instructions.
Before using a segment register, the register and
the register’'s descriptor cache contents should be
saved using the SVDC instruction. While execut-
ing in the SMM space, execution flow can transfer to
normal memory locations.

Hardware interrupts, (INTRs and NMIs), may be
serviced during a SMI service routine. If interrupts
are to be serviced while executing in the SMM
memory space, the SMM memory space must be
within the 0 to 1 MByte address range to guaran-
tee proper return to the SMI service routine after
handling the interrupt.

INTRs are automatically disabled when entering
SMM since the IF flag is set to its reset value.
Once in SMM, the INTR can be enabled by setting
the IF flag. NMl is also automatically disable when
entering SMM. Once in SMM, NMI can be
enabled by setting NMI_EN in CCR3. If NMlis not
enabled, the CPU latches one NMI event and ser-
vices the interrupt after NMI has been enabled or
after exiting SMM through the RSM instruction.

Within the SMI service routine, protected mode
may be entered and exited as required, andreal or
protected mode device drivers may be called.
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To exit the SMI service routine, a Resume (RSM)
instruction, rather than an IRET, is executed. The
RSM instruction causes the ST6x86 processor to
restore the CPU state using the SMM header infor-
mation and resume execution at the interrupted
point. If the full CPU state was saved by the pro-
grammer, the stored values should be reloaded
prior to executing the RSM instruction using the
MOV, RSDC, RSLDT and RSTS instructions.

CPU States Related to SMM and Suspend
Mode

The state diagram shown in Figure 2.40 illustrates
the various CPU states associated with SMM and
suspend mode. While in the SMI service routine,
the ST6x86 CPU can enter suspend mode either
by (1) executing a halt (HLT) instruction or (2) by
asserting the SUSP# input.

During SMM operations and while in SUSP# initi-
ated suspend mode, an occurrence of SMI#, NMI,
or INTR is latched. (In order for INTR to be
latched, the IF flag must be set.) The INTR or NMI
is serviced after exiting suspend mode.

If suspend mode is entered via a HLT instruction
from the operating system or application software,
the reception of an SMI# interrupt causes the CPU
to exit suspend mode and enter SMM.

ﬁ SGS-THOMSON

2.10 Shutdown and Halt

The Halt Instruction (HLT) stops program execu-
tion and prevents the processor from using the
local bus until restarted. The ST6x86 CPU then
issues a special Stop Grant bus cycle and enters a
low-power suspend mode if the SUSP_HLT bit in
CCR2 is set. SMI, NMI, INTR with interrupts
enabled (IF bit in EFLAGS=1), WM_RST or
RESET forces the CPU out of the halt state. If
interrupted, the saved code segment and instruc-
tion pointer specify the instruction following the
HLT.

Shutdown occurs when a severe error is detected
that prevents further processing. An NMI input can
bring the processor out of shutdown if the IDT limit
is large enough to contain the NMI interrupt vector
and the stack has enough room to contain the vec-
tor and flag information. Otherwise, shutdown can
only be exited by a processor reset.
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Figure 2.40. SMM and Suspend Mode State Diagram

Suspend Mode

NMIor INTR Interrupt Service

(SUSPA# = 0)

Routine

NMlor INTR

* Instructions

SUSP#=0
OS/Application Suspend Mode
RESET . PP « SUSP#=1 (SUSPA# = 0)
Software
4 (INTR, NMI and SMI latched)
SMI# =0
SMI#=0 SMINT* RSM*
Non-SMM Operations
\ SMM Operations
v
SMI Service
Routine
(SMI#=0) LT+
»
Suspend Mode
(SUSPA# =0)
IRET*
INTR or NMI
SUSP#=0 SUSP#=1 INTR and NMI
Interrupt Service Interrupt Service
Routine Routine

Suspend Mode

(SUSPA# = 0)

(INTR and NMI latched) 1715903
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2.11 Protection

Segment protection and page protection are safe-
guards built into the ST6x86 CPU protected mode
architecture which deny unauthorized or incorrect
access to selected memory addresses. These
safeguards allow multitasking programs to be iso-
lated from each other and from the operating sys-
tem. Page protection is discussed earlier in this
chapter. This section concentrates on segment
protection.

Selectors and descriptors are the key elements in
the segment protection mechanism. The segment
base address, size, and privilege level are estab-
lished by a segment descriptor. Privilege levels
control the use of privileged instructions, /O
instructions and access to segments and segment
descriptors. Selectors are used to locate segment
descriptors.

Segment accesses are divided into two basic
types, those involving code segments (e.g., control
transfers) and those involving data accesses.
Thehability of a task to access a segment depends
on the:

- segment type

- instruction requesting access

- type of descriptor used to define the segment
- associated privilege levels (described below).

Data stored in a segment can be accessed only by
code executing at the same or a more privileged
level. A code segment or procedure can only be
called by a task executing at the same or a less
privileged level.

ﬁ SGS-THOMSON

2.11.1 Privilege Levels

The values for privilege levels range between 0
and 3. Level 0 is the highest privilege level (most
privileged), and level 3 is the lowest privilege level
(least privileged). The privilege level in real mode
is effectively 0.

The Descriptor Privilege Level (DPL) is the privi-
lege level defined for a segment in the segment
descriptor. The DPL field specifies the minimum
privilege level needed to access the memory seg-
ment pointed to by the descriptor.

The Current Privilege Level (CPL) is defined as
the current task’s privilege level. The CPL of an
executing task is stored in the hidden portion of
the code segment register and essentially is the
DPL for the current code segment.

The Requested Privilege Level (RPL) specifies a
selector’s privilege level and is used to distinguish
between the privilege level of a routine actually
accessing memory (the CPL), and the privilege
level of the original requestor (the RPL) of the mem-
ory access. The lesser of the RPL and CPL is
called the effective privilege level (EPL). Therefore, if
RPL = 0 in a segment selector, the effective privi-
lege level is always determined by the CPL. If
RPL = 3, the effective privilege level is always 3
regardless of the CPL.

For a memory access to succeed, the effective
privilege level (EPL) must be at least as privileged
as the descriptor privilege level (EPL < DPL). If
the EPL is less privileged than the DPL (EPL >
DPL), a general protection fault is generated. For
example, if a segment has a DPL = 2, an instruc-
tion accessing the segment only succeeds if exe-
cuted with an EPL < 2.
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2.11.2

The 1/O Privilege Level (IOPL) allows the operat-
ing system executing at CPL=0 to define the least
privileged level at which IOPL-sensitive instruc-
tions can unconditionally be used. The IOPL-sen-
sitive instructions include CLI, IN, OUT, INS,
OUTS, REP INS, REP OUTS, and STI. Modifica-
tion of the IF bit in the EFLAGS register is also sen-
sitive to the 1/O privilege level. The IOPL is stored
in the EFLAGS register.

An 1/O permission bit map is available as defined
by the 32-bit Task State Segment (TSS). Since
each task can have its own TSS, access to individ-
ual processor I/O ports can be granted through
separate 1/0O permission bit maps.

If CPL < IOPL, IOPL-sensitive operations can be
performed. If CPL > IOPL, a general protection
fault is generated if the current task is associated
with a 16-bit TSS. If the current task is associated
with a 32-bit TSS and CPL > IOPL, the CPU con-
sults the I/O permission bitmap in the TSS to deter-
mine on a port-by-port basis whether or not 1/O
instructions (IN, OUT, INS, OUTS, REP INS, REP
OUTS) are permitted, and the remaining
IOPL-sensitive operations generate a general pro-
tection fault.

I/O Privilege Levels
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2.11.3 Privilege Level Transfers

A task’s CPL can be changed only through inter-
segment control transfers using gates or task
switches to a code segment with a different privi-
lege level. Control transfers result from exception
and interrupt servicing and from execution of the
CALL, JMP, INT, IRET and RET instructions.

There are five types of control transfers that are
summarized in Table 2.37. Control transfers can be
made only when the operation causing the control
transfer references the correct descriptor type. Any
violation of these descriptor usage rules causes a
general protection fault.

Any control transfer that changes the CPL within a
task results in a change of stack. The initial values
for the stack segment (SS) and stack pointer
(ESP) for privilege levels 0, 1, and 2 are stored in
the TSS. During a CALL control transfer, the SS
and ESP are loaded with the new stack pointer
and the previous stack pointer is saved on the new
stack. When returning to the original privilege
level, the RET or IRET instruction restores the
less-privileged stack.
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Table 2.37. Descriptor Types Used for Control Transfer

OPERATION DESCRIPTOR DESCRIPTOR
TYPE OF CONTROL TRANSFER TYPES REFERENCED TABLE
Intersegment within the same privilege level. JMP, CALL, RET, IRET* | Code Segment GDT or LDT
o CALL Gate Call GDT or LDT
Intersegment to the same or a more privileged -
level. Interrupt Instruction,
Interrupt within task (could change CPL level). Exception, External Trap or Interrupt Gate |IDT
Interrupt
Intersegment to a less privileged level (changes RET, IRET* Code Segment GDT or LDT
task CPL).
Task Switch via TSS CALL, JMP Task State Segment GDT
CALL, JMP Task Gate GDT or LDT
Task Switch via Task Gate IRET™, Interrupt Instruc-
tion, Exception, External| Task Gate IDT
Interrupt

* NT (Nested Task bit in EFLAGS) =0
** NT (Nested Task bit in EFLAGS) =1

Gates

Gate descriptors provide protection for privilege
transfers among executable segments. Gates are
used to transition to routines of the same or a
more privileged level. Call gates, interrupt gates
and trap gates are used for privilege transfers within
a task. Task gates are used to transfer between
tasks.

Gates conform to the standard rules of privilege.
In other words, gates can be accessed by a task if
the effective privilege level (EPL) is the same or
more privileged than the gate descriptor’s privilege
level (DPL).
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2.11.4 |Initialization and Transition to
Protected Mode

The ST6x86 microprocessor switches to real
mode immediately after RESET. While operating
in real mode, the system tables and registers
should be initialized. The GDTR and IDTR must
point to a valid GDT and IDT, respectively. The GDT
must contain descriptors which describe the initial
code and data segments.

The processor can be placed in protected mode by
setting the PE bit in the CRO register. After
enabling protected mode, the CS register should
be loaded and the instruction decode queue
should be flushed by executing an intersegment
JMP. Finally, all data segment registers should be
initialized with appropriate selector values.
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2.12 Virtual 8086 Mode

Both real mode and virtual 8086 (V86) mode are
supported by the ST6x86 CPU allowing execution of
8086 application programs and 8086 operating sys-
tems. V86 mode allows the execution of
8086-type applications, yet still permits use of the
ST6x86 CPU paging mechanism. V86 tasks run
at privilege level 3. When loaded, all segment lim-
its are set to FFFFh (64K) as in real mode.

2.12.1 V86 Memory Addressing

While in V86 mode, segment registers are used in
an identical fashion to real mode. The contents of
the segment register are multiplied by 16 and
added to the offset to form the segment base lin-
ear address. The ST6x86 CPU permits the oper-
ating system to select which programs use the
V86 address mechanism and which programs use
protected mode addressing for each task.

The ST6x86 CPU also permits the use of paging
when operating in V86 mode. Using paging, the
1-MByte address space of the V86 task can be
mapped to anywhere in the 4-GByte linear
address space of the ST6x86 CPU.

The paging hardware allows multiple V86 tasks to
run concurrently, and provides protection and
operating system isolation. The paging hardware
must be enabled to run multiple V86 tasks or to
relocate the address space of a V86 task to physi-
cal address space greater than 1 MByte.
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2.12.2 V86 Protection

All V86 tasks operate with the least amount of priv-
ilege (level 3) and are subject to all of the ST6x86
CPU protected mode protection checks. As a
result, any attempt to execute a privileged instruc-
tion within a V86 task results in a general protec-
tion fault.

In V86 mode, a slightly different set of instructions
are sensitive to the 1/O privilege level (IOPL) than
in protected mode. These instructions are: CLI,
INT n, IRET, POPF, PUSHF, and STI. The INT3,
INTO and BOUND variations of the INT instruction
are not |IOPL sensitive.

2.12.3 V86 Interrupt Handling

To fully support the emulation of an 8086-type
machine, interrupts in V86 mode are handled as
follows. When an interrupt or exception is ser-
viced in V86 mode, program execution transfers to
the interrupt service routine at privilege level 0
(i.e., transition from V86 to protected mode
occurs) and the VM bit in the EFLAGS register is
cleared. The protected mode interrupt service
routine then determines if the interrupt came from
a protected mode or V86 application by examining
the VM bit in the EFLAGS image stored on the
stack. The interrupt service routine may then
choose to allow the 8086 operating system to han-
dle the interrupt or may emulate the function of the
interrupt handler. Following completion of the
interrupt service routine, an IRET instruction
restores the EFLAGS register (restores VM=1)
and segment selectors and control returns to the
interrupted V86 task.

s WIEROELECTROMICS
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2.12.4 Entering and Leaving V86 Mode

V86 mode is entered from protected mode by
either executing an IRET instruction at CPL = 0 or
by task switching. If an IRET is used, the stack
must contain an EFLAGS image with VM =1. If a
task switch is used, the TSS must contain an
EFLAGS image containing a 1 in the VM bit posi-
tion. The POPF instruction cannot be used to
enter V86 mode since the state of the VM bit is not
affected. V86 mode can only be exited as the
result of an interrupt or exception. The transition
out must use a 32-bit trap or interrupt gate which
must point to a non-conforming privilege level 0
segment (DPL = 0), or a 32-bit TSS. These
restrictions are required to permit the trap handler
to IRET back to the V86 program.

2.13 Floating Point Unit Operations

The ST6x86 CPU includes an on-chip FPU that
provides the user access to a complete set of
floating point instructions (see Chapter 6). Infor-
mation is passed to and from the FPU using eight
data registers accessed in a stack-like manner, a
control register, and a status register. The ST6x86
CPU also provides a data register tag word which
improves context switching and performance by
maintaining empty/non-empty status for each of
the eight data registers. In addition, registers in
the CPU contain pointers to (a) the memory loca-
tion containing the current instruction word and (b)
the memory location containing the operand asso-
ciated with the current instruction word (if any).

ﬁ SGS-THOMSON

FPU Tag Word Register. The ST6x86 CPU main-
tains a tag word register ((Figure 2.41)) comprised
of two bits for each physical data register. Tag
Word fields assume one of four values depending
on the contents of their associated data registers,
Valid (00), Zero (01), Special (10), and Empty (11).
Note: Denormal, Infinity, QNaN, SNaN and unsup-
ported formats are tagged as “Special”. Tag val-
ues are maintained transparently by the ST6x86
CPU and are only available to the programmer indi-
rectly through the FSTENV and FSAVE instruc-
tions.

FPU Control and Status Registers. The FPU
circuitry communicates information about its status
and the results of operations to the programmer
via the status register. The FPU status register is
comprised of bit fields that reflect exception status,
operation execution status, register status, oper-
and class, and comparison results. The FPU sta-
tus register bit definitions are shown in Figure 2.42
and Table 2.38.

The FPU Mode Control Register (MCR) is used by
the CPU to specify the operating mode of the FPU.
The MCR contains bit fields which specify the
rounding mode to be used, the precision by which
to calculate results, and the exception conditions
which should be reported to the CPU via traps.
The user controls precision, rounding, and excep-
tion reporting by setting or clearing appropriate
bits in the MCR. The FPU mode control register
bit definitions are shown in Figure 2.43 and Table
2.39.
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Figure 2.41. FPU Tag Word Register
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Figure 2.42. FPU Status Register
15 12 1 8 7 4 3

B C3 S S S c2 C1 Co ES SF P u (0] z

Table 2.38. FPU Status Register Bit Definitions

POSBII'FION NAME DESCRIPTION
15 B Copy of the ES bit. (ES is bit 7 in this table.)
14,10-8 C3-Co Condition code bits.
13-11 SSS Top of stack register number which points to the current TOS.
7 ES Error indicator. Setto 1 if an unmasked exception is detected.
6 SF Stack Fault or invalid register operation bit.
5 P Precision error exception bit.
4 U Underflow error exception bit.
3 (0] Overflow error exception bit.
2 z Divide by zero exception bit.
1 D Denormalized operand error exception bit.
0 I Invalid operation exception bit.
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Figure 2.43. FPU Mode Control Register
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Table 2.39. FPU Mode Control Register Bit Definitions

BIT
POSITION NAME DESCRIPTION
Rounding Control bits:
00 Round to nearest or even
11-10 RC 01 Round towards minus infinity
10 Round towards plus infinity
11 Truncate
Precision Control bits:
00 24-bit mantissa
9-8 PC 01 Reserved
10 53-bit mantissa
11 64-bit mantissa
5 P Precision error exception bit mask.
4 U Underflow error exception bit mask.
3 (0] Overflow error exception bit mask.
2 z Divide by zero exception bit mask.
1 D Denormalized operand error exception bit mask.
0 | Invalid operation exception bit mask.
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3.0 ST6x86 BUS INTERFACE
The signals used in the ST6x86 CPU bus interface

signal directions and the major signal groupings. A
description of each signal and their reference to
the text are provided in Table 3.1.

are described in this chapter. Figure 3.1 shows the

Figure 3.1. ST6x86 CPU Functional Signal Groupings
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3.1 Signal Description Table levels defined as “1/0.” For example the signal

The Signal Summary Table (3.1) describes the sig-

W/R#, is defined as write when W/R#=1, and as
read when W/R#=0. Signals ending with a “#”

nals in their active state unless otherwise men-  .5racter are active low.
tioned. Signals containing slashes (/) have logic

Table 3.1. ST6x86 CPU Signals Sorted by Signal Name

Signal Name

Description 110 Reference

A20M#

A20 Mask causes the CPU to mask (force to 0) the A20 address bit when
driving the external address bus or performing an internal cache access.
A20M# is provided to emulate the 1 MByte address wrap-around that
occurs on the 8086. Snoop addressing is not effected.

Input Page 3-8

A31-A3

The Address Bus , in conjunction with the Byte Enable signals
(BE7#-BEO#), provides addresses for physical memory and external 1/O| 3-state
devices. During cache inquiry cycles, A31-A5 are used as inputs to perform| I/O

cache line invalidations.

Page 3-8

ADS#

Address Strobe begins a memory/l/O cycle and indicates the address bus
(A31-A3, BE7#-BEO#) and bus cycle definition signals (CACHE#, DI/C#,
LOCK#, M/IO#, PCD, PWT, SCYC, W/R#) are valid.

Output | page 3-12

ADSCH#

Cache Address Strobe performs the same function as ADS#. Output Page 3-12

AHOLD

Address Hold allows another bus master access to the ST6x86 CPU
address bus for a cache inquiry cycle. In response to the assertion of
AHOLD, the CPU floats AP and A31-A3 in the following clock cycle.

NPt | page 3-17

AP

Address Parity is the even parity output signal for address lines A31-A5
(A4 and A3 are excluded). During cache inquiry cycles, AP is the even-par- | 3-state
ity input to the CPU, and is sampled with EADS# to produce correct parity | I/0

check status on the APCHK# output.

Page 3-9

APCHK#

Address Parity Check Status is asserted during a cache inquiry cycle if an
address bus parity error has been detected. APCHK# is valid two clocks
after EADS# is sampled active. APCHK# will remain asserted for one clock
cycle if a parity error is detected.

Output Page 3-9

BE7#-BEO#

The Byte Enables , in conjunction with the address lines, determine the| 3-state

active data bytes transferred during a memory or 1/O bus cycle. 1/0 Page 3-8

BHOLD

Byte Enable Hold forces the byte enables (BE7#-BEO#) to float during the
next clock cycle. The ST6x86 CPU continues to generate additional bus
cycles while BHOLD is asserted. While BHOLD is asserted, the byte| Input
enables are driven by an external source and select which data bytes are
accessed through the scatter/gather buffer. BHOLD is ignored if the scat-
ter/gather interface is disabled.

Page 3-19

BOFF#

Back-Off forces the ST6x86 CPU to abort the current bus cycle and relin-
quish control of the CPU local bus during the next clock cycle. The ST6x86
CPU enters the bus hold state and remains in this state until BOFF# is
negated.

Input Page 3-15

BRDY#

Burst Ready indicates that the current transfer within a burst cycle, or the
current single transfer cycle, can be terminated. The ST6x86 CPU samples
BRDY# in the second and subsequent clocks of a bus cycle. BRDY# is
active during address hold states.

Input | Page 3-12

BRDYC#

Cache Burst Ready performs the same function as BRDY# and is logically

ORed with BRDY# within the ST6x86 CPU. Input | Page 3-12

BREQ

Bus Request is asserted by the ST6x86 CPU when an internal bus cycle is
pending. The ST6x86 CPU always asserts BREQ, along with ADS#, during
the first clock of a bus cycle. If a bus cycle is pending, BREQ is asserted| Output | Page 3-15
during the bus hold and address hold states. If no additional bus cycles are
pending, BREQ is negated prior to termination of the current cycle.

3-2
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Table 3.1. ST6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name

Description

I/0

Reference

CACHE#

Cacheability Status indicates that a read bus cycle is a potentially cache-
able cycle; or that a write bus cycle is a cache line write-back or line
replacement burst cycle. If CACHE# is asserted for a read cycle and KEN#
is asserted by the system, the read cycle becomes a cache line fill burst
cycle.

Output

Page 3-10

CLK

Clock provides the fundamental timing for the ST6x86 CPU. The frequency
of the ST6x86 CPU input clock determines the operating frequency of the
CPU’s bus. External timing is defined referenced to the rising edge of CLK.

Input

Page 3-6

CLKMUL

The Clock Multiplier input is sampled during RESET to determine the
ST6x86 CPU core operating frequency. If CLKMUL=0 or is left uncon-
nected, the core frequency is 2x the frequency of the CLK input. If CLK-
MUL=1, the core frequency is 3x the frequency of CLK.

Input

Page 3-6

D63-D0

Data Bus signals are three-state, bi-directional signals which provide the
data path between the ST6x86 CPU and external memory and I/O devices.
The data bus is only driven while a write cycle is active (state=T2). The data
bus is floated when DHOLD is asserted.

3-state
110

Page 3-9

D/C#

Data/Control Status . If high, indicates that the current bus cycle is an 1/0 or
memory data access cycle. If low, indicates a code fetch or special bus
cycle such as a halt, prefetch, or interrupt acknowledge bus cycle. D/C# is
driven valid in the same clock as ADS# is asserted.

Output

Page 3-10

DHOLD

Data Bus Hold forces the ST6x86 CPU to float the data bus (D63-D0) and
the data parity lines (DP7-DPO0) in the next clock. While DHOLD is asserted,
only the data and data parity buses are disabled. The current bus cycle
remains active and is completed in the normal fashion in response to
BRDY#. The ST6x86 CPU generates additional bus cycles while DHOLD is
asserted. DHOLD is ignored if the scatter/gather interface is disabled.

Input

Page 3-20

DP7-DPO

Data Parity signals provide parity for the data bus, one data parity bit per
data byte. Even parity is driven on DP7-DPO for all data write cycles.
DP7-DPO are read by the ST6x86 CPU during read cycles to check for even
parity. The data parity bus is only driven while a write cycle is active
(state=T2).

3-state
110

Page 3-9

EADS#

External Address Strobe indicates that a valid cache inquiry address is
being driven on the ST6x86 CPU address bus (A31-A5) and AP. The state
of INV at the time EADS# is sampled active determines the final state of the
cache line. A cache inquiry cycle using EADS# may be run while the
ST6x86 CPU is in the address hold or bus hold state.

Input

Page 3-17

EWBE#

External Write Buffer Empty indicates that there are no pending write
cycles in the external system. EWBE# is sampled only during I/O and mem-
ory write cycles. If EWBE# is negated, the ST6x86 CPU delays all subse-
guent writes to on-chip cache lines in the “exclusive” or “modified” state until
EWBE# is asserted.

Input

Page 3-13

FERR#

FPU Error Status indicates an unmasked floating point error has occurred.
FERR# is asserted during execution of the FPU instruction that caused the
error. FERR# does not float during bus hold states.

Output

Page 3-18

FLUSH#

Cache Flush forces the ST6x86 CPU to flush the cache. External interrupts
and additional FLUSH# assertions are ignored during the flush. Cache
inquiry cycles are permitted during the flush.

Input

Page 3-13

HIT#

Cache Hit indicates that the current cache inquiry address has been found
in the cache (modified, exclusive or shared states). HIT# is valid two clocks
after EADS# is sampled active, and remains valid until the next cache
inquiry cycle.

Output

Page 3-17

HITM#

Cache Hit Modified Data indicates that the current cache inquiry address
has been found in the cache and dirty data exists in the cache line (modified
state). The ST6x86 CPU does not accept additional cache inquiry cycles
while HITM# is asserted. HITM# is valid two clocks after EADS#.

Output

Page 3-17
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Table 3.1. ST6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name

Description

I/0

Reference

HLDA

Hold Acknowledge indicates that the ST6x86 CPU has responded to the
HOLD input and relinquished control of the local bus. The ST6x86 CPU
continues to operate during bus hold as long as the on-chip cache can sat-
isfy bus requests.

Output

Page 3-15

HOLD

Hold Request indicates that another bus master has requested control of
the CPU's local bus.

Input

Page 3-15

IGNNE#

Ignore Numeric Error forces the ST6x86 CPU to ignore any pending
unmasked FPU errors and allows continued execution of floating point
instructions.

Input

Page 3-18

INTR

Maskable Interrupt forces the processor to suspend execution of the cur-
rent instruction stream and begin execution of an interrupt service routine.
The INTR input can be masked (ignored) through the IF bit in the Flags
Register.

Input

Page 3-12

INV

Invalidate Request is sampled with EADS# to determine the final state of
the cache line in the case of a cache inquiry hit. An asserted INV directs the
processor to change the state of the cache line to “invalid”. A negated INV
directs the processor to change the state of the cache line to “shared.”

Input

Page 3-17

KEN#

Cache Enable allows the data being returned during the current cycle to be
placed in the CPU’s cache. When the ST6x86 CPU is performing a cache-
able code fetch or memory data read cycle (CACHE# asserted), and KEN#
is sampled asserted, the cycle is transformed into a 32-byte cache line fill.
KEN# is sampled with the first asserted BRDY# or NA# for the cycle.

Input

Page 3-14

LBA#

Local Bus Access indicates that the current bus cycle is for an address
within the local bus address region. If LBA# is asserted during a CPU write
cycle with BE3#-BEO# negated, the ST6x86 CPU automatically maps the
upper DWORD of data to the lower DWORD of the data bus. LBA# floats if
scatter/gather pins are disabled.

Output

Page 3-20

LOCK#

Lock Status indicates that other system bus masters are denied access to
the local bus. The ST6x86 CPU does not enter the bus hold state in
response to HOLD while LOCK# is asserted.

Output

Page 3-10

M/IO#

Memory/lIO Status. If high, indicates that the current bus cycle is a memory
cycle (read or write). If low, indicates that the current bus cycle is an /O
cycle (read or write, interrupt acknowledge, or special cycle).

Output

Page 3-10

NA#

Next Address requests the next pending bus cycle address and cycle defi-
nition information. If either the current or next bus cycle is alocked cycle, a
line replacement, a write-back cycle, or if there is no pending bus cycle, the
ST6x86 CPU does not start a pipelined bus cycle regardless of the state of
NA#.

Input

Page 3-12

NMI

Non-Maskable Interrupt Request forces the processor to suspend execu-
tion of the current instruction stream and begin execution of an NMI inter-
rupt service routine.

Input

Page 3-13

PCD

Page Cache Disable reflects the state of the PCD page attribute bit in the
page table entry or the directory table entry. If paging is disabled, or for
cycles that are not paged, the PCD pin is driven low. PCD is masked by the
cache disable (CD) bit in CRO, and floats during bus hold states.

Output

Page 3-14

PCHK#

Data Parity Check indicates that a data bus parity error has occurred dur-
ing a read operation. PCHK# is only valid during the second clock immedi-
ately after read data is returned to the ST6x86 CPU (BRDY# asserted) and
is inactive otherwise. Parity errors signaled by a logic low on PCHK# have
no effect on processor execution.

Output

Page 3-9

PWT

Page Write Through reflects the state of the PWT page attribute bit in the
page table entry or the directory table entry. PWT pin is negated during
cycles that are not paged, or if paging is disabled. PWT takes priority over
WB/WT#.

Output

Page 3-14
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Table 3.1. ST6x86 CPU Signals Sorted by Signal Name (Continued)

Signal Name

Description

I/0

Reference

QDUMP#

Q Buffer Dump is used to dump the contents of the scatter/gather buffer
onto the data bus. The data bytes specified by the byte enables
(BE7#-BEOQ#) are driven onto the data bus during the clock after QDUMP#
is sampled asserted. QDUMP# is ignored if the scatter/gather pins are dis-
abled.

Input

Page 3-20

RESET

Reset suspends all operations in progress and places the ST6x86 CPU into
a reset state. Reset forces the CPU to begin executing in a known state. All
data in the on-chip caches is invalidated.

Input

Page 3-6

SCYC

Split Locked Cycle indicates that the current bus cycle is part of a mis-
aligned locked transfer. SCYC is defined for locked cycles only. A mis-
aligned transfer is defined as any transfer that crosses an 8-byte boundary.

Output

Page 3-10

SMI#

SMM Interrupt forces the processor to save the CPU state to the top of
SMM memory and to begin execution of the SMI service routine at the
beginning of the defined SMM memory space. An SMI is a higher-priority
interrupt than an NMI.

Input

Page 3-13

SMIACT#

SMM Interrupt Active indicates that the processor is operating in System
Management Mode. SMIACT# does not float during bus hold states.

Output

Page 3-12

SUSP#

Suspend Request requests that the CPU enter suspend mode. SUSP# is
ignored following RESET and is enabled by setting the SUSP bit in CCR2.

Input

Page 3-21

SUSPA#

Suspend Acknowledge indicates that the ST6x86 CPU has entered
low-power suspend mode. SUSPA# floats following RESET and is enabled
by setting the SUSP bit in CCR2.

Output

Page 3-21

TCK

Test Clock (JTAG) is the clock input used by the ST6x86 CPU’s boundary
scan (JTAG) test logic.

Input

Page 3-23

TDI

Test Data In (JTAG) is the serial data input used by the ST6x86 CPU’s
boundary scan (JTAG) test logic.

Input

Page 3-23

TDO

Test Data Out (JTAG) is the serial data output used by the ST6x86 CPU'’s
boundary scan (JTAG) test logic.

Output

Page 3-23

T™MS

Test Mode Select (JTAG) is the control input used by the ST6x86 CPU'’s
boundary scan (JTAG) test logic.

Input

Page 3-23

TRST#

Test Mode Reset (JTAG) initializes the ST6x86 CPU’s boundary scan
(JTAG) test logic.

Input

Page 3-23

WB/WT#

Write-Back/Write-Through  is sampled during cache line fills to define the
cache line write policy. If high, the cache line write policy is write-back. If
low, the cache line write policy is write-through. (PWT forces write-through
policy when PWT=1.)

Input

Page 3-14

WM_RST

Warm Reset forces the ST6x86 CPU to complete the current instruction
and then places the ST6x86 CPU in a known state. Once WM_RST is sam-
pled active by the CPU, the reset sequence begins on the next instruction
boundary. WM_RST does not change the state of the configuration regis-
ters, the on-chip cache, the write buffers and the FPU registers. WM_RST
is sampled during reset.

Input

Page 3-8

WIR#

Write/Read Status. If high, indicates that the current memory, or 1/0O bus
cycle is a write cycle. If low, indicates that the current bus cycle is a read
cycle.

Output

Page 3-10
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3.2 Signal Descriptions

The following paragraphs provide additional infor-
mation about the ST6x86 CPU signals. For ease
of this discussion, the signals are divided into 16
functional groups as illustrated in Figure 3.1.

3.2.1 Clock Control

The Clock Input (CLK) signal, supplied by the
system, is the timing reference use by the ST6x86
CPU bus interface. All external timing parameters
are defined with respect to the CLK rising edge.
The CLK signal enters the ST6x86 CPU where it is
doubled or tripled to produce the ST6x86 CPU
internal clock signal. During power on, the CLK
signal must be running even if CLK does not meet
AC specifications.

The Clock Multiplier (CLKMUL) input is sampled
during RESET to determine the CPU’s core oper-
ating frequency. If CLKMUL=0, the core fre-
quency is 2x the frequency of the CLK input. If
CLKMUL=1, the core frequency is 3x the fre-
quency of the CLK input. The CLKMUL input is
connected to an internal pull-down resistor.
Therefore, if CLKMUL is left unconnected, the
core frequency defaults to 2x the input CLK. CLK-
MUL should be connected to Vss, to Vcc through a
pull-up, or left unconnected. CLKMUL should not

3.2.2 Reset Control

The ST6x86 CPU output signals are initialized to
their reset states during the CPU reset sequence,
as shown in Table 3.3. The signal states given in
Table 3.3 assume that HOLD, AHOLD, and BOFF#
are negated.

Asserting RESET suspends all operations in
progress and places the ST6x86 CPU in a reset
state. RESET is an asynchronous signal but must
meet specified setup and hold times to guarantee
recognition at a particular clock edge.

On system power-up, RESET must be held
asserted for at least 1 msec after Vcc and CLK
have reached specified DC and AC limits. This
delay allows the CPU’s clock circuit to stabilize
and guarantees proper completion of the reset
sequence.

During normal operation, RESET must be
asserted for at least 15 CLK periods in order to
guarantee the proper reset sequence is
executed. When RESET negates (on its falling
edge), the pins listed in Table 3.2 determine if cer-
tain ST6x86 CPU functions are enabled.

Table 3.2. Pins Sampled During RESET

be connected to a switching signal. SIGNAL DESCRIPTION
NAME
FLUSH# If = 0, three-state test mode enabled.
QDUMP# If = 0, scatter/gather interface enabled.
WM_RST If = 1, built-in self test initiated.
36 (N7 SGS-THOMSON
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Table 3.3. Signal States During RESET

SIGNAL LINE STATE SIGNAL LINE STATE

A20M# Ignored INTR Ignored

A31-A3 Undefined until first ADS# INV Ignored

ADS# 1 KEN# Ignored

ADSC# 1 LBA# 1

AHOLD Recognized LOCK# 1

AP Undefined until first ADS# M/10# Undefined until first ADS#
APCHK# 1 NA# Ignored

BE7#-BEO# Undefined until first ADS# NMI Ignored

BHOLD Ignored PCD Undefined until first ADS#
BOFF# Recognized PCHK# 1

BRDY# Ignored PWT Undefined until first ADS#
BRDYC# Ignored QDUMP# Enables scatter/gather interface pins
BREQ 0 RESET 1

CACHE# Undefined until first ADS# SCYC Undefined until first ADS#
D(63-0) Float SMI# Ignored

D/C# Undefined until first ADS# SMIACT# 1

DHOLD Ignored SUSP# Ignored

DP(7-0) Float SUSPA# Float

EADS# Ignored TCK Recognized

EWBE# Ignored TDI Recognized

FERR# 1 TDO Responds to TCK, TDI, TMS, TRST#
FLUSH# Initiates three-state test mode [| TMS Recognized

HIT# 1 TRST# Recognized

HITM# 1 W/R# Undefined until first ADS#
HLDA Responds to HOLD WB/WT# Ignored

HOLD Recognized WM_RST Initiates self-test

IGNNE# Ignored
3-7
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Warm Reset (WM_RST) allows the ST6x86 CPU
to complete the current instruction and then places
the ST6x86 CPU in a known state. WM_RST is an
asynchronous signal, but must meet specified
setup and hold times in order to guarantee
recognition at a particular CLK edge. Once
WM_RST is sampled active by the CPU, the reset
sequence begins on the next instruction boundary.

WM_RST differs from RESET in that the contents
of the on-chip cache, the write buffers, the configu-
ration registers and the floating point registers
contents remain unchanged.

Following completion of the internal reset
sequence, normal processor execution begins
even if WM_RST remains asserted. If RESET and
WM_RST are asserted simultaneously, WM_RST
is ignored and RESET takes priority. If WM_RST
is asserted at the falling edge of RESET, built-in
self test (BIST) is initiated.

3.2.3 Address Bus

The Address Bus (A31-A3) lines provide the
physical memory and external [/O device
addresses. A31-A5 are bi-directional signals used
by the ST6x86 CPU to drive addresses to both
memory devices and I/O devices. During cache
inquiry cycles the ST6x86 CPU receives
addresses from the system using signals A31-A5.

Using signals A31-A3, the ST6x86 CPU can
address a 4-GByte memory address space. Using
signals A15-A3, the ST6x86 CPU can address a
64-KByte 1/0 space through the processor's 1/O
ports. During 1/O accesses, signals A31-A16 are
driven low. A31-A3 float during bus hold and
address hold states.
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The Byte Enable (BE7#-BEO#) lines are bi-direc-
tional signals that define the valid data bytes within
the 64-bit data bus. The correlation between the
enable signals and data bytes is shown in

Table 3.4.

Table 3.4. Byte Enable Signal to
Data Bus Byte Correlation

BYTE CORRESPONDING DATA
ENABLE BYTE

BE7# D63-D56

BE6# D55-D48

BES# D47-D40

BE4# D39D32

BE3# D31-D24

BE2# D23D16

BEW# DI5D8

BEO# D7-D0

During a cache line fill, (burst read or “1+4” burst
read) the ST6x86 CPU expects data to be returned
as if all data bytes are enabled, regardless of the
state of the byte enables. BE7#-BEO# float during
bus hold and byte enable hold states.

Address Bit 20 Mask (A20M#) is an active low
input which causes the ST6x86 CPU to mask
(force low) physical address bit 20 when driving
the external address bus or when performing an
internal cache access. Asserting A20M# emulates
the 1 MByte address wrap-around that occurs on
the 8086. The A20 signal is never masked during
write-back cycles, inquiry cycles, system manage-
ment address space accesses or when paging is
enabled, regardless of the state of the A20M#
input.
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3.2.4 Address Parity

Address Parity (AP) is a bi-directional signal
which provides the parity associated with address
lines A31-A5. (A4 and A3 are not included in the
parity determination.) During ST6x86 CPU gener-
ated bus cycles, while the address bus lines are
driven, AP becomes an output supplying even
address parity. During cache inquiry cycles, AP
becomes an input and is sampled by EADS#.
During cache inquiry cycles, even-parity must be
placed on the AP line to guarantee an accurate
result on the APCHK# (Address Parity Check Sta-
tus) pin.

Address Parity Check Status (APCHK#) is
driven active by the CPU when an address bus
parity error has been detected for a cache inquiry
cycle. APCHK# is asserted two clocks after
EADS# is sampled asserted, and remains valid for
one clock only. Address parity errors signaled by
APCHK# have no effect on processor execution.

3.2.5 DataBus

Data Bus (D63-D0) lines carry three-state,
bi-directional signals between the ST6x86 CPU
and the system (i.e., external memory and /O
devices). The data bus transfers data to the
ST6x86 CPU during memory read, 1/O read, and
interrupt acknowledge cycles. Data is transferred
from the ST6x86 CPU during memory and 1/O
write cycles.

Data setup and hold times must be met for correct
read cycle operation. The data bus is driven only
while a write cycle is active.

3.2.6 Data Parity

The Data Parity Bus (DP7-DP0) provides and
receives parity data for each of the eight data bus
bytes (Table 3.5). The ST6x86 CPU generates
even parity on the bus during write cycles and
accepts even parity from the system during read
cycles. DP7-DPO is driven only while a write cycle
is active.

Table 3.5. Parity Bit to Data Byte Correlation

PARITY BIT DATA BYTE
DP7 D63-D56
DP6 D55-D48
DPS D47-D40
DP4 D39-D32
DP3 D31-D24
DP2 D23-D16
DP1 D15-D8
DPO D7-DO

ﬁ SGS-THOMSON

Parity Check (PCHK#) is asserted when a data
bus parity error is detected. Parity is checked dur-
ing code, memory and 1/O reads, and the second
interrupt acknowledge cycle. Parity is not checked
during the first interrupt acknowledge cycle.

Parity is checked for only the active data bytes as
determined by the active byte enable signals
except during a cache line fill (burst read or “1+4”
burst read). During a cache line fill, the ST6x86
CPU assumes all data bytes are valid and parity is
checked for all data bytes regardless of the state
of the byte enables.

PCHK# is valid only during the second clock
immediately after read data is returned to the
ST6x86 CPU (BRDY# asserted). At other times
PCHK# is not active. Parity errors signaled by the
assertion of PCHK# have no effect on processor
execution.

3-9
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3.2.7 Bus Cycle Definition

Each bus cycle is assigned a bus cycle type. The
bus cycle types are defined by six three-state out-
puts: CACHE#, D/C#, LOCK#, M/IO#, SCYC, and
W/R# as listed in Table 3.6.

These bus cycle definition signals are driven valid
while ADS# is active. D/C#, M/IO#, W/R#, SCYC
and CACHE# remain valid until the clock following
the earliest of two signals: NA# asserted, or the
last BRDY# for the cycle.

LOCK# continues asserted until after BRDY# is
returned for the last locked bus cycle. The bus
cycle definition signals float during bus hold states.

Cache Cycle Indicator (CACHE#) is an output
that indicates that the current bus cycle is a poten-
tially cacheable cycle (for a read), or indicates that
the current bus cycle is a cache line write-back or
line replacement burst cycle (for a write). If
CACHE# is asserted for a read cycle and the
KEN# input is returned active by the system, the
read cycle becomes a cache line fill burst cycle.

Data/Control (D/C#) distinguishes between data
and control operations. When high, this signal indi-
cates that the current bus cycle is a data transfer
to or from memory or 1/0. When low, D/C# indi-
cates that the current bus cycle involves a control
function such as a halt, interrupt acknowledge or
code fetch.

3-10
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Bus Lock (LOCK#) is an active low output which,
when asserted, indicates that other system bus
masters are denied access to control of the CPU
bus. The LOCK# signal may be explicitly activated
during bus operations by including the LOCK pre-
fix on certain instructions. LOCK# is also asserted
during descriptor updates, page table accesses,
interrupt acknowledge sequences and when exe-
cuting the XCHG instruction. However, if the
NO_LOCK bit in CCR1 is set, LOCK# is asserted
only during page table accesses and interrupt
acknowledge sequences. The ST6x86 CPU does
not enter the bus hold state in response to HOLD
while the LOCK# output is active.

Memory/IO (M/IO#) distinguishes between mem-
ory and 1/O operations. When high, this signal indi-
cates that the current bus cycle is a memory read
or memory write. When low, M/IO# indicates that
the current bus cycle is an 1/O read, I/O write,
interrupt acknowledge cycle or special bus cycle.

Split Cycle (SCYC) is an active high output that
indicates that the current bus cycle is part of a mis-
aligned locked transfer. SCYC is defined for
locked cycles only. A misaligned transfer is
defined as any transfer that crosses an 8-byte
boundary.

Write/Read (W/R#) distinguishes between write
and read operations. When high, this signal indi-
cates that the current bus cycle is a memory write,
I/O write or a special bus cycle. When low, this sig-
nal indicates that the current cycle is a memory
read, /O read or interrupt acknowledge cycle.
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Table 3.6. Bus Cycle Types

BUS CYCLE TYPE M/IO# D/C# W/R# CACHE# LOCK#
Interrupt Acknowledge 0 0 0 1 0
Does not occur. 0 0 0 X 1
Does not occur. 0 0 1 X 0

Special Cycles:

If BE(7-0)# = FEh: Shutdown

If BE(7-0)# = FDh: Flush (INVD, WBINVD)
If A4 = 0 and BE(7-0)# = FBh: Halt (HLT) 0 0 1 1 1
If BE(7-0)# = F7h: Write-Back (WBINVD)

If BE(7-0)# = EFh: Flush Acknowledge (FLUSH#)
If A4 = 1 and BE(7-0)# = FBh: Stop Grant (SUSP#)

Does not occur. 0 1 X X 0
I/0 Data Read 0 1 0 1 1
1/O Data Write 0 1 1 1 1
Does not occur. 1 0 X X 0
Cacheable Memory Code Read

. . 1 0 0 0 1
(Burst Cycle if KEN# Returned Active)
Non-cacheable Memory Code Read 1 0 0 1 1
Does not occur. 1 1 X 1
Locked Memory Data Read 1 1 0 1
Cacheable Memory Data Read

) ) 1 1 0 0 1
(Burst Cycle if KEN# Returned Active)
Non-cacheable Memory Data Read 1 1 0 1 1
Locked Memory Write 1 1 1 1
Burst Memory Write

1 1 1 0 1*

(Writeback or Line Replacement)

Single Transfer Memory Write 1 1 1 1 1

Note: X = Don’t Care
*Note: LOCK# continues to be asserted during a write-back cycle that occurs following an aborted (BOFF# asserted)
locked bus cycle.
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3.2.8 Bus Cycle Control

The bus cycle control signals (ADS#, ADSCH#,
BRDY#, BRDYC#, NA#, and SMIACT#) indicate
the beginning of a bus cycle and allow system
hardware to control bus cycle termination timing
and address pipelining.

Address Strobe (ADS#) is an active low output
which indicates that the CPU has driven a valid
address and bus cycle definition on the appropri-
ate output pins. ADS# floats during bus hold
states.

Cache Address Strobe (ADSC#) performs the
same function as ADS#. ADSC# is used to inter-
face directly to a secondary cache controller.

Burst Ready (BRDY#) is an active low input that
is driven by the system to indicate that the current
transfer within a burst cycle or the current single
transfer bus cycle can be terminated. The CPU
samples BRDY# in the second and subsequent
clocks of a cycle. BRDY# is active during address
hold states.

Cache Burst Ready (BRDYC#) performs the
same function as BRDY# and is logically ORed
with BRDY internally by the CPU. BRDYC# is
used to interface directly to a secondary cache
controller.

Next Address (NA#) is an active low input that is
driven by the system to request the next pending
bus cycle address and cycle definition information
even though all data transfers for the current bus
cycle are not complete. This new bus cycle is
referred to as a “pipelined” cycle. If either the cur-
rent or next bus cycle is a locked cycle, a line
replacement, a write-back cycle or there is no
pending bus cycle, the ST6x86 CPU does not start
a pipelined bus cycle regardless of the state of the
NA# input.

3-12
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System Management Mode Active (SMIACT#)
is an active low output which indicates that the
CPU is operating in System Management Mode.
SMIACT# is asserted in response to the assertion
of SMI# or due to execution of the SMINT instruc-
tion. SMIACT# is also asserted during accesses
to defined SMM memory if the SMAC bit in CCR1
is set. This bit allows access to SMM memory
while not in SMM mode and is typically used for
initialization purposes.

While servicing an SMI# interrupt or SMINT
instruction, SMIACT# remains asserted until a
RSM instruction is executed. The RSM instruction
causes the ST6x86 CPU to exit SMM mode and
negate the SMIACT# output. If a cache inquiry
cycle occurs while SMIACT# is active, any result-
ing write-back cycle is issued with SMIACT#
asserted. This occurs even though the write-back
cycle is intended for normal memory rather than
SMM memory.

During RESET, the USE_SMI bit in CCR1 is
cleared. While USE_SMI is zero, SMIACT# is
always negated. SMIACT# does not float during
bus hold states.

3.2.9 Interrupt Control

The interrupt control signals (INTR, NMI, SMI#)
allow the execution of the current instruction
stream to be interrupted and suspended.

Maskable Interrupt Request (INTR) is an active
high level-sensitive input which causes the proces-
sor to suspend execution of the current instruction
stream and begin execution of an interrupt service
routine. The INTR input can be masked (ignored)
through the IF bit in the Flags Register.

When not masked, the ST6x86 CPU responds to
the INTR input by performing two locked interrupt
acknowledge bus cycles. During the second inter-
rupt acknowledge cycle, the ST6x86 CPU reads
an 8-bit value, the interrupt vector, from the data
bus. The 8-bit interrupt vector indicates the inter-
rupt level that caused generation of the INTR and
is used by the CPU to determine the beginning
address of the interrupt service routine. To assure
recognition of the INTR request, INTR must
remain active until the start of the first interrupt
acknowledge cycle.
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Non-Maskable Interrupt Request (NMI) is a ris-
ing-edge sensitive input which causes the proces-
sor to suspend execution of the current instruction
stream and begin execution of an NMI interrupt
service routine. The NMI interrupt cannot be
masked by the IF bit in the Flags Register. Assert-
ing NMI causes an interrupt which internally sup-
plies interrupt vector 2h to the CPU core.
Therefore, external interrupt acknowledge cycles
are not issued.

Once NMI processing has started, no additional
NMls are processed until an IRET instruction is
executed, typically at the end of the NMI service
routine. If NMI is re-asserted prior to execution of
the IRET, one and only one NMI rising edge is
stored and then processed after execution of the
next IRET.

System Management Interrupt Request (SMI#)

is an interrupt input with higher priority than the
NMI input. SMI# is a falling edge sensitive input
and is sampled on every rising edge of the proces-
sor input clock. Asserting SMI# forces the proces-
sor to save the CPU state to the top of SMM
memory and to begin execution of the SMI service
routine at the beginning of the defined SMM mem-
ory space. After the processor internally acknowl-
edges the SMI# interrupt, the SMIACT# output is
driven low for the duration of the interrupt service
routine.

Once SMI# servicing has started, no additional
SMI# interrupts are processed until a RSM instruc-
tion is executed. If SMI# is re-asserted prior to
execution of a RSM instruction, one and only one
SMI# falling edge is stored and then processed
after execution of the next RSM. SMI# is ignored
following reset and recognition is enabled by set-
ting the USE_SMI bitin CCR1.
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3.2.10 Cache Control

The cache control signals (EWBE#, FLUSH#,
KEN#, PCD, PWT, WB/WT#) are used to indicate
cache status and control caching activity.

External Write Buffer Empty (EWBE#) is an
active low input driven by the system to indicate
when there are no pending write cycles in the
external system. The ST6x86 CPU samples
EWBE# during write cycles (/O and memory)
only. If EWBE# is not asserted, the processor
delays all subsequent writes to on-chip cache lines
in the “exclusive” or “modified” state until EWBE#
is asserted. Regardless of the state of EWBE#, all
writes to the on-chip cache are delayed until any
previously issued external write cycle is complete.
This ensures that external write cycles occur in
program order and is referred to as “strong write
ordering”. To enhance performance, “weak write
ordering” may be allowed for specific address
regions using the Address Region Registers
(ARRSs) and Region Control Registers (RCRS).

Cache Flush (FLUSH#) is a falling-edge sensitive
input that forces the processor to write-back all
dirty data in the cache and then invalidate the
entire cache contents. FLUSH# need only be
asserted for a single clock but must meet specified
setup and hold times to guarantee recognition at a
particular clock edge.

Once FLUSH# is sampled active, the ST6x86
CPU begins the cache flush sequence after com-
pletion of the current instruction. External inter-
rupts and additional FLUSH# requests are ignored
while the cache flush is in progress. However,
cache inquiry cycles are permitted during the flush
sequence. The ST6x86 CPU issues a flush
acknowledge special cycle to indicate completion
of the flush sequence. If the processor is in a halt
or shutdown state, FLUSH# is recognized and the
ST6x86 CPU returns to the halt or shutdown state
following completion of the flush sequence. |If
FLUSH# is active at the falling edge of RESET,
the processor enters three state test mode.

3-13
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Cache Enable (KEN#) is an active low input which
indicates that the data being returned during the
current cycle is cacheable. When the ST6x86 CPU
is performing a cacheable code fetch or memory
data read cycle and KEN# is sampled asserted,
the cycle is transformed into a cache line fill (4
transfer burst cycle) or a “1+4” cache line fill.
KEN# is sampled with the first asserted BRDY# or
NA# for the cycle. I/O accesses, locked reads,
system management memory accesses and inter-
rupt acknowledge cycles are never cached.

Page Cache Disable (PCD) is an active high out-
put that reflects the state of the PCD page attribute
bit in the page table entry or the directory table
entry. If paging is disabled or for cycles that are
not paged, the PCD pin is driven low. PCD is
masked by the cache disable (CD) bit in CRO
(driven high if CD=1) and floats during bus hold
states.

Page Write Through (PWT) is an active high out-
put that reflects the state of the PWT page
attribute bit in the page table entry or the directory
table entry. If paging is disabled or for cycles that
are not paged, the PWT pin is driven low. If PWT
is asserted, PWT takes priority over the WB/WT#
input. If PWT is asserted for either reads or writes,
the cache line is saved in, or remains in, the
shared (write-through) state. PWT floats during
bus hold states.

3-14
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The Write-Back/Write-Through (WB/WT#)  input
allows the system to define the write policy of the
on-chip cache on a line-by-line basis. If WB/WT#
is sampled high during a line fill cycle and PWT is
low, the line is defined as write-back and is stored
in the exclusive state. If WB/WT# is sampled high
during a write to a write-through cache line (shared
state) and PWT is low, the line is transitioned to
write-back (exclusive state). If WB/WT# is sam-
pled low or PWT is high, the line is defined as
write-through and is stored in (line fill), or remains
in (write), the shared state. Table 3.7 lists the
effects of WB/WT# on the state of the cache line
for various bus cycles.

Table 3.7. Effects of WB/WT# on Cache
Line State

BUS CYCLE PWT wB/ WRITE MESI
TYPE WT# POLICY STATE
Line Fill o | o [Wre Shared
through
Line Fill 0 1 | Write- Exclusive
back
Line Fill 1| x| Wrte Shared
through
Memory Write Write-
(Note) 0 0 through Shared
Memory Write Write- .
(Note) 0 1 back Exclusive
Memory Write Write-
(Note) L X through Shared

Note: Only applies to memory writes to addresses that
are currently valid in the cache.
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3.2.11 Bus Arbitration

The bus arbitration signals (BOFF#, BREQ,
HOLD, and HLDA) allow the ST6x86 CPU to relin-
quish control of its local bus when requested by
another bus master device. Once the processor
has released its bus, the bus master device can
then drive the local bus signals.

Back-Off (BOFF#) is an active low input that
forces the ST6x86 CPU to abort the current bus
cycle and relinquish control of the CPU’s local bus
in the next clock. The ST6x86 CPU responds to
BOFF# by entering the bus hold state as listed in
Table 3.8. The ST6x86 CPU remains in bus hold
until BOFF# is negated. Once BOFF# is negated,
the ST6x86 CPU restarts any aborted bus cycle in
its entirety. Any data returned to the ST6x86 CPU
while BOFF# is asserted is ignored. If BOFF# is
asserted in the same clock that ADS# is asserted,
the ST6x86 CPU may float ADS# while in the
active low state.
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Bus Request (BREQ) is an active high output
asserted by the ST6x86 CPU whenever a bus
cycle is pending internally. The ST6x86 CPU
always asserts BREQ in the first clock of a bus
cycle with ADS# as well as during bus hold and
address hold states if a bus cycle is pending. If no
additional bus cycles are pending, BREQ is
negated prior to termination of the current cycle.

Bus Hold Request (HOLD) is an active high input
used to indicate that another bus master requests
control of the CPU’s local bus. After recognizing
the HOLD request and completing the current bus
cycle or sequence of locked bus cycles, the
ST6x86 CPU responds by floating the local bus
and asserting the hold acknowledge (HLDA) out-
put. The bus remains granted to the requesting
bus master until HOLD is negated. Once HOLD is
sampled negated, the ST6x86 CPU simulta-
neously drives the local bus and negates HLDA.

Hold Acknowledge (HLDA) isan active high out-
put used to indicate that the ST6x86 CPU has
responded to the HOLD input and has relin-
quished control of its local bus. Table 3.8 lists the
state of all the ST6x86 CPU signals during a bus
hold state. The ST6x86 CPU continues to operate
during bus hold states as long as the on-chip
cache can satisfy bus requests. HLDA is asserted
until HOLD is negated. Once HOLD is sampled
negated, the ST6x86 CPU simultaneously drives
the local bus and negates HLDA.

3-15
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Table 3.8. Signal States During Bus Hold

SIGNAL LINE STATE SIGNAL LINE STATE
A20M# Recognized internally INTR Recognized internally
A31-A3 Float INV Recognized
ADS# Float KEN# Ignored
ADSC# Float LBA# Float
AHOLD Ignored LOCK# Float
AP Float M/10# Float
APCHK# Driven NA# Ignored
BE7#-BEO# Float NMI Recognized internally
BHOLD Ignored PCD Float
BOFF# Recognized PCHK# Driven
BRDY# Ignored PWT Float
BRDYC# Ignored QDUMP# Recognized
BREQ Driven RESET Recognized
CACHE# Float SCYC Float
D/C# Float SMI# Recognized
D63-DO Float SMIACT# Driven
DHOLD Ignored SUSP# Recognized
DP7-DPO Float SUSPA# Driven
EADS# Recognized TCK Recognized
EWBE# Recognized internally TDI Recognized
FERR# Driven TDO Responds to TCK, TDI, TMS, TRST#
FLUSH# Recognized T™MS Recognized
HIT# Driven TRST# Recognized
HITM# Driven W/R# Float
HLDA Responds to HOLD WB/WT# Ignored
HOLD Recognized WM_RST Recognized
IGNNE# Recognized internally
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3.2.12 Cache Coherency

The cache coherency signals (AHOLD, EADS#,
HIT#, HITM#, and INV) are used to initiate and
monitor cache inquiry cycles. These signals are
intended to be used to ensure cache coherency in
a uni-processor environment only. Contact Cyrix
for additional specifications on maintaining coher-
ency in a multi-processor environment.

Address Hold Request (AHOLD) is an active
high input which forces the ST6x86 CPU to float
A31-A3 and AP in the next clock cycle. While
AHOLD is asserted, only the address bus is dis-
abled. The current bus cycle remains active and
can be completed in the normal fashion. The
ST6x86 CPU does not generate additional bus
cycles while AHOLD is asserted except write-back
cycles in response to a cache inquiry cycle.

External Address Strobe (EADS#) is an active
low input used to indicate to the ST6x86 CPU that
a valid cache inquiry address is being driven on
the ST6x86 CPU address bus (A31-A5) and AP.
The ST6x86 CPU checks the on-chip cache for
this address. If the address is present in the cache
the HIT# signal is asserted. If the data associated
with the inquiry address is “dirty” (modified state),
the HITM# signal is also asserted. If dirty data
exists, a write-back cycle is issued to update exter-
nal memory with the dirty data. Additional cache
inquiry cycles are ignored while HITM# s
asserted.

The state of the INV pin at the time EADS# is sam-
pled active determines the final state of the cache
line. If INV is sampled high, the final state of the
cache line is “invalid”. If INV is sampled low, the
final state of the cache line is “shared.” A cache
inquiry cycle using EADS# may be run while the
ST6x86 CPU is in either an address hold or bus
hold state. The inquiry address must be driven by
an external device.

ﬁ SGS-THOMSON

Hit on Cache Line (HIT#) is an active low output
used to indicate that the current cache inquiry
address has been found in the cache (modified,
exclusive or shared states). HIT# is valid two
clocks after EADS# is sampled active, and
remains valid until the next cache inquiry cycle.

Hit on Modified Data (HITM#) is an active low
output used to indicate that the current cache
inquiry address has been found in the cache and
dirty data exists in the cache line (modified state).
If HITM# is asserted, a write-back cycle is issued
to update external memory. HITM# is valid two
clocks after EADS# is sampled active, and
remains asserted until two clocks after the last
BRDY# of the write-back cycle is sampled active.
The ST6x86 CPU does not accept additional
cache inquiry cycles while HITM# is asserted.

Invalidate Request (INV) is an active high input
used to determine the final state of the cache line
in the case of a cache inquiry hit. INV is sampled
with EADS#. A logic one on INV directs the pro-
cessor to change the state of the cache line to
“invalid”. A logic zero on INV directs the proces-
sor to change the state of the cache line to
“shared.”
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3.2.13 FPU Error Interface

The FPU interface signals FERR# and IGNNE#
are used to control error reporting for the on-chip
floating point unit. These signals are typically used
for a PC-compatible system implementation. For
other applications, FPU errors are reported to the
ST6x86 CPU CPU core through an internal inter-
face.

Floating Point Error Status (FERR#) is an active
low output asserted by the ST6x86 CPU when an
unmasked floating point error occurs. FERR# is
asserted during execution of the FPU instruction
that caused the error. FERR# does not float during
bus hold states.

Ignore Numeric Error (IGNNE#) is an active low
input which forces the ST6x86 CPU to ignore any
pending unmasked FPU errors and allows contin-
ued execution of floating point instructions. When
IGNNE# is not asserted and an unmasked FPU
error is pending, the ST6x86 CPU only executes
the following floating point instructions: FNCLEX,
FNINIT, FNSAVE, FNSTCW, FNSTENV, and
FNSTSW#. IGNNE# is ignored when the NE bit in
CROissettoa 1.

3-18

ﬁ SGS-THOMSON

3.2.14 Scatter/Gather Buffer Interface

The scatter/gather buffer interface signals
(BHOLD, DHOLD, LBA#, QDUMP#), in conjunc-
tion with the byte enables (BE7#-BEO#) and
address hold (AHOLD), can be used by the sys-
tem hardware to transfer data to/from a 32-bit
peripheral interface bus. A 64-bit buffer resides in
the ST6x86 CPU to assist the system in these
transfers. This buffer provides scatter/gather capa-
bility during four different types of transfers as
listed in Table 3.9.
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Table 3.9. Scatter/Gather Cycles

BHOLD DHOLD QDUMP#
CYCLE TYPE USED USED USED DATA BUS TIMING
CPU Write to 32-Bit Bus N _ ) 2:;eelrt(lr(|jven 1 clock after byte enables
CPU Read from 32-Bit Bus X - . Data sampled 1 clock after byte
32-Bit Bus Master Write to Memory *
1) Scat_ter/gather buffer load from Data sampled 1 clock after byte
32-bit bus master. X X - enables asserted
(2) Scatter/gather buffer write . _ X Data driven 1 clock after QDUMP#
to memory. asserted.
32-Bit Bus Master Read from Memory *
(1) Scatterigather buffer load Data sampled 1 clock after byte
from memory. X X i enables asserted.
(2) Scatter/gather buffer write to 32-bit . _ X Data driven 1 clock after QDUMP#
bus master. asserted.
*Note: Bus master transfers using the scatter/gather buffer must be initiated while the CPU bus is in a bus hold state

or an idle state. These cycles cannot occur during CPU initiated bus cycles.

Byte Enable Hold (BHOLD) is an active high
input that causes the ST6x86 CPU to float the byte
enable outputs (BE7#-BEO#) in the next clock.
While BHOLD is asserted, only the byte enables
are disabled. The current bus cycle remains active
and can be completed in the normal fashion. The
ST6x86 CPU continues to generate additional bus
cycles while BHOLD is asserted, so BHOLD
should only be asserted while AHOLD is asserted.

o773

SGS-THOMSON

s WIEROELECTROMICS

BHOLD is asserted by the external system during
scatter/gather buffer cycles. While BHOLD is
asserted, the byte enables are driven by an exter-
nal source and indicate which bytes of the data
bus should be loaded into/written out of the scat-
ter/gather buffer. The ST6x86 CPU samples the
byte enables at each rising clock edge while
BHOLD is asserted. Table 3.10 lists the byte
enable mappings for the scatter/gather cycles.
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Table 3.10. Byte Enable Map for Scatter/Gather Cycles

CYCLE TYPE BE7-BEO# SOURCE DESTINATION
CPU Data Bus Scatter/Gather Buffer
FF No Transfer No Transfer
CPU Read from 32-Bit Bus Fx 31-0 31-0
xF 31-0 63-32
XX 63-0 63-0
Scatter/Gather Buffer CPU Data Bus
] ] . FF No Transfer No Transfer
CPU Write to 32-Bit Bus Ex 31-0 31-0
xF 63-32 31-0
XX 63-0 63-0
CPU Data Bus Scatter/Gather Buffer
Scatter/Gather Buffer Load f FF No Transfer No Transfer
SoomerCaner outer Load fr| - ex | a0
xF 31-0 63-32
XX 63-0 63-0
Scatter/Gather Buffer CPU Data Bus
Scatter/Gath BUff b FF No Transfer No Transfer
xF 63-32 31-0
XX 63-0 63-0

*Note: If LBA# is active during a CPU write cycle with BE3-BEO# inactive, the ST6x86 CPU automatically maps the
upper dword of data (D63-D32) to the lower dword of the data bus (D31-D0).

Data Bus Hold (DHOLD) is an active high input
that forces the ST6x86 CPU to float the data bus
lines (D63-D0O) and the data parity lines
(DP7-DPO) in the next clock. While DHOLD is
asserted, only the data and data parity buses are
disabled. The current bus cycle remains active
and is completed in the normal fashion in
response to BRDY#. The ST6x86 CPU generates
additional bus cycles while DHOLD is asserted. To
avoid writing invalid data, during a write cycle,
DHOLD and BRDY# should not be asserted at the
same time,

The external system asserts DHOLD during scat-
ter/gather buffer load cycles when the ST6x86
CPU is not the bus master. While DHOLD is
asserted, the data bus is driven by an external
source and the information is loaded into the scat-
ter/gather buffer based on the state of the byte
enables (BHOLD asserted). The data bus is sam-
pled one clock after the clock edge at which an
active byte enable is sampled.

320 437 S6S-THOMSON

Local Bus Access (LBA#) is an active low output
asserted by the ST6x86 CPU for any I/O bus cycle
or for any bus access that resides within a “local
bus” address region as specified by the on-chip
configuration registers. LBA# is asserted during
the clock that ADS# is asserted and remains
asserted for only one clock. LBA# is used to indi-
cate a cycle intended to address a device using
the 32-bit peripheral bus. If LBA# is active during a
CPU write cycle with BE(3-0)# inactive, the
ST6x86 CPU automatically maps the upper dword
of data to the lower dword of the data bus.

Q Buffer Dump (QDUMP#) is an active low input
asserted by the external system to dump the con-
tents of the scatter/gather buffer to the data bus.
The data bytes specified by the asserted byte
enables are driven onto the data bus during the
clock after QDUMP# is sampled asserted.
QDUMP# must be asserted at the falling edge of
RESET to enable the scatter/gather interface pins.
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3.2.15 Power Management Interface

The two power management signals (SUSP#,
SUSPA#) allow the ST6x86 CPU to enter and exit
suspend mode. The ST6x86 CPU also enters sus-
pend mode as the result of executing a HALT
instruction if the HALT bit is set in CCR2. Suspend
mode circuitry forces the ST6x86 CPU to consume
minimal power while maintaining the entire internal
CPU state.

Suspend Request (SUSP#) is an active low input
which requests that the ST6x86 CPU enter sus-
pend mode. After recognition of an active SUSP#
input, the ST6x86 CPU completes execution of the
current instruction, any pending decoded instruc-
tions and associated bus cycles, issues a stop
grant bus cycle, and then asserts the SUSPA#
output. SUSP# is ignored following RESET and is
enabled by setting the SUSP bit in CCR2.

The Suspend Acknowledge (SUSPA#) output
indicates that the ST6x86 CPU has entered
low-power suspend mode as the result of either
assertion of SUSP# or execution of a HALT
instruction. SUSPA# remains asserted until
SUSP# is negated, or until an interrupt is serviced
if suspend mode was entered via the HALT
instruction. If SUSP# is asserted and then negated
prior to SUSPA# assertion, SUSPA# may toggle
state after SUSP# negates.

ﬁ SGS-THOMSON

The ST6x86 CPU accepts cache flush requests
and cache inquiry cycles while SUSPA# is
asserted. If FLUSH# is asserted, the CPU exits
the low power state and services the flush request.
After completion of all required write-back cycles,
the CPU returns to the low power state. SUSPA#
negates during the write-back cycles. Before issu-
ing the write-back cycle, the CPU may execute
several code fetches.

If AHOLD, BOFF# or HOLD is asserted while
SUSPA¢# is asserted, the CPU exits the low power
state in preparation for a cache inquiry cycle. After
completion of any required write-back cycles
resulting from the cache inquiry, the CPU returns
to the low power state only if HOLD, BOFF# and
AHOLD are negated. SUSPA# negates during the
write-back cycle.

Table 3.11 lists the ST6x86 CPU signal states for
suspend mode when initiated by either SUSP# or
the HALT instruction. SUSPA# is disabled
(three-state) following RESET and is enabled by
setting the SUSP bitin CCR2.
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Table 3.11. Signal States During Suspend Mode

SUSP# INITIATED/ SUSP# INITIATED/
SIGNAL LINE HALT INITIATED SIGNAL LINE HALT INITIATED
A20M# Ignored INTR Latched/Recognized
A31-A3 Driven INV Recognized
ADS# 1 KEN# Ignored
ADSC# 1 LBA# 1
AHOLD Recognized LOCK# 1
AP Driven M/IO# Driven
APCHK# 1 NA# Ignored
BE7#-BEO# Driven NMI Latched/Recognized
BHOLD Ignored PCD Driven
BOFF# Recognized PCHK# 1
BRDY# Ignored PWT Driven
BRDYC# Ignored QDUMP# Ignored
BREQ 0 RESET Recognized
CACHE# Driven SCYC Driven
D/C# Driven SMI# Latched/Recognized
D63-D0 Float SMIACT# 1
DHOLD Ignored SUSP# 0/ Recognized
DP7-DPO Float SUSPA# 0
EADS# Recognized TCK Recognized
EWBE# Ignored TDI Recognized
FERR# 1 TDO Responds to TCK, TDI, TMS, TRST#
FLUSH# Recognized T™MS Recognized
HIT# Driven TRST# Recognized
HITM# 1 WIR# Driven
HLDA Driven in response to HOLD WB/WT# Ignored
HOLD Recognized WM_RST Latched/Recognized
IGNNE# Ignored
322 $GS-THOMSON
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3.2.16 JTAG Interface

The ST6x86 CPU can be tested using JTAG Inter-
face (IEEE Std. 1149.1) boundary scan test logic.
The ST6x86 CPU pin state can be set according to
serial data supplied to the chip. The ST6x86 CPU
pin state can also be recorded and supplied as
serial data.

Test Clock (TCK) is the clock input used by the
ST6x86 CPU boundary scan (JTAG) test logic.
The rising edge of TCK is used to clock control
and data information into the ST6x86 CPU using
the TMS and TDI pins. The falling edge of TCK is
used to clock data information out of the ST6x86
CPU using the TDO pin.

Test Data Input (TDI) is the serial data input used
by the ST6x86 CPU boundary scan (JTAG) test
logic. TDI is sampled on the rising edge of TCK.

Test Data Output (TDO) is the serial data output
used by the ST6x86 CPU boundary scan (JTAG)
test logic. TDO is output on the falling edge of
TCK.

Test Mode Select (TMS) is the control input used
by the ST6x86 CPU boundary scan (JTAG) test
logic. TMS is sampled on the rising edge of TCK.

Test Reset (TRST#) is an active low input used to
initialize the ST6x86 CPU boundary scan (JTAG)
test logic.

323 437 S6S-THOMSON
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3.3 Functional Timing
3.3.1 ResetTiming

Figure 3.2 illustrates the required RESET timing
for both a power-on reset and a reset that occurs
during operation.

Figure 3.2. RESET Timing

The WM_RST, FLUSH# and QDUMP# inputs are
sampled at the falling edge of RESET to determine
if the ST6x86 CPU should enter built-in self-test,
enable tri-state test mode or enable the
scatter-gather interface  pins,  respectively.
WM_RST, FLUSH# and QDUMP# must be valid at
least two clocks prior to the RESET falling edge.

e S WS WS U

RESET Power-On Reset = 1 msec Min. \

0\

Reset Inactive = 2 CLKs Min,

[\ |

Reset after Power-On =15 CLKs Min.

\_/

(-

WM RST R VALID
FLusH JUOOOCCC00CEOR0ERRRRNNNN) VALID
apump pRKRERXEAERKKR AR VALID

Note 1. ADS# asserted approximately 150-200 clocks after RESET falling edge if no built-in self-test
Note 2. ADS# asserted approximately 2**19 clocks after RESET falling edge if built-in self-test requested.
Note 3. Output pins driven to specified RESET state a maximum of 2 CLKs after RESET rising edge.

1734900
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3.3.2 Bus State Definition

The ST6x86 CPU bus controller
non-pipelined and pipelined operation as well as
single transfer and burst bus cycles. During each

CLK period, the bus controller exists in one of six
states as listed in Table 3.12. Each of these bus
states and its associated state transitions is illus-
trated in (Figure 3.3) and listed in Table 3.13.

supports

Table 3.12. ST6x86 CPU Bus States

STATE

NAME

DESCRIPTION

Ti

Idle Clock

During Ti, no bus cycles are in progress. BOFF# and RESET force the bus
to the idle state. The bus is always in the idle state while HLDA is active.

T1

First Bus Cycle Clock

During the first clock of a non-pipelined bus cycle, the bus enters the T1
state. ADS# is asserted during T1 along with valid address and bus cycle
definition information.

T2

Second and Subsequent Bus
Cycle Clock

During the second clock of a non-pipelined bus cycle, the bus enters the T2
state. The bus remains inthe T2 state for subsequent clocks of the bus cycle
as long as a pipelined cycle is not initiated. During T2, valid data is driven
during write cycles and data is sampled during reads. BRDY# is also sam-
pled during T2. The bus also enters the T2 state to complete bus cycles that
were initiated as pipelined cycles but complete as the only outstanding bus
cycle.

T12

First Pipelined Bus Cycle
Clock

During the first clock of a pipelined cycle, the bus enters the T12 state. Dur-
ing T12, data is being transferred and BRDY# is sampled for the current
cycle at the same time that ADS# is asserted and address/bus cycle defini-
tion information is driven for the next (pipelined) cycle.

T2P

Second and Subsequent
Pipelined Bus Cycle Clock

During the second and subsequent clocks of a pipelined bus cycle where two
cycles are outstanding, the bus enters the T2P state. During T2P, data is
being transferred and BRDY# is sampled for the current cycle. However,
valid address and bus cycle definition information continues to be driven for
the next pipelined cycle.

Td

Dead Clock

The bus enters the Td state if a pipelined cycle was initiated that requires
one idle clock to turn around the direction of the data bus. Td is required for
a read followed immediately by a pipelined write, and for a write followed
immediately by a pipelined read.

3-25
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Figure 3.3. ST6x86 CPU Bus State Diagram

A ‘ Ti P (from any state)

T1

K ‘
1741800
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Table 3.13. Bus State Transitions

TRANSITION Cg?ETEgT SNTI::AXT-II-E EQUATION
A Ti Ti No Bus Cycle Pending.
B Ti T1 New or Aborted Bus Cycle Pending.
C Tl T2 Always.
D T T Not Last BRDY# and No New Bus Cycle P(_ending, or
Not Last BRDY# and New Bus Cycle Pending and NA# Negated.
E T2 T1 Last BRDY# and New Bus Cycle Pending and HITM# Negated.
F T Ti Last BRDY# and No New Bus Cycle Pending, or
Last BRDY# and HITM# Asserted.
G T2 T12 Not Last BRDY# and New Bus Cycle Pending and NA# Sampled
Asserted.
H T12 T2 Last BRDY# and No Dead Clock Required.
I T12 Td Last BRDY# and Dead Clock Required.
J T12 T2P Not Last BRDY#.
K T2P T2P Not Last BRDY#.
L T2P T2 Last BRDY# and No Dead Clock Required.
M T2P Td Last BRDY# and Dead Clock Required.
N Td T12 New Bus Cycle Pending and NA# Sampled Asserted.
o Td T No New Bus Cycle P(_anding, or
New Bus Cycle Pending and NA# Negated.
P [awsae | o et
3-27
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3.3.3 Non-pipelined Bus Cycles

Non-pipelined bus operation may be used for all
bus cycle types. The term “non-pipelined” refers
to a mode of operation where the CPU allows only
one outstanding bus cycle. In other words, the
current bus cycle must complete before a second
bus cycle is allowed to start.

3.3.3.1 Non-pipelined Single Transfer Cycles

Single transfer read cycles occur during
non-cacheable memory reads, 1/0O read cycles,
and special cycles. A non-pipelined single transfer
read cycle begins with address and bus cycle defi-
nition information driven on the bus during the first
clock (T1 state) of the bus cycle. The CPU then
monitors the BRDY# input at the end of the second
clock (T2 state). If BRDY# is asserted, the CPU
reads the appropriate data and data parity lines
and terminates the bus cycle. If BRDY# is not
active, the CPU continues to sample the BRDY#
input at the end of each subsequent cycle (T2
states). Each of the additional clocks is referred to
as a wait state.

ﬁ SGS-THOMSON

The CPU uses the data parity inputs to check for
even parity on the active data lines. If the CPU
detects an error, the parity check output (PCHK#)
asserts during the second clock following the ter-
mination of the read cycle.

Figure 3.4 illustrates the functional timing for two
non-pipelined single-transfer read cycles. Cycle 2
is a potentially cacheable cycle as indicated by the
CACHE# output. Because this cycle is potentially
cacheable, the CPU samples the KEN# input at
the same clock edge that BRDY# is asserted. If
KEN# is negated, the cycle terminates as shown
in the diagram. If KEN# is asserted, the CPU con-
verts this cycle into a burst cycle as described in
the next section. NA# must be negated for
non-pipelined operation. Pipelined bus cycles are
described later in this chapter.

3-28
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Figure 3.4. Non-Pipelined Single Transfer Read Cycles

CLK

ADSH#

Address, AP

CACHE#

W/R#

NA#

BRDY#

KEN#

DATA, DP

PCHK#

Ti

Cycle 1:
Non-Cacheable,
0 WaitState Read

Cycle 2:

Potentially Cacheable,
2 Wait-State Read

T1 T T1 2 T2 T Ti Ti Ti
(Y Y A U A U A U A Y A U (R U S U R
CYCLEL| |\ CYCLE2 )/
VALID X VALID )
/ \ {
\ /
COMNAXRAXERR) AN
{n ) {n 3}

173500
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Single transfer write cycles occur for writes that
are neither line replacement nor write-back cycles.
The functional timing of two non-pipelined single
transfer write cycles is shown in Figure 3.5. Dur-
ing a write cycle, the data and data parity lines are
outputs and are driven valid during the second
clock (T2 state) of the bus cycle.

Data and data parity remain valid during all wait
states. If the write cycle is a write to a valid cache
location in the “shared” state, the WB/WT# pin is
sampled with BRDY#. If WB/WT# is sampled
high, the cache line transitions from the “shared” to
the “exclusive” state.

Figure 3.5. Non-Pipelined Single Transfer Write Cycles

0 Wait-State Write

Ti T1 T2 T1 T2 T2 T2 Ti
ck o\ _f f S S Y S S
ADSH# \cvcLer|/~ [\ cvcLE 2|/
Address, AP X VALID X VALID X
CACHE# / \
WI/R# / |
NA#  (AARAAREEN ! RVAASANY,
BRDY# COO0000, AROOCORO00000Y (-
WB/WT# LOU0000 vaLID 1 VALID
DATA, DP { our —{ ouT
Cycle 1: Cycle 2: | |

2 Wait-State Write

1735100
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3.3.3.2 Non-pipelined Burst Read Cycles

The ST6x86 CPU uses burst read cycles to per-
form cache line fills. During a burst read cycle,
four 64-bit data transfers occur to fill one of the
CPU’'s 32-byte internal cache lines. A
non-pipelined burst read cycle begins with address
and bus cycle definition information driven on the
bus during the first clock (T1 state) of the bus
cycle. The CACHE# output is always active during
a burst read cycle and is driven during the T1
clock.

The CPU then monitors the BRDY# input at the
end of the second clock (T2 state). If BRDY# is
asserted, the CPU reads the data and data parity
and also checks the KEN# input. If KEN# is
negated, the CPU terminates the bus cycle as a
single transfer cycle. If KEN# is asserted, the
CPU converts the cycle into a burst (cache line fill)
by continuing to sample BRDY# at the end of each
subsequent clock. BRDY# must be asserted a total
of four times to complete the burst cycle.

WB/WT# is sampled at the same clock edge as
KEN#. In conjunction with PWT and the on-chip
configuration registers, WB/WT# determines the
MESI state of the cache line for the current line fill.

3-31
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Each time BRDY# is sampled asserted during the
burst cycle, a data transfer occurs. The CPU
reads the data and data parity busses and assigns
the data to an internally generated burst address.
Although the CPU internally generates the burst
address sequence, only the first address of the
burst is driven on the external address bus. Sys-
tem logic must predict the burst address sequence
based on the first address. Wait states may be
added to any transfer within a burst by delaying the
assertion of BRDY# by the desired number of
clocks.

The CPU checks even data parity for each of the
four transfers within the burst. If the CPU detects
an error, the parity check output (PCHK#) asserts
during the second clock following the BRDY#
assertion of the data transfer.

Figure 3.6 illustrates two non-pipelined burst read
cycles. The cycles shown are the fastest possible
burst sequences (2-1-1-1). NA# must be negated
for non-pipelined operation as shown in the dia-
gram. Pipelined bus cycles are described later in
this chapter.

Figure 3.7 depicts a burst read cycle with wait
states. A 3-2-2-2 burst read is shown.
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Figure 3.6. Non-Pipelined Burst Read Cycles

Ti Tl T2 T2 T2 T2 Tl T2 T2 T2 T2 Ti

o '_\_/_\_{_\J_\_/_\_/_\_/_\_/_\_/_\_/_\_/_\J_\_/
ADS# CYCLE1 / \ﬂ _/

Address, AP VALID

P

VALID

X
CACHE# \ /
—

WI/R# \

Naz - JRERARTARARARARN XA AR O ARANAN LA
BrOY# - RAUUAMAANCAANALAXAAX) ANCERER KONKERY
ke RAEAREXCUGRARRRRAXAEXEN AR COACRRXCRARCURMATA XA
WB/WT#
DATA, DP
PCHK# vaup X vaup I vauo ) vaup vaLp [ vaup X vauip
Cycle 1: 2-1-1-1 Burst Read Cycle Cycle 2: 2-1-1-1 Burst Read Cycle | | 1735200
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Figure 3.7. Burst Cycle with Wait States

Ti T1 T2 T2 T2 T2 T2 T2 T2 Ti Ti
ADS# cyeLelf
Address, AP VALID {

CACHE# \ f
W/R# \ f
BROY# S U/ 1/ o
KEN#

WB/WT# VALID
P VALID Ao 2N VALD |

Cycle 1: 3-2-2-2 Burst Read Cycle

1735400

Burst Cycle Address Sequence.

The ST6x86 CPU provides two different address
sequences for burst read cycles. The ST6x86
CPU burst cycle address sequence modes are
referred to as “1+4” and “linear”. After reset, the
CPU default mode is “1+4".

In “1+4” mode, the CPU performs a single transfer
read cycle prior to the burst cycle, if the desired
first address is (...xx8). During this single transfer
read cycle, the CPU reads the critical data. In
addition, the ST6x86 CPU samples the state of
KEN#.

3-33
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If KEN# is active, the CPU then performs the burst
cycle with the address sequence shown in Table
3.14. The ST6x86 CPU CACHE# output is not
asserted during the single read cycle prior to the
burst. Therefore, CACHE# must not be used to
qualify the KEN# input to the processor. In addi-
tion, If KEN# is returned active for the “1" read
cycle in the “1+4”, all data bytes supplied to the
CPU must be valid. The CPU samples WB/WT#
during the “1” read cycle, and does not resample
WB/WT# during the following burst cycle. Figure
3.8 illustrates a “1+4” burst read cycle.
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Table 3.14. “1+4” Burst Address Sequence

BURST CYCLE FIRST SINGLE READ CYCLE PRIOR TO BURST CYCLE ADDRESS
ADDRESS BURST SEQUENCE
0 None 0-8-10-18
8 Address 8 0-8-10-18
10 None 10-18-0-8
18 Address 18 10-18-0-8

Figure 3.8. “1+4” Burst Read Cycle

Ti T1 T2 T1 T2 T2 T2 T2 Ti

cik [\ \—"_\—/_\—/_\—/_\—/_\—/_\_/_\_/_\_l
ADS # cveLlE [ hcveLE 2

Address, AP x x
VALID (A4-AO = 08h or 18h) VALID (A4-A0 = 00h or 10h)

CACHE# / \ /

W /R# \ /

BRDY#

COGRUOUREN00

KEN# mustbe asserted for both cycles. |

we/w T4 OOROTRROCRX vALi RO RARUARAAAL) CODOOCERXNE
DATA,DP { II\D__( D T T T
PCHK# \ vaLD _/ \ vato X vato ¥ vaio Yvaino
| | |
Cycle 1:Single transfer read Cycle 2: 2-1-1-1 BurstRead Cycle
1740300
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The address sequences for the ST6x86 CPU’slin-  performance. Linear burst mode can be enabled
ear burst mode are shown in Table 3.15. Operat- through the ST6x86 CPU CCR3 configuration reg-
ing the CPU in linear burst mode minimizes ister.

processor bus activity resulting in higher system

Table 3.15. Linear Burst Address Sequence

BURST CYCLE FIRST BURST CYCLE ADDRESS
ADDRESS SEQUENCE
0-8-10-18
8-10-18-0
10 10-18-0-8
18 180-8-10
3-35
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3.3.3.3 BurstWrite Cycles

Burst write cycles occur for line replacement and
write-back cycles. Burst writes are similar to burst
read cycles in that the CACHE# output is asserted
and four 64-bit data transfers occur. Burst writes
differ from burst reads in that the data and data
parity lines are outputs rather than inputs. Also,
KEN# and WB/WT# are not sampled during burst
write cycles.

Data and data parity for the first data transfer are
driven valid during the second clock (T2 state) of
the bus cycle. Once BRDY# is sampled asserted
for the first data transfer, valid data and data parity
for the second transfer are driven during the next
clock cycle. The same timing relationship between
BRDY# and data applies for the third and fourth
data transfers as well. Wait states may be added

Figure 3.9. Non-Pipelined Burst Write Cycles

to any transfer within a burst by delaying the asser-
tion of BRDY# by the required number of clocks.

As on burst read cycles, only the first address of a
burst write cycle is driven on the external address
bus. System logic must predict the remaining
burst address sequence based on the first
address. Burst write cycles always begin with a
first address ending in 0 (signals A4-A0=0) and fol-
low an ascending address sequence for the
remaining transfers (0-8-10-18).

Figure 3.9 illustrates two non-pipelined burst write
cycles. The cycles shown are the fastest possible
burst sequences (2-1-1-1). As shown, an idle
clock always exists between two back-to-back
burst write cycles. Therefore, the second burst
write cycle in a pair of back-to-back burst writes is
always issued as a non-pipelined cycle regardless
of the state of the NA# input.

Nas - KA EUCRRRN

BRDY#

FARCCAERRREANRARERANCARRRA)

T T2 T2 T2 T2 W T T2 T2 T2 T2 T
e UL WLy
ADS# CYCLE 1 I wl
Address, AP VALID (A4-A0 = 00h) 1 X VALID (A4-AO = 00h) H
CACHE# \ [\ [ ]
wiRH 7 W [

NN

LA AN AN RN AR CRA XKL

A

(ARMERNRRAXLERRACRERNG

DATA, DP

{ our X our X our X our

out X out X out X out }—

Cycle 1: 2-1-1-1 Burst Write Cycle Cycle 2: 2-1-1-1 Burst Write Cycle 1735300
*Note: Ti state always exists between two back-to-back burstwrite cycles.
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3.3.4 Pipelined Bus Cycles

Pipelined addressing is a mode of operation where
the CPU allows up to two outstanding bus cycles
at any given time. Using pipelined addressing, the
address of the first bus cycle is driven on the bus
and while the CPU waits for the data for the first
cycle, the address for a second bus cycle is
issued. Pipelined bus cycles occur for all cycle
types except locked cycles and burst write cycles.

Pipelined cycles are initiated by asserting NA#.
The CPU samples NA# at the end of each T2, T2P
and Td state. KEN# and WB/WT# are sampled at
either the same clock as NA# is active, or at the
same clock as the first BRDY# for that cycle,
whichever occurs first. The CPU issues the next

Figure 3.10. Pipelined Single Transfer Read Cycles

address a minimum of two clocks after NA# is
sampled asserted.

The CPU latches the state of the NA# pin inter-
nally. Therefore, even if a new bus cycle is not
pending internally at the time NA# was sampled
asserted, the CPU still issues a pipelined bus
cycle if an internal bus request occurs prior to
completion of the current bus cycle. Once NA# is
sampled asserted, the state of NA# is ignored until
the current bus cycle completes. If two cycles are
outstanding and the second cycle is a read, the
CPU samples KEN# and WB/WT# for the second
cycle when NA# is sampled asserted.

Figure 3.10 and Figure 3.11 illustrate pipelined
single transfer read cycles and pipelined burst
read cycles, respectively.

Ti T1 T2 T2 T12 T2 T2 Ti
oK mmmmmmmmm
CPU enters idle bus state because
ADS# CYCLE 1 / /* CYCLE 2 / no bus cycle pending internally.
Address, AP VALID 1 / X VALID 2
CACHE# / \ /
W/RH \ /
AT AT MU R L LR DL O LLULRELTE
NAs (R, N X, | AT (EEERRNRY
BrDY#  [GOROALORDOIG \ / \
KEN# sampled when NA# sampled asserted.
KEN#
DATA, DP { IN1 IN 2
PCHK# \ VALID 1 ’ \ VALID 2 f
Cycle 1: Non-Cacheable, Cycle 2: Potentially Cacheable, 173%m
2 Wait State Read Pipelined Read Cycle
337 &7 SGS-THOMSON
S/ A ilen s




ST6x86

Figure 3.11. Pipelined Burst Read Cycles
Ti T1 T2 T2 T12 T2P T2 T2 T2 T2 Ti Ti
e FLLVS VSTV VTV VL
ADS# CYCLE 1] CYCLE 2]
Address, AP VALID 1 / x VALID 2 x
CACHE# \ / /
WIRH \ \ /
NA - NRXRREXNERCOXRAREX UK

BRDY#

KEN#

(AARCARCERXRRNCCOCRRXCRRXEA

JARAARRLARAAUERARKANCRLE

ACCARTRXACARTRXA

FCERXA R KARRAAAR AN

WG

POARENCERMARRARCRRARTANCENGRY | ARCCHRXARXCRXERREXRAXERRXEN

RERSCAARSONENEL KRR

KX ERRCEXERN Y

w0 RRRCARCAR A oXRNERKACKRRRKARXKEHAY o IﬁﬁﬁﬁﬁﬁﬂIﬁﬁﬁ‘!ﬁﬂf‘I'?Iﬁﬁﬁ#'.ﬁﬂ!ﬁﬁ..ﬁiIﬁ01'3]ﬁﬁﬁﬁﬁ‘Iﬁﬁﬁﬁﬁﬁﬂ!"ﬁﬂlﬁﬁﬂ!ﬁﬂﬁ
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3.3.4.1 Pipelined Back-to-Back
Read/Write Cycles

Figure 3.12 depicts a read cycle followed by a
pipelined write cycle. Under this condition, the
data bus must change from an input for the read
cycle to an output for the write cycle. In order to
accomplish this transition without causing data bus

contention, the CPU automatically inserts a “dead”
(Td) clock cycle. During the Td state, the data bus
floats. The CPU then drives the write data onto
the bus in the following clock. The CPU also
inserts a Td clock between a write cycle and a
pipelined read cycle to allow the data bus to
smoothly transition from an output to an input.

Figure 3.12. Read Cycle Followed by Pipelined Write Cycle

Ti T1 T2 T2 T12 T2P Td T2 Ti
cax M S S S
ADS# CYCLE 1 / A CYCLE 2 /
d
Address, AP VALID 1 // X VALID 2 x
CACHE# \ / / |
WiR# \ ( / [
NA#
BRDY#
KEN# 000000
DATA, DP v X X we X we y—1oure —
PCHK# vaLD1 X vALD1 [X vauD1 [X vALD1
Cyde 1: 2-1-1-1 BurstRead Cyde 2: Pipelired Write 1735700
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3.3.5

The CPU issues interrupt acknowledge bus cycles
in response to an active INTR input. Interrupt
acknowledge cycles are single transfer cycles and
always occur in locked pairs as shown in Figure
3.13. The CPU reads the interrupt vector from the
lower eight bits of the data bus at the completion of
the second interrupt acknowledge cycle. Parity is

Interrupt Acknowledge Cycles

Figure 3.13. Interrupt Acknowledge Cycles

not checked during the first interrupt acknowledge
cycle.

M/IO#, D/C# and W/R# are always logic low during
interrupt acknowledge cycles. Additionally, the
address bus is driven with a value of 0000 0004h
for the first interrupt acknowledge cycle and with a
value of 0000 0000h for the second. A minimum of
one idle clock always occurs between the two
interrupt acknowledge cycles.

ﬁ SGS-THOMSON

Ti T1 T2 Ti | T1 T2 Ti Ti
ek \_f _f \ J’ A\ Y S Y A Y AN
Idle States = 1 CLK MIN
ADS# \ CYCLEL |f \ CYOLE2 |/
Address 0000 0004h X X 0000 0000h XNOO0O00000!
yroe [ ] FEVEEARENNY,
DI/C#, WIR# \
LOCK# \ /
RDY#, BRDY# LOOCOOO OO0
DATA “ IN ,‘ "‘ IN ,‘
I I VALID
InterruptVector Read \_/
During Second Interrupt 1735800
Acknowledge Cycle.
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3.3.6 SMI# Interrupt Timing

The CPU samples the System Management Inter-
rupt (SMI#) input at each clock edge. At the next
appropriate instruction boundary, the CPU recog-
nizes the SMI# and completes all pending write
cycles. The CPU then asserts SMIACT# and
begins saving the SMM header information to the
SMM address space. SMIACT# remains asserted
until after execution of a RSM instruction. Figure
3.14 Illustrates the functional timing of the SMI-
ACT# signal.

Figure 3.14. SMIACT# Timing

To facilitate using SMI# to power manage 1/O
peripherals, the ST6x86 CPU implements a fea-
ture called I/O trapping. If the current bus cycle is
an 1/O cycle and SMI# is asserted a minimum of
three clocks prior to BRDY#, the CPU immediately
begins execution of the SMI service routine follow-
ing completion of the I/O instruction. No additional
instructions are executed prior to entering the SMI
service routine. /O trap timing requirements are
shown in Figure 3.15.

CLK

Normal Normal
Access Access

ADSH

Normal
*ﬁccess /

‘E"T
RDY# or BRDY# )
)
I il rid
o
SM# \ / - > 4—>] »la—
4M?"\I-K 1CLK | %
SMIACT# 1CLK - . MIN 4 CLK
MIN L4 4 MIN
1739900
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Figure 3.15. SMM I/O Trap Timing

T1 T2
CLK

Address,

| /0O Cycle (Read or Write) |

AW AW AW W W AW AW AW

T2 T2 T2 T2

VALID

Byte Enables

ADS# /

BRDY#

SMI#

W

-—— 3 CLK Min.—
1736000

3.3.7 Cache Control Timing
3.3.7.1 Invalidating the Cache Using FLUSH#

The FLUSH# input forces the CPU to write-back
and invalidate the entire contents of the on-chip
cache. FLUSH# is sampled at each clock edge,
latched internally and then recognized internally at
the next instruction boundary. Once FLUSH# is
recognized, the CPU issues a series of burst write
cycles to write-back any “modified” cache lines.
The cache lines are invalidated as they are written
back. Following completion of the write-back
cycles, the CPU issues a flush acknowledge spe-
cial bus cycle.

ﬁ SGS-THOMSON

The latency between when FLUSH# occurs and
when the cache invalidation actually completes
varies depending on:

(1) the state of the processor when FLUSH# is
asserted,

(2) the number of modified cache lines,

(3) the number of wait states inserted during the
write-back cycles.

Figure 3.16 illustrates the sequence of events that
occur on the bus in response to a FLUSH#
request.

3-42
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Figure 3.16. Cache Invalidation Using FLUSH#

N AWAN AW AWRW M/
,_\.5_4 ,_\_/_\_4,_\_4'_\.55.4 '_\_1'_\_/|
; : g l
ADSH# : L/ 1/
srove T ) 4T\
: : s :
Address ! X Write-Back Cycle |, : X 0000 0004h
4 ' $ '
FusHe [\ ¢ f ! ’ :
' Wait for Processor Write-Back of all Modified Lines . Flush Acknowledge
1 to Complete Current in Internal Cache X Special Cycle
! Instruction 1 ' 1736100
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3.3.7.2 EWBE# Timing

During memory and I/O write cycles, the ST6x86
CPU samples the external write buffer empty
If EWBE# is negated, the CPU
does not write any data to “exclusive” or “modified”

(EWBE#) input.

internal cache lines.

After sampling EWBE# negated, the CPU contin-
ues to sample EWBE# at each clock edge until it
asserts. Once EWBE# is asserted, all internal
cache writes are allowed. Through use of this sig-
nal, the external system may enforce strong write
ordering when external write buffers are used.
EWBE# functional timing is shown in Figure 3.17.

Figure 3.17. External Write Buffer Empty (EWBE#) Timing

T1 T2 ! !
1 1
ck AN\ S\ ST
abs# [\_|[ !
1 1
W/R# / L\ :
1 1
_ 1\ I
DATA 4+ outr_ ) :
EWBE# | 5 L /XXXXXKAXXXN
BRDY# ./ ;
Write Cycle: X No writes to E or M-State lines E Writes to E or M-State lines
EWBE# sampled ! that hit in the internal cache. i that hitin the internal cache
with each BRDY#.. EWBE# sampled at each , can complete.
' clock edge. ' 1737800
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3.3.8 Bus Arbitration

An external bus master can take control of the
CPU’s bus using either the HOLD/HLDA hand-
shake signals or the back-off (BOFF#) input. Both
mechanisms force the ST6x86 CPU to enter the
bus hold state.

Figure 3.18. Requesting Hold from an Idle Bus

3.3.8.1 HOLD and HLDA

Using the HOLD/HLDA handshake, an external
bus master requests control of the CPU’s bus by
asserting the HOLD signal. In response to an
active HOLD signal, the CPU completes all out-
standing bus cycles, enters the bus hold state by
floating the bus, and asserts the HLDA output.
The CPU remains in the bus hold state until HOLD
is negated. Figures 3-18, 3-19 (Page 3-47) and
3-20 (Page 3-48) illustrate the timing associated
with requesting HOLD during an idle bus, during a
non-pipelined bus cycle and during a pipelined bus
cycle, respectively.

Ti Ti T1 T2

Ti Ti Ti
cLk f \ i \ /_\ !
ADSH# \
Address )
HOLD /
HLDA V
«g§—Min One Clock }’

MIN

Zero Clocks 1760
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Figure 3.19. Requesting Hold During a Non-Pipelined Bus Cycle

T1 T2 T2 Ti Ti Ti

CLK /_\_/_\_/_\_/_\_/_\_/_\_/
ADSH# | \ |/ \

Address :X VALID )

RDY# OO \ UCROXAXAN
HOLD /

HLDA /

1736300
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Figure 3.20. Requesting Hold During a Pipelined Bus Cycle

Ti T1 T2 T2 T12 T2 T2 Ti Ti Ti

c A\
ADS# CYCLE 1 j /* CYCLE2/ \

Address, AP M vaD1 X VALID 2

BRDV# \ _/__\_
DATA, DP “ IND__EIZ ,‘
HOLD /
HLDA /
1736400
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3.3.8.2 Back-Off Timing

An external bus master requests immediate con-
trol of the CPU’s bus by asserting the back-off
(BOFF#) input. The CPU samples BOFF# at each
clock edge and responds by floating the bus in the
next clock cycle as shown in Figure 3.21. The
CPU remains in the bus hold state until BOFF# is
negated.

If the assertion of BOFF# interrupts a bus cycle,
the bus cycle is restarted in its entirety following
the negation of BOFF#. If KEN# was sampled by

Figure 3.21. Back-Off Timing

the processor before the cycle was aborted, it
must be returned with the same value during the
restarted cycle. The state of WB/WT# may be
changed during the restarted cycle.

If BOFF# and BRDY# are active at the same clock
edge, the CPU ignores BRDY#. Any data returned
to the CPU with the BRDY# is also ignored. If
BOFF# interrupts a burst read cycle, the CPU
does not cache any data returned prior to BOFF#.
However, this data may be used for internal CPU
execution.

T T2 Ti

ex/\_f _/ _/ /f _1

Ti T T2

ADs# [ \ S T

Address | X VALID ) { VALID
BRDY# QOCRXXXXXAA
BOFF# \ /

1736600
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3.3.9 Cache Inquiry Cycles

Cache inquiry cycles are issued by the system
with the CPU in either a bus hold or address hold
state. Bus hold is requested by asserting either
HOLD or BOFF#, and address hold is requested
by asserting AHOLD. The system initiates the
cache inquiry cycle by asserting the EADS# input.
The system must also drive the desired inquiry
address on the address lines, and a valid state on
the INV input.

In response to the cache inquiry cycle, the CPU
checks to see if the specified address is present in
the internal cache. If the address is present in the
cache, the CPU checks the MESI state of the
cache line. If the line is in the “exclusive” or
“shared” state, the CPU asserts the HIT# output
and changes the cache line state to “invalid” if the
INV input was sampled logic high with EADS#.

3-49
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If the line is in the “modified” state, the CPU
asserts both HIT# and HITM#. The CPU then
issues a bus cycle request to write the modified
cache line to external memory. HITM# remains
asserted until the write-back bus cycle com-
pletes. No additional cache inquiry cycles are
accepted while HITM# is asserted. Write-

back cycles always start at burst address 0. Once
the write-back cycle has completed, the CPU
changes the cache line state to “invalid” if the INV
input was sampled logic high, or “shared” if the
INV input was sampled low.

In addition to checking the cache, the CPU also
snoops the internal line fill and cache write-back
buffers in response to a cache inquiry cycle. The
following sections describe the functional timing for
cache inquiry cycles and the corresponding
write-back cycles for the various types of inquiry
cycles.
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3.3.9.1 Inquiry Cycles Using HOLD/HLDA

Figure 3.22 illustrates an inquiry cycle where
HOLD is used to force the CPU into a bus hold
state. In this case, the system asserts HOLD and
must wait for the CPU to respond with HLDA
before issuing the cache inquiry cycle. To avoid
address bus contention, EADS# should not be
asserted until the second clock after HLDA as

shown in the diagram. If the inquiry address hits
on a modified cache line, HIT# and HITM# are
asserted during the second clock following
EADS#. Once HITM# asserts, the system must
negate HOLD to allow the CPU to run the corre-
sponding write-back cycle. The first cycle issued
following negation of HLDA is the write-back bus
cycle.

Figure 3.22. HOLD Inquiry Cycle that Hits on a Modified Line

T2 TN T TN T T T Ti T T_ T2 T2 T2 T2 T T
LSBT AU AU AR AR AR U BAUN ARV AR AU AR A AR AR AR
ADSH \ v

Address [FromcPU} {ro cru} { Wiite-Back Cycle f

BROY+# [ | ARV OO RONRA BRI 0 ERTOECRAEOORRE
HOLD

HLDA f \

EADS# v/
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HIT# \
HITM# \ [
1736600
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3.3.9.2

Figure 3.23 Iillustrates an inquiry cycle where
BOFF# is used to force the CPU into a bus hold
state. In this case, the system asserts BOFF# and
the CPU immediately relinquishes control of the
bus in the next clock. To avoid address bus conten-
tion, EADS# should not be asserted until the sec-
ond clock edge after BOFF# as shown in the

Inquiry Cycles Using BOFF#

diagram. If the inquiry address hits on a modified
cache line, HIT# and HITM# are asserted during
the second clock following EADS#. Once HITM#
asserts, the system must negate BOFF# to allow
the CPU to run the corresponding write-back
cycle. The first cycle issued following negation of
BOFF# is the write-back bus cycle.

Figure 3.23. BOFF# Inquiry Cycle that Hits on a Modified Line

BRDY#

BOFF#

EADS#

T1 Ti Ti Ti Ti Ti T1 T2 T2 T2 T2 Ti Ti T1 T2
S A RW AW AW AW RWRWRW R R R AW R R R
nosi [\__| 4 N v
Address {ro cru} { Write-Back Cycle x x Cycle 1

From CPU} To CPU {
R ARRNREC ST R RRCIRR S RO

(Restarted)
.ﬁﬂlﬁﬂlﬂIﬁﬁﬁﬁﬁ(ﬁ*{ﬂ!fﬂ(ﬁi)!tfﬂlﬁm}{

-\ /

u/

AV 11 R TR R e R W o
HIT# \
HITM# \ [
1736700
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3.3.9.3

Figure 3.24 llustrates an inquiry cycle where
AHOLD is used to force the CPU into an address
hold state. In this case, the system asserts
AHOLD and the CPU immediately floats the
address bus in the next clock. To avoid address
bus contention, EADS# should not be asserted
until the second clock edge after AHOLD as
shown in the diagram. If the inquiry address hits

Inquiry Cycles Using AHOLD

on a modified cache line, the CPU asserts HIT#
and HITM# during the second clock following
EADS#. The CPU then issues the write-back
cycle even if AHOLD remains asserted. ADS# for
the write-back cycle asserts two clocks after
HITM# is asserted. To prevent the address bus
and data bus from switching simultaneously, the
system must adhere to the restrictions on negation
of AHOLD as shown in Figure 3.24.

Figure 3.24. AHOLD Inquiry Cycle that Hits on a Modified Line
T1 T2 Ti Ti Ti Ti Ti T1 T2 T2 T2 T2 T2 Ti Ti
S A [ U0 VY A (VA VA UV UV VAV NV L UV Y ALY AV AR
ADS# \ _I \ _I
Address | Fromcpu  } {ro cru} { Write-Back Cycle H
srov g | (g |\ (AR AR AR
Data, DP '( } { ouT l ouT x ouT x ouT }
AHOLD f \
EADS# \__I
i Y . o O A
HIT# \
HITM# \ [
1736800
Restrictionson negating AHOLD:
1. During a write cycle, AHOLD should notbe negatedinthe same clockthat BRDY# is asserted.
2. During pipelined buscycles, AHOLD should not be negated duringthe Td clock between a read cycle
followed by a pipelined write cycle.
3. While HITM# is asserted, AHOLD shouldnot be negated inthe same clock that ADS# is asserted.
-52
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Figure 3.25 depicts an AHOLD inquiry cycle dur-
ing a line fill. In this case, the write-back cycle
occurs after the line fill is completed. At least one
idle clock exists between the final BRDY# of the
line fill and the ADS# for the write-back cycle. If
the inquiry cycle hits on the address of the line fill

Figure 3.25. AHOLD Inquiry Cycle During a Line Fill

that is in progress, the data from the line fill cycle is
always used to complete the pending internal
operation. However, the data is not placed in the
cache if INV is sampled asserted with EADS#.
The data is placed in the cache in a “shared” state
if INV is sampled negated.

T1 T2 T2 T2 T2 T2 T2

Ti T1 T2 T2 T2 T2 Ti Ti

Haigtiatiaiaiataialialalaliatalaliay
Line Fill Write-Back Cycle]
aosi [\___|f (W)
Address | Fromcpu  } {To cry}
BRDY# m \ (IR AR RV
Data, DP { w Y n I w ) w} { out J out } out § out }
AHOLD {
EADS# o)
R )10 41 M 0 0 OO 0 O
HIT# \
HITM# \ [ ]

state if INV is sampled negated with EADS#.

Note: |f the inquiry cycle hits on the linefill in progress, the data from the line fill will be used to complete the pending internal operation.
The line is not placed in the cache if INV is sampled asserted with EADS#. The line is placed in the cache in a "shared”

1736900
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During cache inquiry cycles, the CPU performs asserts the APCHK# output if a parity error is
address parity checking using A31-A5 and the AP detected. Figure 3.26 illustrates the functional tim-
signal. The CPU checks for even parity and ing of the APCHK# output.

Figure 3.26. APCHK# Timing

Tx Tx Tx

e A\ 4

Tx

TX

S Y A

EADS# \ -/
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3.3.10 Scatter/Gather Buffer Interface

The scatter/gather buffer interface signals, in con-
junction with the byte enables and address hold,
can be used by the system hardware to transfer
data to/from a 32-bit peripheral interface bus. A
64-bit buffer resides in the CPU to assist the sys-
temin these transfers.

As shown in Figure 3.27 when BHOLD is asserted
the CPU floats the byte enable outputs
(BE7#-BEO#) in the next clock. While BHOLD is
asserted, only the byte enables are disabled. The

Figure 3.27. BHOLD and DHOLD Timing

current bus cycle remains active and can be com-
pleted in the normal fashion. The CPU continues
to generate additional bus cycles while BHOLD is
asserted, so BHOLD should only be asserted
while AHOLD is asserted.

Figure 3.27 also illustrates DHOLD timing. DHOLD
forces the CPU to float the data and data parity
buses in the next clock. While DHOLD is
asserted, the current bus cycle remains active and
additional bus cycles may be generated by the
CPU.

c Uy
DHOLD / \
p63-00 1 ) o1
BHOLD / \
eri-ee0s 1< e ) C o

1737100
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Figure 3.28 and Figure 3.29 illustrate CPU read the scatter/gather buffer.
and write cycles that access a 32-bit device using

Figure 3.28. CPU Upper Byte Read from 32-Bit Bus Using Scatter/Gather

ck f f “of W/ SV )
aost | \__| [ —/
ear | \__| /

D63-D32 b1 (o /G Buffer)) > <3

D31-D0 o1 D {1 |

BE7#-BEO# -—( BE# = OxBF From CPU )——( BE# = OxBF To CPU ) (BE# From CPU
BHOLD / \

BRDY# \__/

Controller detects CPU read of BHOLD is asserted inorder to  The clock following BE# = OxBFh,
upper byte to 32-bit peripheral bus issue the MUX command the CPU maps D31-DO to D63-D32
via LBA# and BE#s. via the BE#s (BE# = 0xBFh). of the scatter/gather buffer to read byte 6. 1737200
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Figure 3.29. CPU Upper Byte Write to 32-Bit Bus Using Scatter/Gather

CLK f '\ L A W { \_t'_\ [\ f
ADS# \_
A

[

LBA# /

D63-D32 4 D2 S ]
D31-DO0 < D2 (from S/G Buffer) > < b1
BE7#-BEO# ( BE# = OxBF From CPU XBE# From CPU

BHOLD
BRDY# 1/
Controller detects CPU write of BHOLD need not be asserted During the clock following BE# = 0xBFh,
upper byte to 32-bit peripheral bus because the CPU automatically the CPU maps D63-D32 to D31-D0
via LBA# and BE#s. maps D63-D32 to D31-D0 when for transfer on 32-bit bus.
LBA# asserted and BE3-BEO = Fh. 1737300
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Figures 3.30 and 3.31 illustrate bus master reads  main memory. The CPU bus must be idle when a
and writes between a 32-bit device and 64-bit bus master initiates a scatter/gather cycle.

Figure 3.30. Bus Master Read from 64-Bit Memory to 32-Bit Bus

ck £\ /L
D63-D32 o2 irom Memory >——< D2 D)
D31-DO < D1 from Memory »——< 02 from G Butter Xt from 5/G Bui
BE7#-BEO#  BE#=0x00 X BE#=0xFF X BE#=0x0F X BE#=0XF0 >

BHOLD | /

pHoD | / /

QDUMP#

/

Controller asserts BHOLD and DHOLD BE#=0x00 causes the 64-bit data from

to transfer data from memory
to CPU’s internal scatter/gather buffer.

memory to be written into CPU’s buffer.
The controller negates BE# (BE=0xFF)
so that data in the scatter/gather buffer is
not corrupted and tristates the data bus

to allow for a scatter operation to proceed.

The controller negates DHOLD and
asserts BE#=0xOF followed by OxFO
along with QDUMP# to transferthe
upper word (D2=D63-D32) followed
by the lower word (D1=D31-D0),

) . 1737400
respectively, to the 32-bit bus.
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Figure 3.31. Bus Master Write to 64-Bit Memory from 32-Bit Bus

ck 4 W WY WS S 1 g

< D2 (to Memory)

\Vg

D32-D63

D0-D31 ¢ 02 (056 Buffer) D1 (051G BuEy——& D1 (toMemory)
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(S

BHOLD |

-/
DHOLD | / \
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Controller asserts BHOLD and DHOLD The MUX command along witha word  The controller relinquishes control of
CPU data bus, negates DHOLD and

to transfer data from the 32-bit bus write is issued by the controller to p
to CPU’ internalscattrigather buffer. write D1 flom the 32bitbus i o er . OBpL o P e Sabidata
D63-D32 of CPU'’s buffer followed by
a 2nd word write to D31-DO. 1737500
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3.3.11 Power Management Interface
SUSP# Initiated Suspend Mode

The ST6x86 CPU enters suspend mode when the
SUSP# input is asserted and execution of the cur-
rent instruction, any pending decoded instructions
and associated bus cycles are completed. A stop
grant bus cycle is then issued and the SUSPA#
output is asserted. The CPU responds to SUSP#
and asserts SUSPA# only if the SUSP bit is set in
the CCR2 configuration register.

SUSP# is sampled (Figure 3.32) on the rising
edge of CLK. SUSP# must meet specified setup
and hold times to be recognized at a particular
CLK edge. The time from assertion of SUSP# to
activation of SUSPA# varies depending on which
instructions were decoded prior to assertion of

Figure 3.32. SUSP# Initiated Suspend Mode

SUSP#. The minimum time from SUSP# sampled
active to SUSPA# asserted is eight CLKs. As a
maximum, the CPU may execute up to two instruc-
tions and associated bus cycles prior to asserting
SUSPA#. The time required for the CPU to deacti-
vate SUSPA# once SUSP# has been sampled
inactive is five CLKSs.

If the CPU is in a hold acknowledge state and
SUSP# is asserted, the CPU may or may not enter
suspend mode depending on the state of the CPU
internal execution pipeline. If the CPU is in a
SUSP# initiated suspend mode, one occurrence of
NMI, INTR and SMI# is stored for execution once
suspend mode is exited. The ST6x86 CPU also
recognizes and acknowledges the HOLD, AHOLD,
BOFF# and FLUSH# signals while in suspend
mode.

| Tx | TX Ti

Ti Ti | Ti TX

|
ck /A O\
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|
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L
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HALT Initiated Suspend Mode for the HALT bus cycle as shown in Figure 3.33.
The CPU al d mod It of Suspend mode is then exited upon recognition of
e also enters suspend mode as aresult ot 5 NM| an unmasked INTR or an SMI#. SUSPA#

executing a HALT instruction if the HALT bit in i i i
CCR2 is set. The SUSPA# output is asserted no :ﬁtgtrar?ﬁ?/ated 10 CLKs after sampling of an active

later than 40 CLKs following BRDY# sampled active
Figure 3.33. HALT Initiated Suspend Mode

Non-Pipelined HALT
T1 | T2 Ti Ti Ti Ti Ti Ti

w T
ADSE N /

M/IO#,
BE(0, 1, 3-7)#,
WI/R#

A3-A31, X)\

BE#2, DIC#, |O#

W
&

R

- .3

BRDY# 10 CLKs
INTR, NMI o T~
[—A40 CLKs (Max)=—nm
SUSPA# 7
1737700
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Stopping the Input Clock

Once the CPU has entered suspend mode, the
input clock (CLK) can be stopped and restarted
without loss of any internal CPU data. The CLK
input can be stopped at either a logic high or logic
low state.

The CPU remains suspended until
restarted and suspend mode
described earlier.

CLK is
is exited as
While the CLK is stopped, the

Figure 3.34. Stopping CLK During Suspend Mode

CPU can no longer sample and respond to any
input stimulus.

Figure 3.34 illustrates the recommended sequence
for stopping the CLK using SUSP# to initiate sus-
pend mode. CLK may be started prior to or follow-
ing negation of the SUSP# input. The system must
allow sufficient time for the CPU’s internal PLL to
lock to the desired frequency before exiting sus-
pend mode.

s WIEROELECTROMICS
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4.0 ELECTRICAL SPECIFICATIONS
4.1 Electrical Connections

This section provides information on electrical con-
nections, absolute maximum ratings, recom-
mended operating conditions, DC characteristics,
and AC characteristics. All voltage values in Elec-
trical Specifications are measured with respect to
Vgs unless otherwise noted.

4.1.1 Power and Ground Connections and
Decoupling

Testing and operating the ST6x86 CPU requires
the use of standard high frequency techniques to
reduce parasitic effects. The high clock frequen-
cies used in the ST6x86 CPU and its output buffer
circuits can cause transient power surges when
several output buffers switch output levels simulta-
neously. These effects can be minimized by filter-
ing the DC power leads with low-inductance
decoupling capacitors, using low impedance wir-
ing, and by utilizing all of the Vc and GND pins.
The ST6x86 CPU contains 296 pins with 53 pins
connected to Ve and 53 connected to Vgg
(ground).

4.1.2 Pull-Up/Pull-Down Resistors

Table 4.1 lists the input pins that are internally con-
nected to pull-up and pull-down resistors. The
pull-up resistors are connected to Ve and the
pull-down resistors are connected to Vgs. When
unused, these inputs do not require connection to
external pull-up or pull-down resistors. The
SUSP# pin is unique in that it is connected to a
pull-up resistor only when SUSP# is not asserted.

Table 4.1. Pins Connected to Internal Pull-Up
and Pull Down Resistors

SIGNAL PIN NO. RESISTOR
BRDYC# Y3 20-kQ pull-up
CLKMUL Y33 20-kQ pull-down
QDUMP# ALY 20-kQ pull-up
SMI# AB34
SUSP# Y34 20-kQ pull-up (see text)
TCK M34
TDI N35
T™MS P34
TRST# Q33 20-kQ pull-up
Reserved J33
Reserved w35
Reserved Y35
Reserved AN35 20-kQ pull-down

ﬁ SGS-THOMSON
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4.1.3

All inputs not used by the system designer and not
listed in Table 4.1 should be connected either to
ground or to Voc. Connect active-high inputs to
ground through a 20 kQ (+ 10%) pull-down resistor
and active-low inputs to V¢ through a 20 kQ (
10%) pull-up resistor to prevent possible spurious
operation.

4.1.4 NC and Reserved Pins

Pins designated NC have no internal connec-
tions. Pins designated RESV or RESERVED
should be left disconnected.  Connecting a
reserved pin to a pull-up resistor, pull-down resis-
tor, or an active signal could cause unexpected
results and possible circuit malfunctions.

Unused Input Pins

Table 4.2. Absolute Maximum Ratings

4.2 Absolute Maximum Ratings

The following table lists absolute maximum ratings
for the ST6x86 CPU microprocessors. Stresses
beyond those listed under Table 4.2 limits may
cause permanent damage to the device. These
are stress ratings only and do not imply that opera-
tion under any conditions other than those listed
under “Recommended Operating Conditions”
Table 4.3 is possible. Exposure to conditions
beyond Table 4.2 may (1) reduce device reliability
and (2) result in premature failure even when there
is no immediately apparent sign of failure. Pro-
longed exposure to conditions at or near the abso-
lute maximum ratings may also result in reduced
useful life and reliability.

PARAMETER MIN MAX UNITS NOTES
Operating Case Temperature 65 110 °C Power Applied
Storage Temperature 66 150 °C
Supply Voltage, Ve -05 40 \%
Voltage On Any Pin 05 Vec +05 \
Input Clamp Current, I, 10 mA Power Applied
Output Clamp Current, lok 25 mA Power Applied
42 (37 SGS-THOMSON
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4.3 Recommended Operating Conditions

Table 4.3 presents the recommended operating conditions for the ST6x86 CPU device.

Table 4.3. Recommended Operating Conditions

PARAMETER MIN MAX UNITS NOTES

Tc Operating Case Temperature 0 70 °C Power Applied
Ve Supply Voltage 3.15 3.7 \%
V| High-Level Input Voltage 20 55 \%
VL Low-Level Input Voltage -0.3 0.8 \Y,
lon High-Level Output Current

All outputs except A20-A3 and W/R# -1.0 mA VsV

A20-A3 and W/R# -20 O~ YOH(MIN)
loL Low-Level Output Current

All outputs except A20-A3 and W/R# 5.0 mA Ny

A20-A3 and W/R# 100 O~ YOL(MAX}
43 $GS-THOMSON
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4.4 DC Characteristics

Table 4.4. DC Characteristics (at Recommended Operating Conditions)

PARAMETER MIN TYP MAX UNITS NOTES
VoL Output Low Voltage
IOL =5mA 0.4 Vv
Von Output High Voltage
IOH =-1mA 2.4 Vv
I, Input Leakage Current
For all pins except those *15 MA  |0<V|y<Vce
listed in Table 4-1.
iy Input Leakage Current _
. g Vig=24V
For all pins with internal 200 HA See Table 4-1.
pull-downs.
L Input Leakage Current 400 A V) =045V
For all pins with internal pull-ups. H See Table 4-1.
lcc  Active Icc
80 MHz 39 4.7
100 MHz 45 54
110 MHz 48 5.8 A
120 MHz 5.1 6.1 Note 1,5
133 MHz 55 6.6
lccsm Suspend Mode ¢
80 MHz 43 75
100 MHz 48 80 ma | Note 1, 3,5
110 MHz 50 83
120 MHz 51 105
133 MHz 54 115
ICCSS Standby ICC
0 MHz (Suspended/CLK Stopped) 35 75 mA Note 4,5
CnInput Capacitance 15 pF f =1 MHz, Note 2
CoytOutput Capacitance 20 pF f =1 MHz, Note 2
C,ol/O Capacitance 25 pF f =1 MHz, Note 2
CcLkCLK Capacitance 15 pF f =1 MHz, Note 2
Notes:

1. Frequency (MHz) ratings refer to the internal clock frequency.

2. Not 100% tested.

3. Allinputs at 0.4 or V¢ - 0.4 (CMOS levels). All inputs held static except clock and all outputs unloaded
(static oyt = 0 mA).

4. Allinputs at 0.4 or V¢ - 0.4 (CMOS levels). Allinputs held static and all outputs unloaded (static Iyt = 0 mA).
5. Typical, measured at Voc = 3.3V
a4 (37 SGS-THOMSON
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4.5 AC Characteristics

Tables 4-6 through 4-11 list the AC characteristics
including output delays, input setup requirements,
input hold requirements and output float delays.
These measurements are based on the measure-
ment points identified in Figure 4.1 and Figure 4.2.
The rising clock edge reference level Vggr and
other reference levels are shown in Table 4.5.
Input or output signals must cross these levels during
testing.

ﬁ SGS-THOMSON

Figure 4.1 shows output delay (A and B) and input
setup and hold times (C and D). Input setup and
hold times (C and D) are specified minimums,
defining the smallest acceptable sampling window
a synchronous input signal must be stable for cor-
rect operation.

4-5
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Figure 4.1. Drive Level and Measurement Points for Switching Characteristics

Tx

V| HD_
CLK: VREF /_ ____________________ VREF

Vio
: MAX

Valid

OUTPUTS: Outputn VREFW 7{VREF Output n+1
Viro / Valld

INPUTS: Veer Input Vrer

LEGEND: A - Maximum Output Delay Specification

B - Minimum Output Delay Specification
C - Minimum Input Setup Specification 1709406
D - Minimum Input Hold Specification

Table 4.5. Drive Level and Measurement Points for Switching Characteristics

VOLTAGE

SYMBOL (Volts)

VREF 15

ViHp 23

ViLp 0
Note: Refer to Figure 4-1.

46 L3z $GS:THOMSON
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Table 4.6. Clock Specifications
Tease = 0°C to 70°C, See Figure 4.2

o773

3

40-MHz BUS | 50-MHz BUS | 55-MHz BUS | 60-MHz BUS | 66-MHz BUS
SYMBOL PARAMETER UNITS
MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX
CLK Frequency 40 50 55 60 66.6 MHz
T1 CLK Period 25 20 18 16.67 | 33.33| 150 | 30.0 ns
T2 CLK Period Stability + 250 +250 +250 +250 + 250 ps
T3 CLK High Time 9 7 40 40 40 ns
T4 CLK Low Time 9 7 40 40 40 ns
T5 CLK Fall Time 0.15 0.15 015 | 15 | 015 | 15 | 015 15 ns
T6 CLK Rise Time 0.15 0.15 015 | 15 | 015 | 15 | 015 15 ns
Figure 4.2. CLK Timing and Measurement Points
F T1 -

VIH(MIN) Y L. . . U U

VRer ey . . U .

VIL(MAX) - ‘ _____ -
CLK

.- T5
1740502
4-7
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Table 4.7. OutputValid Delays
C =50 pF, Tcase = 0°C to 70°C, See Figure 4.3

SYM- 40-MHz BUS | 50-MHz BUS | 55-MHz BUS | 60-MHz BUS | 66-MHz BUS
BOL PARAMETER UNITS
MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX
A31-A3,BE7#-BEOH#,
CACHE#, D/C#, LBA#,
T7 | LOCK# PCD.PWT, 3 14 | 10 | 12 10 | 70| 10| 80 | 10 | 70 ns
SCYC, SMIACT#, W/R#
T7b | ADS#, M/IO# 14 | 10 | 12 10| 75| 10| 75 | 10 | 60 ns
T8 |ADSC# 14 | 10 | 12 10| 70| 20| 80 ] 10 | 70 ns
T9 |AP 14 | 10 | 12 10 | 85| 10 | 85 | 10 | 85 ns
APCHK#,PCHK#,
T10 | Cerps 3 16 | 10 | 14 10 | 83| 10| 70 | 10 | 70 ns
111 |D63-DO,DP7-DPO 3 | 14| 13| 12| 13| 90| 13| 90 | 13| 75 | ns
(Write)
T12a |HIT# 3 14 | 10 | 12 10 | 80| 10| 80 | 10 | 80 ns
T12b |HITM# 3 14 | 11 12 11 | 70| 12| 70| 11 | 60 ns
T13 |BREQ, HLDA 3 14 | 10 | 12 10 | 80| 10| 80 | 10 | 80 ns
T14 | SUSPA# 3 16 | 10 | 14 10 | 80| 10| 80 | 10 | 80 ns
Figure 4.3. Output Valid Delay Timing
TX TX Tx Tx
CLK
MIN MAX
Rl ™ T7-T14
\ \
OUTPUTS VALIDn m VALID n+1
1740000
48 SGS-THOMSON
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Table 4.8. Output Float Delays
C =50 pF¢ase = 0°C to 70°C, See Figure 4.4

40-MHz BUS | 50-MHz BUS | 55-MHz BUS |60-MHz BUS (66-MHz BUS
SYMBOL | PARAMETER UNITS
MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX

A31-A3,ADSH#,
BE7#-BEO#,
BREQ,CACHE#,
D/C#,LBA#,
LOCK#,M/IO#,
PCD,PWT,
SCYC,SMIACT#,
WIR#

T16 AP 19 16 100 10.0 10.0 ns

T15 19 16 100 100 10.0 ns

D63-D0,DP7-DPO

(Write) 19 16 10.0 10.0 10.0 ns

T17

Figure 4.4. Output Float Delay Timing

Tx TXx TX TXx
CLK

T15-T17 [MIN] MAX |

1741000

4-9
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Table 4.9. Input Setup Times
Tease = 0°C to 70 °C, See Figure 4.5

40-MHz | 50-MHz | 55-MHz | 60-MHz | 66-MHz
SYMBOL PARAMETER BUS BUS BUS BUS BUS | UNiTs
MIN MIN MIN MIN MIN
A20M#, FLUSH#, IGNNE#
T18 SUSP# 50 5.0 50 50 50 ns
AHOLD, BHOLD, BOFF#,
T19 DHOLD, HOLD 50 5.0 50 50 50 ns
T20 BRDY# 50 5.0 50 5.0 50 ns
T21 | BRDYC# 50 5.0 50 5.0 50 ns
T22 | A31-A3, AP, BE7#-BEO#, 50 5.0 50 5.0 5.0 ns
T22a | D63-DO(Read), DP7-DPO 38 38 38 30 30 ns
(Read)
T23 EADS#, INV 50 5.0 50 50 50 ns
INTR, NMI, RESET, SMI#,
T2 |\ ReT 50 5.0 50 5.0 50 ns
T25 | EWBE#KEN#NA# WB/WT# | 50 5.0 45 45 45 ns
T26 QDUMP# 50 5.0 50 5.0 50 ns
Table 4.10. Input Hold Times
Tease = 0°Cto 70 C, See Figure 4.5
40-MHz | 50-MHz | 55-MHz | 60-MHz | 66-MHz
SYMBOL PARAMETER BUS BUS BUS BUS BUS UNITS
MIN MIN MIN MIN MIN
A20M#, FLUSH#,IGNNE#,
T27 SUSP# 30 2.0 1.0 1.0 1.0 ns
AHOLD,BHOLD,BOFF#,
T28 DHOLD, HOLD 30 2.0 1.0 1.0 1.0 ns
T29 BRDY# 30 2.0 1.0 1.0 1.0 ns
T30 BRDYC# 3.0 2.0 1.0 1.0 1.0 ns
T31a A31-A3,AP, BE7#-BEO# 3.0 2.0 1.0 1.0 1.0 ns
T31b D63-D0,DP7-DPO(Read) 30 2.0 20 2.0 2.0 ns
T32 EADS#, INV 30 2.0 1.0 1.0 1.0 ns
INTR,NMI|,RESET,SMI#,
T33 WM_RST 30 2.0 1.0 1.0 1.0 ns
T34 EWB E#,KEN#,NA# WB/WT# 30 2.0 1.0 1.0 1.0 ns
T35 QDUMP# 3.0 2.0 1.0 1.0 1.0 ns
4-10 (37 SGS-THOMSON
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Figure 4.5. Input Setup and Hold Timing

Tx TX
CLK
T18-T26 T27-T35
ETUP-=-t— HOLI}P‘

ANK

AN

Tx

Tx

1740600

o773

3
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Table 4.11. JTAG AC Specifications

ALL BUS FREQUENCIES
SYMBOL PARAMETER UNITS FIGURE
MIN MAX
TCK Frequency (MHz) 20 ns
T36 TCK Period 50 ns 46
T37 TCK High Time 25 ns 46
T38 TCK Low Time 25 ns 46
T39 TCK Rise Time ns 46
T40 TCK Fall Time ns 46
T41 TDO Valid Delay 20 ns 47
T42 Non-test Outputs Valid Delay 20 ns 4-7
T43 TDO Float Delay 25 ns 4-7
T44 Non-test Outputs Float Delay 25 ns 47
T45 TRST# Pulse Width 40 ns 48
T46 TDI, TMS Setup Time 20 ns 47
T47 Non-test Inputs Setup Time 20 ns 4-7
T48 TDI, TMS Hold Time 13 ns 4-7
T49 Non-test Inputs Hold Time 13 ns 4-7
Figure 4.6. TCK Timing and Measurement Points
ot 136

ViH

VREF

VIL
TCK

1741102
4-12
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Figure 4.7. JTAG Test Timings

15V
TCK [ / \ /
T46 | T48
TDI
TMS
T41 T43
IINTNY 7YY
oo [NOVMROOOK O
T42 Ta4
<4 <)
OUTPUT
SIGNALS X F
T47  T49
INPUT
SIGNALS
1740400
Figure 4.8. Test Reset Timing
T45 ‘
| '
TRST# k—lEV 1
1741200
(57 SGS-THOMSON 413
N/ A Al it



ST6x86

5.0 MECHANICAL SPECIFICATIONS
5.1 296-Pin SPGA Package

The pin assignments for the 6x86 CPUin a 296-pin  (Page 5).
SPGA package are shown in Figure 5.1. The pins

Figure5.1. 296-Pin SPGA Package Pin Assignments

are listed by signal name in Table 5.1 (Page 2) and
by pin number in Table 5.2 (Page 3). Dimensions
are shown in Table 5.2 (Page 3) and Table 5.3
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Table 5.1. 296-Pin SPGA Package Signal Names Sorted by Pin Number

Pin  Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal
A3 NC C29 D21 J35 D2 U35 Vss AE35 NC AL21 A20
A5 D41 C31 D17 J37 Vce u37 Vce AE37 Vce AL23 Al18
A7 Vce C33 D14 K2 Vss V2 Vss AF2 Vss AL25 Al6
A9 Vcc C35 D10 K4 D59 V4 AHOLD AF4 PCHK# AL27 Al4
All Vcc C37 D9 K34 DO V34 SUSP# AF34 A21 AL29 Al2
Al3 Vce D2 D50 K36 Vss V36 Vss AF36 Vss AL31 All
Al5 Vcc D4 D48 L1 Vcc W1 Vce AG1 Vce AL33 A7
Al7 Vce D6 D44 L3 D61 W3 EWBE# AG3 SMIACT# | AL35 A3
A19 Vce D8 D40 LS D60 W5 KEN# AG5 PCD AL37 Vss
A21 Vce D10 D39 L33 Vce W33 SUSPA# | AG33 A27 AM2 ADSC#
A23 Vce D12 D37 L35 NC W35 Reserved | AG35 A24 AM4 EAD S#
A25 Vcc D14 D35 L37 Vcc W37 Vce AG37 Vce AM6 W/R#
A27 Vce D16 D33 M2 Vss X2 Vss AH2 Vss AM8 Vss
A29 Vce D18 DP3 M4 D62 X4 BRDY# AH4 LOCK# AM10 Vss
A31 D22 D20 D30 M34 TCK X34 Reserved | AH34 A26 AM12 Vss
A33 D18 D22 D28 M36 Vss X36 Vss AH36 A22 AM14 Vss
A35 D15 D24 D26 N1 Vcc Y1 Vcc AJl BREQ AM16 Vss
A37 NC D26 D23 N3 D63 Y3 BRDYC# | AJ3 HLDA AM18 Vss
B2 NC D28 D19 N5 DP7 Y5 NA# AJ5 ADS# AM20 Vss
B4 D43 D30 DP1 N33 TDO Y33 CLKMUL | AJ33 A31 AM22 Vss
B6 Vss D32 D12 N35 TDI Y35 Reserved | AJ35 A25 AM24 Vss
B8 Vss D34 D8 N37 Vce Y37 Vce AJ37 Vss AM26 Vss
B10 Vss D36 DPO P2 Vss Z2 Vss AK2 AP AM28 Vss
B12 Vss E1l D54 P4 NC Z4 BOFF# AK4 D/C# AM30 Vss
B14 Vss E3 D52 P34 TMS Z34 NC AK6 HIT# AM32 A8
B16 Vss E5 D49 P36 Vss Z36 Vss AK8 A20M# AM34 A4
B18 Vss E7 D46 Q1 Vce AAl Vce AK10 BE1# AM36 A30
B20 Vss E9 D42 Q3 Reserved | AA3 Reserved | AK12 BE3# AN1 NC
B22 Vss E33 D7 Q5 FERR# AAS5 WB/WT# | AK14 BES# AN3 NC
B24 Vss E35 D6 Q33 TRST# AA33 WM_RST | AK16 BE7# ANS5 NC
B26 Vss E37 Vcc Q35 NC AA35 IGNNE# | AK18 CLK AN7 FLUSH#
B28 Vss F2 DP6 Q37 Vce AA37 Vce AK20 RESET AN9 Vce
B30 D20 F4 D51 R2 Vss AB2 Vss AK22 A19 AN11 Vce
B32 D16 F6 DP5 R4 Reserved | AB4 HOLD AK24 Al7 AN13 Vce
B34 D13 F34 D5 R34 BHOLD AB34 SMI# AK26 Al5 AN15 Vce
B36 D11 F36 D4 R36 Vss AB36 Vss AK28 A13 AN17 Vce
C1 NC Gl Vce S1 Vcc AC1 Vce AK30 A9 AN19 Vce
C3 D47 G3 D55 S3 Reserved | AC3 Reserved | AK32 A5 AN21 Vce
C5 D45 G5 D53 S5 LBA# AC5 NC AK34 A29 AN23 Vcc
c7 DP4 G33 D3 S33 Reserved | AC33 NMI AK36 A28 AN25 Vce
C9 D38 G35 D1 S35 DHOLD AC35 NC AL1 NC AN27 Vce
c1ul D36 G37 Vcc S37 Vce AC37 Vce AL3 PWT AN29 Vce
C13 D34 H2 Vss T2 Vss AD2 Vss AL5 HITM# AN31 Al10
C15 D32 H4 D56 T4 MI/O# AD4 NC AL7 QDUMP# | AN33 A6
Cc17 D31 H34 NC T34 Vce AD34 INTR AL9 BEO# AN35 Reserved
C19 D29 H36 Vss T36 Vss AD36 Vss AL11 BE2# AN37 Vss
c21 D27 J1 Vce Ul Vcc AE1 Vce AL13 BE4#

Cc23 D25 J3 D57 U3 CACHE# | AE3 NC AL15 BEG6#
C25 DP2 J5 D58 us INV AES APCHK# | AL17 SCYC
C27 D24 J33 gese“’e u33 vee AE33 A23 AL19 Reserved

Note: Reserved pins are reserved for future use by SGS-Thomson only. Pins marked NC are not internally connected.
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Table 5.2. 296-Pin SPGA Package Pin Numbers Sorted by Signal Name

Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin gnal Pin
A3 AL35 CLKMUL Y33 D48 D4 NC AN3 Vcc AA37 Vss AM12
A4 AM34 D/C# AK4 D49 E5 NC ANS5S Vce AC1 Vss AM14
A5 AK32 DO K34 D50 D2 NC B2 Vce AC37 Vss AM16
A6 AN33 D1 G35 D51 F4 NC C1 Vce AE1l Vss AM18
A7 AL33 D2 J35 D52 E3 NC H34 Vce AE37 Vss AM20
A8 AM32 D3 G33 D53 G5 NC L35 Vce AG1 Vss AM22
A9 AK30 D4 F36 D54 E1l NC P4 Vcc AG37 Vss AM24
Al10 AN31 D5 F34 D55 G3 NC Q35 Vce AN11 Vss AM26
All AL31 D6 E35 D56 H4 NC Z34 Vcc AN13 Vss AM28
Al2 AL29 D7 E33 D57 J3 NMI AC33 Vce AN15 Vss AM30
Al3 AK28 D8 D34 D58 J5 PCD AG5 Vce AN17 Vss AM8
Al4 AL27 D9 C37 D59 K4 PCHK# AF4 Vcc AN19 Vss AN37
Al5 AK26 D10 C35 D60 L5 PWT AL3 Vce AN21 Vss B6
Al6 AL25 D11 B36 D61 L3 QDUMP# AL7 Vcc AN23 Vss B8
Al7 AK24 D12 D32 D62 M4 RESET AK20 Vcc AN25 Vss B10
Al18 AL23 D13 B34 D63 N3 SCYC AL17 Vce AN27 Vss B12
A19 AK22 D14 C33 DHOLD S35 Reserved AA3 Vce AN29 Vss B14
A20 AL21 D15 A35 DPO D36 Reserved AC3 Vce AN9 Vss B16
A20M# AKS8 D16 B32 DP1 D30 Reserved AL19 Vce E37 Vss B18
A21 AF34 D17 C31 DP2 C25 Reserved AN35 Vce G1 Vss B20
A22 AH36 D18 A33 DP3 D18 Reserved J33 Vce G37 Vss B22
A23 AE33 D19 D28 DP4 C7 Reserved Q3 Vce J1 Vss B24
A24 AG35 D20 B30 DP5 F6 Reserved R4 Vce J37 Vss B26
A25 AJ35 D21 C29 DP6 F2 Reserved S3 Vce L1 Vss B28
A26 AH34 D22 A31 DP7 N5 Reserved S33 Vce L33 Vss H2
A27 AG33 D23 D26 EADS# AM4 Reserved W35 Vcc L37 Vss H36
A28 AK36 D24 c27 EWBE# W3 Reserved X34 Vce N1 Vss K2
A29 AK34 D25 Cc23 FERR# Q5 Reserved Y35 Vce N37 Vss K36
A30 AM36 D26 D24 FLUSH# AN7 SMI# AB34 Vce Q1 Vss M2
A3l AJ33 D27 Cc21 HIT# AK6 SMIACT# AG3 Vce Q37 Vss M36
ADS# AJ5 D28 D22 HITM# ALS SUSP# V34 Vcc S1 Vss P2
ADSC# AM2 D29 C19 HLDA AJ3 SUSPA# W33 Vce S37 Vss P36
AHOLD V4 D30 D20 HOLD AB4 TCK M34 Vcc T34 Vss R2
AP AK2 D31 C17 IGNNE# AA35 TDI N35 Vce Ul Vss R36
APCHK# AE5 D32 C15 INTR AD34 TDO N33 Vce U33 Vss T2
BEO# AL9 D33 D16 INV U5 TMS P34 Vcc u37 Vss T36
BE1# AK10 D34 C13 KEN# W5 TRST# Q33 Vcc w1 Vss U35
BE2# AL11 D35 D14 LBA# S5 Vce A7 Vce W37 Vss V2
BE3# AK12 D36 Cl1 LOCK# AH4 Vcc A9 Vcc Y1 Vss V36
BE4# AL13 D37 D12 MI/O# T4 Vce All Vce Y37 Vss X2
BES# AK14 D38 Cc9 NA# Y5 Vcc Al13 Vss AB2 Vss X36
BEG6# AL15 D39 D10 NC A3 Vce Al5 Vss AB36 Vss z2
BE7# AK16 D40 D8 NC A37 Vce Al7 Vss AD2 Vss 736
BHOLD R34 D41 A5 NC AC35 Vcc Al19 Vss AD36 WB/WT# AA5
BOFF# Z4 D42 E9 NC AC5 Vce A21 Vss AF2 W/R# AM6
BRDY# X4 D43 B4 NC AD4 Vcc A23 Vss AF36 WM_RST AA33
BRDYC# Y3 D44 D6 NC AE3 Vcc A25 Vss AH2
BREQ AJl D45 C5 NC AE35 Vce A27 Vss AJ37
CACHE# U3 D46 E7 NC AL1 Vcc A29 Vss AL37
CLK AK18 D47 C3 NC AN1 Vce AAl Vss AM10

Note: Reserved pins are reserved for future use by SGS-Thomson only. Pins marked NC are not internally connected.
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Figure 5.2. 296-Pin SPGA Package
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Table 5.3. 296-Pin SPGA Package Dimensions

MILLIMETERS INCHES
SYMBOL
MIN MAX MIN MAX
A 3.01 4.70 0.154 0.185
Al 0.33 0.43 0.013 0.017
A2 2.51 3.07 0.099 0.121
B 0.43 051 0.017 0.020
49.28 49,91 1.940 1.965
D1 4547 45.97 1.790 1.810
D2 31.50 Sq. 32.00 Sq. 1.240 Sq. 1.260 Sq.
D3 3399 34.59 1.338 1.362
D4 8.00 9.01 0.315 0.3%0
El 241 2.67 0.0% 0.105
E2 1.14 1.40 0.045 0.055
F - 0.127 Diag. - 0.005 Diag.
3.05 3.30 0.120 0.130
N 296 (Pin Count)
S1 1.65 2.16 | 0.065 0.085
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5.2 Thermal Characteristics

The ST6x86 processor is designed to operate
when the case temperature at the top center of the
package is between 0°C and 70°C. The maximum
die (junction) temperature, T;yax, and the maxi-
mum ambient temperature, T yax, Can be calcu-
lated by substituting thermal resistance and
maximum values for case or junction temperature
and power dissipation in the following equations:

Table 5.4 lists the junction-to-case and
case-to-ambient thermal resistances for the SPGA
package.

>0 437 $GS:THOMSON

T= Tc + (P * 85)

Ta=Ty - (P * 6j)

where:

T, = Ambient temperature (°C)

T;= Average junction temperature (°C)

Tc= Case temperature at top center of package
(°C)

P= Power dissipation (W)

0;c = Junction-to-case thermal resistance (°C/W)
03, = Junction-to-ambient thermal resistance
(°CIW)
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Table 5.4. Thermal Resistances for SPGA Package With and Without Heatsinks

Thermal Resistance 0;c °C/wW Bca °CIW
Laminar Air Flow (ft/min) 0 0 100 200 400 600 800
1.95 x 1.95 x 0.25 Heatsink 0.9 84 7.4 6.0 4.0 31 26
1.95 x 1.95 x 0.40 Heatsink 0.9 7.7 6.6 49 3.2 2.7 21
1.95 x 1.95 x 0.65 Heatsink 0.9 59 4.7 32 21 17 14
Without Heatsink 14 147 115 9.1 7.3 7.0 6.2

Notes:

For a ST6x86 processor with 1.25 x 1.25 x 0.40 inch CuW heat spreader.

Heatsinks are omni-directional pin aluminum alloy.

Features are based on standard extrusion practices for a given height.

Heatsink attachment was made with 0.006 inch of thermal grease applied between heatsink and case.
Maximum air temperature is assumed to be 40 °c

5-7
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6.0 INSTRUCTION SET

This section summarizes the ST6x86 CPU instruc-
tion set and provides detailed information on the
instruction encodings. All instructions are listed in
the CPU Instruction Set Summary Table (Table
6-20, Page 6-14), and the FPU Instruction Set
Summary Table (Table 6-22, Page 6-30). These
tables provide information on the instruction encod-
ing, and the instruction clock counts for each
instruction. The clock count values for both tables
are based on the assumptions described in
Section 6.3.

6.1 Instruction Set Summary

Depending on the instruction, the ST6x86 CPU
instructions follow the general instruction format
shown in Figure 6.1. These instructions vary in
length and can start at any byte address. An
instruction consists of one or more bytes that can
include: prefix byte(s), at least one opcode
byte(s), mod r/m byte, s-i-b byte, address dis-
placement byte(s) and immediate data byte(s). An
instruction can be as short as one byte and as
long as 15 bytes. If there are more than 15 bytes
in the instruction a general protection fault (error
code of 0) is generated.

Figure 6.1. Instruction Set Format

[PPPPPPPP[TTTTTTTT][mod RRR " ]ss index base|32 |16 | 8| nonel 32 |16 8l none
7 07 0 76 543 21076 543 210
. AN AN AN AN AN v

. v opchde " Y " g
optional prefix byte(s) (one or two bytes) mod r/m s-i-b . address immediate

byte byte displacement data
% ~/ (4, 2,1 bytes, (4, 2, 1 bytes,

P = prefix bit hd or none) or none)

T = opcode bit
R = opcode bit or reg bit

register and address
mode specifier

1703103
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6.2 General Instruction Fields

The fields in the general instruction format at the byte level are listed in Table 6.1.

Table 6.1. Instruction Fields

FIELD NAME

DESCRIPTION

WIDTH

Optional Prefix Byte(s)

Specifies segment register override, address and operand size,
repeat elements in string instruction, LOCK# assertion.

1 or more bytes

Opcode Byte(s) Identifies instruction operation. 1 or 2 bytes
mod and r/m Byte Address mode specifier. 1 byte

s-i-b Byte Scale factor, Index and Base fields. 1 byte
Address Displacement | Address displacement operand. 1,2 or 4 bytes
Immediate data Immediate data operand. 1, 2 or 4 bytes

6.2.1 Optional Prefix Bytes

Prefix bytes can be placed in front of any instruction.

The prefix modifies the operation of the next

instruction only. When more than one prefix is used, the order is not important. There are five type of

prefixes as follows:

1. Segment Override explicitly specifies which segment register an instruction will use for effective
address calculation.

2. Address Size switches between 16- and 32-bit addressing. Selects the inverse of the default.

3. Operand Size switches between 16- and 32-bit operand size. Selects the inverse of the default.

4. Repeat is used with a string instruction which causes the instruction to be repeated for each element

of the string.

5. Lock is used to assertthe hardware LOCK# signal during execution of the instruction.

ﬁ SGS-THOMSON
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Table 6.2 lists the encodings for each of the available prefix bytes.

Table 6.2. Instruction Prefix Summary

PREFIX ENCODING DESCRIPTION

ES: 26h Override segment default, use ES for memory operand
Cs: 2Eh Override segment default, use CS for memory operand
SS: 36h Override segment default, use SS for memory operand
DS: 3Eh Override segment default, use DS for memory operand
FS: 64h Override segment default, use FS for memory operand
GS: 65h Override segment default, use GS for memory operand
Operand Size 66h Make operand size attribute the inverse of the default
Address Size 67h Make address size attribute the inverse of the default
LOCK FOh Assert LOCK# hardware signal.
REPNE F2h Repeat the following string instruction.
REP/REPE F3h Repeat the following string instruction.

6-3
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6.2.2 Opcode Byte

The opcode field specifies the operation to be performed by the instruction. The opcode field is either
one or two bytes in length and may be further defined by additional bits in the mod r/m byte. Some oper-
ations have more than one opcode, each specifying a different form of the operation. Some opcodes
name instruction groups. For example, opcode 80h names a group of operations that have an immediate
operand and a register or memory operand. The reg field may appear in the second opcode byte orin the
mod r/m byte.

6.2.2.1 wField
The 1-bitw field (Table 6.3) selects the operand size during 16 and 32 bit data operations.

Table 6.3. w Field Encoding

OPERAND SIZE
w FIELD
16-BIT DATA OPERATIONS 32-BIT DATA OPERATIONS
0 8 Bits 8 Bits
16 Bits 32 Bits
6.2.2.2 d Field

The d field (Table 6.4) determines which operand is taken as the source operand and which operand is
taken as the destination.

Table 6.4. d Field Encoding

DESTINATION
d FIELD DIRECTION OF OPERATON SOURCE OPERAND OPERAND
0 Register --> Register or re mod r/m or
Register --> Memory 9 mod ss-index-base
1 Register --> Register or mod r/m or re
Memory --> Register mod ss-index-base 9

57 $55-THOMSON o4
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6.2.2.3 s Field

The s field (Table 6.5) determines the size of the immediate data field. If the S bit is set, the immediate
field of the OP code is 8-bits wide and is sigh extended to match the operand size of the opcode.

Table 6.5. s Field Encoding

Immediate Field Size
s FIELD
8-Bit Operand Size 16-Bit Operand Size 32-Bit Operand Size
0 . . .
(or not present) 8 bits 16 bits 32 bits
1 8 bits 8 bits (sign extended) 8 bits (sign extended)

6.2.2.4 eee Field

The eee field (Table 6.6) is used to select the control, debug and test registers in the MOV instructions.
The type of register and base registers selected by the eee field are listed in Table 6.6. The values shown
in Table 6.6 are the only valid encodings for the eee bits.

Table 6.6. eee Field Encoding

eee FIELD REGISTER TYPE BASE REGISTER
000 Control Register CRO
010 Control Register CR2
011 Control Register CR3
000 Debug Register DRO
001 Debug Register DR1
010 Debug Register DR2
011 Debug Register DR3
110 Debug Register DR6
n Debug Register DR7
011 Test Register TR3
100 Test Register TR4
101 Test Register TR5
110 Test Register TR6
m Test Register TR7
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fields are not present. Table 6.7 lists the addressing

6.2.3 mod and r/m Byte
. i method when 16-bit addressing is used and a mod
The mod and r/m fields (Table 6.7), within the mod /) byte is present. Some m%d r/m field encod-

r'm byte, select the type of memory addressing 10 jngs are dependent on the w field and are shown
be used. Some instructions use a fixed address- S 3ple 6.8(Page 6-7).

ing mode (e.g., PUSH or POP) and therefore, these

Table 6.7. mod r/m Field Encoding

32-BIT ADDRESS MODE
with mod r/m Byte and
No s-i-b Byte Present

16-BIT ADDRESS MODE

mod and r/m fields with mod r/m Byte

00 000 DS:[BX+SI] DS:[EAX]

00 001 DS:[BX+DI] DS:[ECX]

00 010 DS:[BP+SI] DS:[EDX]

00 011 DS:[BP+DI] DS:[EBX]

00 100 DS:[SI] s-i-b is present (See 6.2.4)

00 101 DS:[DI] DS:[d32]

00 110 DS:[d16] DS:[ESI]

00 111 DS:[BX] DS:[EDI]

01 000 DS:[BX+SI+d8] DS:[EAX+d8]

01 001 DS:[BX+DI+d8] DS:[ECX+d8]

01 010 DS:[BP+SI+d8] DS:[EDX+d8]

01011 DS:[BP+DI+d8] DS:[EBX+d8]

01 100 DS:[SI+d8] s-i-b is present (See 6.2.4)

01101 DS:[DI+d8] SS:[EBP+d8]

01 110 SS:[BP+d8] DS:[ESI+d8]

0111 DS:[BX+d8] DS:[EDI+d8]

10 000 DS:[BX+SI+d16] DS:[EAX+d32]

10 001 DS:[BX+DI+d16] DS:[ECX+d32]

10 010 DS:[BP+SI+d16] DS:[EDX+d32]

10 011 DS:[BP+DI+d16] DS:[EBX+d32]

10 100 DS:[SI+d16] s-i-b is present (See 6.2.4)

10 101 DS:[DI+d16] SS:[EBP+d32]

10 110 SS:[BP+d16] DS:[ESI+d32]

10 111 DS:[BX+d16] DS:[EDI+d32]

11 .000-11 111 | See Table 6-8 | See Table 6-8
SGS-THOMSON 66
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Table 6.8. mod r/m Field Encoding Dependent on w Field

16-BIT 16-BIT 32-BIT 32-BIT
mod r/m OPERATION OPERATION OPERATION OPERATION

w=0 w=1 w=0 w=1
11 000 AL AX AL EAX
11001 CL CX CL ECX
11010 DL DX DL EDX
11011 BL BX BL EBX
11 100 AH SP AH ESP
11101 CH BP CH EBP
11 110 DH Sl DH ESI
11111 BH DI BH EDI

6.2.3.1 reg Field

The reg field (Table 6.9) determines which general registers are to be used. The selected register is
dependent on whether a 16 or 32 bit operation is current and the status of the w bit.

Table 6.9. reg Field

16-BIT 32-BIT
16-BIT 16-BIT 32-BIT 32-BIT
reg OPE.RATION OPE.RATION OPERATION OPERATION OPERATION OPERATION
w Field Not w Field Not "~ A - _
w=0 w=1 w=0 w=1
Present Present
000 AX EAX AL AX AL EAX
001 CX ECX CL CX CL ECX
010 DX EDX DL DX DL EDX
011 BX EBX BL BX BL EBX
100 SP ESP AH SP AH ESP
101 BP EBP CH BP CH EBP
110 Si ESI DH SI DH ESI
111 DI EDI BH DI BH EDI

&7 (N7 SGS-THOMSON
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6.2.3.2 sreg3 Field

The sreg3 field (Table 6.10) is 3-bit field that is similar to the sreg?2 field, but allows use of the FS and GS
segment registers.

Table 6.10. sreg3 Field Encoding

sreg3 FIELD SEGMENT REGISTER SELECTED
000 ES
001 Cs
010 SS
on DS
100 FS
101 GS
110 undefined
m undefined

6.2.3.3 sreg2 Field

The sreg?2 field (Table 6.11) is a 2-bit field that allows one of the four 286-type segment registers to be
specified.

Table 6.11. sreg2 Field Encoding

sreg2 FIELD SEGMENT REGISTER SELECTED
00 ES
01 CS
10 SS
1 DS

6-8
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6.2.4 s-i-b Byte
The s-i-b fields provide scale factor, indexing and a base field for address selection.
6.2.4.1 ss Field

The ss field (Table 6.12) specifies the scale factor used in the offset mechanism for address calculation.
The scale factor multiplies the index value to provide one of the components used to calculate the offset
address.

Table 6.12. ss Field Encoding

ss FIELD SCALE FACTOR
00 x1
01 x2
10 X4
11 X8

6.2.4.2 indexField

The index field (Table 6.13) specifies the index register used by the offset mechanism for offset address
calculation. When no index register is used (index field = 100), the ss value must be 00 or the effective
addressis undefined.

Table 6.13. Index Field Encoding

Index FIELD INDEX REGISTER

000 EAX

001 ECX

010 EDX

on EBX

100 none

101 EBP

110 ESI

m EDI
37, $53.THOMSON
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6.2.4.3 Base Field column of Table 6.14 identifies the mod bits in the
mod r/m byte. The last three digits in the first col-

In (Table 6.7), the note “s-i-b present” for certain |, of this table identifies the base fields in the
entries forces the use of the mod and base field as s-i-b byte.

listed in Table 6.14. The first two digits in the first

Table 6.14. mod base Field Encoding

mod FELOWITHIN. | P, [P it mod tmand

s-i-b BYTE s-i-b Bytes Present

00 000 DS:[EAX+(scaled index)]

00 001 DS:[ECX+(scaled index)]

00 010 DS:[EDX+(scaled index)]

00 011 DS:[EBX+(scaled index)]

00 100 SS:[ESP+(scaled index)]

00 101 DS:[d32+(scaled index)]

00 110 DS:[ESI+(scaled index)]

00 m DS:[EDIl+(scaled index)]

01 000 DS:[EAX+(scaled index)+d8]

01 001 DS:[ECX+(scaled index)+d8]

01 010 DS:[EDX+(scaled index)+d8]

01 o1 DS:[EBX+(scaled index)+d8]

01 100 SS:[ESP+(scaled index)+d8]

01 101 SS:[EBP+(scaled index)+d8]

01 110 DS:[ESl+(scaled index)+d8]

01 m DS:[EDI+(scaled index)+d8]

10 000 DS:[EAX+(scaled index)+d32]

10 001 DS:[ECX+(scaled index)+d32]

10 010 DS:[EDX+(scaled index)+d32]

10 011 DS:[EBX+(scaled index)+d32]

10 100 SS:[ESP+(scaled index)+d32]

10 101 SS:[EBP+(scaled index)+d32]

10 110 DS:[ESI+(scaled index)+d32]

10 m DS:[EDIl+(scaled index)+d32]

6-10
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6.3 CPUID Instruction

The ST6x86 CPU executes the CPUID instruction
(opcode OFA2) as documented in this section only
if the CPUID bit in the CCR4 configuration register
is set. The CPUID instruction may be used by
software to determine the vendor and type of CPU.

When the CPUID instruction is executed with EAX
= 0, the ASCII characters “CyrixInstead” are
placed in the EBX, EDX, and ECX registers as
shown in Table 6.15:

Table 6.15. CPUID Data Returned

When the CPUID instruction is executed with EAX
= 1, EAX and EDX contain the values shown in
Table 6.16.

Table 6.16. CPUID Data Returned

When EAX =1
REGISTER CONTENTS

EAX(3-0) 0

EAX(7-4) 3

EAX(11-8) 5

EAX(13-12) 0

EAX(31-14) reserved

EDX If EDX = 00, FPU not or_l-chip.

If EDX = 01, FPU on-chip.

When EAX =0
CONTENTS
REGISTER (D31 - DO)

EBX 6_9 72 79 43
i r y C*

EDX 73 6E 49 7?
S n | X
64 61 65 74

ECX d a e t*

*ASCII equivalent

ﬁ SGS-THOMSON
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6.4 Instruction Set Tables

The ST6x86 CPU instruction set is presented in
two tables: Table 6.20 ”. ST6x86 CPU Instruction
Set Clock Count Summary” and Table 6.21". FPU
Clock Count Table Abbreviations”. Additional infor-
mation concerning the FPU Instruction Set is pre-
sented in section 6.5.

6.4.1 Assumptions Made in Determining
Instruction Clock Count

The assumptions made in determining instruction
clock counts are listed below:

1. All clock counts refer to the internal CPU inter-
nal clock frequency. For example, the clock
counts for a clock-doubled ST6x86 CPU-100
refer to 100 MHz clocks while the extemal clock
is50MHz.

2. The instruction has been prefetched, decoded
and is ready for execution.

3. Bus cycles do not require wait states.

4. There are no local bus HOLD requests delay-
ing processor access to the bus.

5. No exceptions are detected during instruction
execution.

6. If an effective address is calculated, it does not
use two general register components. One
register, scaling and displacement can be
used within the clock count shown. However,
if the effective address calculation uses two
general register components, add 1 clock to
the clock count shown.

6-12
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7. All clock counts assume aligned 32-bit
memory/10 operands.

8. If instructions access a 32-bit operand that
crosses a 64-bit boundary, add 1 clock for read
or write and add 2 clocks for read and write.

9. For non-cached memory accesses, add two
clocks (ST6x86 CPU with 2x clock) or four
clocks (ST6x86 CPU with 3x clock). (Assumes
zero wait state memory accesses).

10. Locked cycles are not cacheable. Therefore,
using the LOCK prefix with an instruction adds
additional clocks as specified in paragraph 9
above.

11. No parallel execution of instructions.

6.4.2 CPU Instruction Set Summary Table
Abbreviations

The clock counts listed in the CPU Instruction Set
Summary Table are grouped by operating mode
and whether there is a register/cache hit or a
cache miss. In some cases, more than one clock
count is shown in a column for a given instruction,
or a variable is used in the clock count. The
abbreviations used for these conditions are listed
in Table 6.17.
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Table 6.17. CPU Clock Count Abbreviations

CLOCK COUNT SYMBOL EXPLANATION
/ Register operand/memory operand.
n Number of times operation is repeated.
L Level of the stack frame.

| Conditional jump taken | Conditional jump not taken.
(e.g. “4|1” = 4 clocks if jump taken, 1 clock if jump not taken)

CPL<IOPL \ CPL >IOPL
(where CPL = Current Privilege Level, IOPL = 1/O Privilege Level)

m Number of parameters passed on the stack.

6.4.3 CPU Instruction Set Summary Table Flags Table

The CPU Instruction Set Summary Table lists nine flags that are affected by the execution of instructions.
The conventions shown in Table 6.18 are used to identify the different flags. Table 6.19 lists the conven-
tions used to indicate what action the instruction has on the particular flag.

Table 6.18. Flag Abbreviations

ABBREVIATION NAME OF FLAG
OF Overflow Flag
DF Direction Flag
IF Interrupt Enable Flag
TF Trap Flag
SF Sign Flag
ZF Zero Flag
AF Auxiliary Flag
PF Parity Flag
CF Carry Flag

Table 6.19. Action of Instruction on Flag

INSTRUCTION
TABLE SYMBOL ACTION
X Flag is modified by the instruction.

- Flag is not changed by the instruction.

0 Flag is reset to “0".

Flag is set to “1".

Flag is undefined following execution of the
instruction.

613 437 S6S-THOMSON

s WIEROELECTROMICS



ST6x86

paulepun = n
pabueyoun = -
payipow = X

(suq zg ‘9T ‘8) elep Ng-g¢ aleIpawwl ||n)

(sug z¢ ‘9T) Wwawade|dsip paubis [N} = +++

juswaoe|dsip paubis 19-8 =

+

H#HH
#H
#

e1ep 1g-9T SleIpawLl
e1ep 1-g alelpawwl

T T ### [MOTO] 0 Jo1e|nwINdoY 0] alelpawiw|
1 T ###w/1 000 pow] [msoo] 8 Kiowa|N/191siBay 0} arelpawiw|
1 T [wyr Bas pow] [MT00] O 18)s169y 0) AloWs
1 T [wys Ba1 pow] [mo00] 0 Aiows|\ 01 JarsiBay
1 T [wys 621 TT] [MPOO] 0 1915160y 01 Jarsibay
y q X X X X X - - - X ppy J18bajul aay
T T ### [MOTO] T Jore|nwiNdoy 0] alelpawiw|
1 T ###w/1 0T0 pow] [msoo] 8 Kiowa|N/191siBay 0} arelpawiw|
1 T [wyi Bas pow] [MTOO] T 1915189y 01 Alowan
T T [wy1 Bas pow] [Mo00] T Klows\ 0 JsrsiBay
1 T [wys Ba1 TT] [MpOO] T 18)s16ay 01 JalsiBay
y q X X X X X - - - X Aued yum ppy 0Qav
L L xnxnmn---mn d€ 10B4qNS J8YE TV ISNpY 110SY SYV
TZ-€T TZ-€T nxnxx - - -n V0 ¥a Aldninw 18y Xv 1snipy 110SY INVY
L L nxnxx---mn V0 Sd apinid 8iojaq XV ISnipy 11DSY Avy
L L Xnh xnmn - - -n L€ ppY 18ye v 1snipy |1DSY YWY
Umwpwwﬁ_n_ ﬂwook,_ H_I\%Mmmo H_I\Mum_mo 404dd 4V 4Z 4S 41 41 4d 40
3002d0 NOILONYLSNI
SAON | 5010 300m | 510010 300M SOV
a310310¥d vy

Arewwing 1uNoY 20|90 18S uononAsul NdD 98X91S "0Z'9 dlqel

<

6-1




ST6x86

pauyapun = n (SNg z€ ‘9T ‘) B¥ep HO-2€ SleIpawWl (IN} = ###
pabueyoun = - (sug zg '9T) uswaoe(dsip paubls (I} = +++ 'lep HG-9T Slelpawwl =  ##
papipow = X juawaoe(dsip paubis 1g-8 = + 'lep )g-g Sepawiwl = #
9/S 9/S [wyr Ba1 pow] g9 40 laisibay ‘Alows/1oisibay
€ € #w/TTT pow] va 40 aleipaww| ‘Aowsn/i1s1Bey
y q X = - - = - - - Juswisjdwo) pue ygisal 014
9/5 9/5 [wy Ba1 pow] gV -0 la1sibay ‘Alowa/iis1hay
[ [4 #[wy 00T pow] va 40 alelpsww| ‘Alows/ialsiBay
y q X = = = - - - - - yg1s81 14
14 14 S [6a1 T]0 d0 dems 91Ag dvMs9g
[wys Bas pow] ag 40 Kiowa/isisibay ‘1s1sibay
y q € € - s s X s s - - 8sIandY Jig UBIS HSd
[wys Bas pow] Og 40 Klowa/iisiBay ‘1alsibay
y q € € S premiod jig ueIs 4S9
1T 1T abuey up i
LNI+02 0z [wy Ba1 pow] z9 (G ) abuey Jo IO J
HTYs | a'g S N sauepunog Aely 3284y2> ANNOG
[wyi Bas pow] €9 Aowa/1a1sibay wolq
y e 6 S - X - - - - - [en87 8bajinLd paisanbay 1snipy 1duv
T T ### [MOTO] 2 lore|nwiNdoy 01 arelpawiw|
T P ###{W/ 00T pow] [msoo] 8 Alowspis1s169y 01 BreIpaWW]
T T [wya Bas pow] [mTO0] 2 1918169y 01 Alowsn
T T [wya Bas pow] [Mmo00] 2 Aowa 01 Ja1sibay
T T [wyi Ba1TT] [MpO0] 2 1315168y 01 J91sIBay
Y q 00X nxx - - -0 dNV uesjoog ANy
cmwmw_ d m_,wwk,_ H_:\%%mumo w_:\%%mumo 404d 4V 47 4S 41 41 40 40
3d02dO NOILONH1SNI
e o
a3103104dd Iv3d

(panunuo)) Arewiuns Junod %209 189S uondNISU| NdD 98X9LS "0Z'9 dlgel

6-15

FLEGTHEHIGS

SGS-THOMSON




ST6x86

pauyapun = n (Sud zg ‘9T ‘g) BYep NQ-2€ deIpSWWI ([N} = ###
pabueyoun = - (suq zg ‘o1) wawsade(dsip paubis |IN} = +++ elep 1g-9T aeIpawWIl =  ##
payipow = X juswiaoeldsip paubis 1g-8 = + elep Q-8 ajeipawwl = #
9/S 9/S [wyi Bas pow] gv 40 (wJoy vioys) Jeisibay
€ € [w/1 TOT pow] vd 40 Kiows/ia1s1bay
y q X = - - - - - - - 18S pue ngisal sld
9/S 9/S [wyr Bas pow] €9 40 laisibay ‘Alows/1eisibay
€ € #[w/i 01T pow] vd 40 alelpsww| ‘Aiowa/ialsibay
" q X - - - e oo 1859 pue ig31sal 14
3poiN 3poiN UH 3yoed UH 3yoed
powaloid | oy /6oy /6oy 404d 4V 4z 4S 41 41 40 40
3A02d0O NOILONYLSNI
1INNOD 1INNOD
S3LON MD07T1D IAOW MD07T1D IAOW SOV
a3103104dd Ivay

(panupuo)) Arewiwing JUN0OD 320]D 189S UoRINASUl NdD 98X9LS 02’9 dlqeL

-16

©




ST6x86

pauyapun = n (Sid zg ‘9T ‘) erep Ng-g€ deIpaWWI ([N} = ###
pabueyoun = - (suq g€ ‘9T) wawaoe|dsip paubis [N} = +++ elep 1g-9T alelpawwl =  ##
payipow = X juswadeldsip paubis ug-g = + elep 1g-g alelpawwl = #
Ysel 98A O1ysel UQg-Z¢
20T SS1 Hg-¢€ 01ysel Ug-¢e
AN SS1 Hg-9T 01ysel Ug-¢€
91T Jsel 98A O1xsel Ug-9T
00T SS1 Hg-¢€ 01ysel Ug-9T
SS1 Hg-9T 01yse] UQ-9T
cet (w1 TTO pow] -4
YTT sJed
w |9nAa7 abajinlLdg walayig 01 81e9 |ed
we+ov
SEIE]
1€ -weled oN abajinud Jualayig 01 81e9) ||ed
(014 aba|inlLd awes 01 31eS ||eD
8 S wawbhasiaiu| 19311pu|
86 Ssel 98/ 01ysel Ug-z€
0ct SS1 19-z€ opysel Na-ze
it SS1 19-9T 01sel UG-z
96 [io108]es JSeL 98 O1sel U-9T
811 4asy0 ||}y paubisun] ve6 SS1 1g-¢€ 01Xsel 1Qg-9T
ort [wyr oT0 Pow] 44 SSL Hg-9T Oisel 1g-9T
weZ+Gg +++ 83 sJed w abs|inud ualayiqg 01 areo ||eD
9¢ SEIE)
qT -weled oN abajinugd Jualayig 01 81e9) ||ed
v € aba|ind swes 0} ajeo |[ed
/1 /T wawbhasiau| 1a1g
T T Juswbas ulyupn 10a11pu Alowan/laisibay
Ty q S L luswbas ulynm 10311
[1eQ aunnoigns 1IvI
9pon 3pon ¥H 3yoed UH 3yoed
peoroid | eey /6oy /6oy 404d 4V 47 4S 41 41 4d 40
3d02dO NOILONYLSNI
1INNOD 1NNOD
S3LON D010 A0 D010 A0 SOV
da3Lo310dd v3d

(panunuo)) Arewiuns Junod %209 189S uondNISU| NdD 98X9LS "0Z'9 dlgel

6-17

THENIGS

I
[
I
]
=1




ST6x86

pauispun = n (SNg Z€ ‘9T ‘) B¥ep NO-2€ SrelpawiWl (IN} = ###
pabueyoun = - (sug zg '9T) swaoe(dsip paubis (I} = +++ 'lep HG-9T Slelpawwl =  ##
papipow = X juawade(dsp paubis 1g-8 = + 'lep )g-g Selpawiwl = #
6 6 X X X X X - - - - 12 ppY 48ye v isnipy fewiosd vva
papusix3q
¢ ¢ ST T T 86 pIomMa|qnoq 03 PIO 18AU0D IAMD
4 14 s m s s s e 66 piomajgnoq o3 PIop HeAu0D AMD
ZT Zt I A= 0] uoneaynudp| Ndd AiNdd
11 11 [wys Ba1 pow] [moo0] g 40 1815168y ‘Alows N
11 11 [t6a1 gbai TT] [M000] 9 40 ziosibay ‘Tio1s168Y
X X X X X - - - X abueyox3 pue asedwo) DHHIXdND
y q S S X X X X X - - - X [mTT0] V bups aredwod SdND
I I ## IMOTT] € J01RNWNI2Y O} ajeipaww|
1 1 [wy 11T pow] wsmoowﬁw Aowa/1a1sibay 01 arelpawiw|
1 1 [wy Bas pow] [MOOT] & 1915169y 01 Alowa
1 1 [wy Bas pow] [MTOT] & Alowa 01 Ja1sibay
E E [wys Ba1 TT] [MpOT] € sersibay o1 szisibay
y q X X X X X - - - X si1abajul aredwo) diND
Z 2 X = = - - - - - - G4 bej4 Ared ayp uswsa|dwod DIND
_ 9 0T 0T I 90 40 be4 payoyms ysel iesjd S110
w i / - - - - - -0 - - v4 be|4 1dnusiul el 11D
/ L - - - - - - -0 - oF| fe|4 uondalig 183|010
T T 0 - ------- 84 bej4 Aued 1eajD 010
2 2 R 66 piompend o1 piomajqnog 1aauo) OAd
€ € s m s s s e 86 PIOM 01 8IAg 18AU0D MED
nmwpwwﬁ_n_ ﬂwook,_ H_I\%Mmmo H_I\%Mmmo 404dd 4V 4Z 4S 41 41 4d 40
3A02d0O NOILONHLSNI
SAON | 5010 300m | 510010 300M SOV
a3103104dd Iv3d

(panupuo)) Arewiwing JUN0OD 320]D 189S UoRINASUl NdD 98X9LS 02’9 dlqeL

-18

©



ST6x86

pauiepun = n (SNg z€ ‘9T ‘) B¥ep NO-2€ SreIpawWl (IN} = ###
pabueyoun = - (suq zg ‘o1) wawsade(dsip paubis |IN} = +++ elep 1g-9T aeIpawWIl =  ##
payipow = X juswaoeldsip paubis 1g-8 = + elep 1g-g aelpawwl = #
Sv-LT Sv-LT plomajgnoq
8¢-9T 8¢-9T pIioM
0¢-91 0¢-91 a1Ag :losing
[waTTT pow] [MTTO] 4 A1owa/ia1sibay Aq Jorejnwinoady
y'e e'q nnox X - - - - apina (paubls) sebajul AIQI
S g o 4 NeH LH
€x1+0T €x140T T < () 19na
€T €T T = [9no7]
0T 0T 0= |9na7
u q - T st s s #'## 80 auwielH Xoels MaN Jojug J31N3
Tr-€T TV-€T ploms|gnog
GC-€T GC-€T PIOM
LT-€T LT-€T a1Ag :osing
Aows/ie1s1Bay Ag Jore|nwindoy
y'e a'q NN ox o x - - - [wyoTT pow] [MTTO] 4 apmia paubisun Ald
T T [6a) T] ¥ (wuoy uoys) tsisibay
1 1 [w/s TOO pow] [MTTT] o Kiows/1s1s1bay
! d X X X X - - - X T Aq uawai29g D3A
X
6 6 X X X X - - - - d¢ 1oeaqgns Jsye v isnipy [ewioed Sva
9pon 9pon HH aydsed UH 3yoed
peoroid | eey /6oy /6oy 404d 4V 4Z 4S 41 41 4d 4O
3Ad02d0O NOILONYLSNI
1INNOD 1INNOD
S3LON MO010 IAON MO01D0 IAON SOV
a31o0310dd av3d

(pPanunuoD) Arewwings UN0D %9010 189S UoRdNIISUl NdD 98X9LS "0Z'9 dlgel

6-19

FLEGTHEHIGS

SGS-THOMSON




ST6x86

pauyapun = n (Sid ze ‘9T ‘g) Yep NQ-2E deIpaWWI ([N} = ###
pabueyoun = - (suq g€ ‘9T) Wwawsaoe|dsip paubis [N} = +++ elep 1g-9T alelpawWl =  ##
payipow = X juawaoe|dsip paubis ug-8 =  + elep 1g-g aelpawwl = #
w'y q 8zIvT vT SR [motTTl 9 uod o/ woy buis induy SNI
T T [681 0] ¢ (wioj Hoys) Jesibay
1 T [wyr 000 pow] [MTTT] 4 Kiowsp/io1siBay
y q - X X X X - - - X T Aq uswaiouj DNI
8zIvT vT [moTT] 3 Hod a|qelen
8evT Y1 [# [motol 3 uod paxid
w - - - - - - uod O/I woy induj NI
- T pioma|gnog
OM Jandnn
S S #4## [y Ba1 powl] [1s0T] 9 PIOM -ISlARINN
zlo1sibay
01 Qepaww| yum  Alows/iaisibay
0T 0T pioms|gnog
14 14 .
piop andninin
[wy Bas pow] 4v 40 Aowa/iaisibay yum Jaisibay
0T 0T pioma|gnoq
14 14 PO
v v alAg andniny
[wyi TOT pow] [MTTO] o Aowa/ie1sibay Ag Jore|nwindoy
4 a oo X Adinw (paubis) sebaiul NN
9pon 9pon UH dyoed UH ayoed
powaloid | oy /6oy /6oy 404d 4V 47 4S 41 41 4a 40
3d02dO NOILONYLSNI
1INNOD 1INNOD
S3LON MO01D0 IAON MO01O0 IAON SOV
a31o0310dd v3d
o
N
(penunuo)) Arewiwuns UN0Y %00JD 18S UONINNSUl NdD 98X91S 029 3lgel ©




ST6x86

pauiepun = n (SNg z€ ‘9T ‘) Byep U0-2€ SreIpawWl (IN} = ###
pabueyoun = - (suq g€ ‘9T) wawaoe|dsip paubis [N} = +++ elep 1g-9T alelpawWl =  ##
payipow = X juawaoe|dsip paubis 1g-8 = elep 1g-g alelpawwl = #
€T €T L [WuTTT pow] TO 40 Anuz g1 arepieaul 9dIANI
1 } [4) T St ot s s s s 80 40 ayoeD ajepljeAul AANI
LNI+ST (7 LND) T==d4O ¥
9 9 0==40 I
30 OLNI
INI AINI 20 € LNI
14 areo /a1 deil Aq 0 abajinud 0} 98A
[40)" aleoysel Aq SS1 1g-2€ 01 98A
verT areosisel Ag SS1 1g-9T 0} 98A
[40)" aleoyse] Aq 98A o1ysel ug-ze
174" 81eo ysel Aq SSL 1g-Z€ o1xsel Ug-Z€
91T areosel Ag SS1 1g-9T O1ysel 1g-97
00T ale9se] Aq 98A o1ysel 19-9T
act s1e9 sel Aq SSL Ug-Z€ o1xsel 1g-9T
vTT areo ysel Aq SSL H0-9T Opsel Ng-9T
b4 aba|inLd uatayig o1 del] Jo wdnusiu|
12 aba|ind awes 01 del] Jo dnusiu|
:9POIN pa31oaloid
6 # ao I LNI
19'['B a'q - - - - - 0 X - - 1dniiajuy aremyos 1NI
nmwmw_ d wwwk,_ H__._\%%mumo H__._\%%mumo 404d 4V 47 4S 41 41 4a 40
3d02d0O NOILONYLSNI
SILON | o015 300m | %000 3d0M SOV
a31o0310dd v3d

(panunuo)) Arewiuns Junod %209 189S uondNISU| NdD 98X9LS "0Z'9 dlgel

6-21

FLEGTHEHIGS

SGS-THOMSON




ST6x86

pauyspun = n (SNg Z€ ‘9T ‘) Byep NO-2€ SrelpawiWl (IN} = ###
pabueyoun = - (suq g€ ‘9T) wawsaoe|dsip paubis [N} = +++ elep 1g-9T alelpawwl =  ##
payipow = X juswaoeldsip paubis 1g-8 =  + elep 1g-g alelpawwl = #
1 T T Sttt s s s s + €3 0197 X23/XD uo dwnr 7X2J3r/ZXor
uawaoe|dsiq |In
I I +++ 98 40 ¥ |dsia |ind4
uawaoe|dsiq Q-
I I .y ¥ |dsia ug-8
J S anoqy
Jonjrenb3 10 moppg uo dwnr  YNC/3dr
uswaoe|dsiq [In
I I +++28 40 ¥ |asia |in4
uswaoe|dsiq 1g-
I I vz Il |dsia 1g-8
Ae)d
J S /renb3
10 an0qy JoN/mojeg uo dwnr Or/3vNC/ar
S0T )sel 98A 01Xsel Ng-zg
12T SS1 1g-¢€ o1)sel 1g-¢g
61T SS1 Hg-9T o1ysel Ug-Z€
€0T )sel 98A O1Xsel Ng-9T
St SS1 1g-¢€ o1)sel 1g-9T
L1T Jsel Ug-9T o1Xsel Ug-9T
9c 8ba|IAld uBIayld 0} sel UIYNM
0T aba|inlld awes 01Xse] UIYIM
:9pOIA paldaloid
L S9PON [eay
INIYB X X X X X X X X X 40 winiay 1dnudjul 1 34|
9pON 9pON UH 8yoed UH 8yoed
parooroid | ooy By By 404d 4V 4Z 4S 4L 41 4a 40
3d02dO NOILONYLSNI
1NNOD 1INNOD
S3LON D070 AAON D010 A0 SOV
da3Lo310ydd v3d
N
N
(penunuo)) Arewiwuns UN0Y %00JD 18S UONINNSUl NdD 98X91S 029 3lgel ©




ST6x86

pauyspun = n (Sug z€ ‘9T ‘g) eyep NQ-gE deIpaWWI ([N} = ###
pabueyoun = - (suq zg ‘o1) wawsade(dsip paubis |IN} = +++ elep 1g-9T aleIpawWIl =  ##
payipow = X juswaoeldsip paubis 1g-8 = + elep 1g-g aelpawwl = #
I I +++38 40 juswaoe|dsiq N4
d -
I I — uswaoe|dsiq 1g-8
; o 191ealo
Jo0Njenbg 10 ssa7 uo dwnr  ONC/AC
I I 14408 40 juswaoe|dsiq |n4
I I . juswade|dsid 19-8
; S [enb3g
10 J8)pals JON/SSeT uo dwng JONC/IC
T T +++ 78 40 Juswadeldsiq [N
T T + ¥/ Juswaoe|dsiq Ug-8
1 B T oJaz/fenb3 uo dwnr zc/ac
3poN 9pon HH aydsed HH aydsed
peoroid | eey /6oy /6oy 404d 4V 4Z 4S 41 41 4d 4O
3Ad02d0O NOILONYLSNI
1INNOD 1INNOD
S3LON MD07T0 AAON MD0T0 AAON SOV
a3103104dd av3d

(pPanunuoD) Arewwings UN0D %9010 189S UoRdNIISUl NdD 98X9LS "0Z'9 dlgel

6-23

FLEGTHEHIGS

SGS-THOMSON




ST6x86

pauiepun = n (SNg Z€ ‘9T ‘) B¥ep NO-2€ SrelpawiWl (IN} = ###
pabueyoun = - (sug zg '9T) swaoe(dsip paubis (I} = +++ 'lep HG-9T Slelpawwl =  ##
payipow = X EmEoom_Qm_U Uwcm_w 1g-8 = + elep 1g-g aleipawwl = H
10T YSel 98A O1Ysel 1g-ZE
€21 SS1 Hg-Z€ O1ysel Ng-Z€
STT SS1 1g-9T o1sel ug-z¢
66 Nsel 98A O1sel U0-9T
12T SS1 1g-Z€ o1ysel Ug-9T
€17 SS1 1g-9T o1ysel ug-97
IT [9A87 8fs|inld swes are9 |[eD
) [ [wyr TOT pow] 44 juswbasialu| 108lipu|
86 Nsel 98A O1sel Ug-z€
0zt SS1 Hg-Z€ O1ysel Ng-Z€
Z1T SS1 19-9T o1sel Ug-z¢
96 %Sel 98A O1ysel 19-9T
81T SS1 1g-Z€ o1ysel ug-97
01T SS1 1g-9T o1ysel 19-9T
4 |ona7 8bs|Inld swes ares |[eD
[10108|8s
¥ T Jasyo ||} paubisun] w3 juswbasialu| 19811q
et et [wy oot pow] 44|  udWBSS UIYIAA Y31IPpUl AlowsN/IdisIBay
1 1 +++ 63 juswaoe|dsIq (In4
T T + g3 wawaoe|dsig ¥g-8
Aty 4 T T o duwing feuopuouN dINE
UMMMWME m_.%ook,_ H_I\%Mmmo H_I\%Mmmo 404dd 4V 4Z 4S 41 4l 4d 40
3002d0 NOILONYLSNI
e o
d3.10310dd vy

(panupuo)) Arewiwing JUN0OD 320]D 189S UoRINASUl NdD 98X9LS 02’9 dlqeL

TGS

o)

ELE

$GS-THOMSON
0 T

<73

-24

©



ST6x86

pauyspun = n (Sug z€ ‘9T ‘g) eyep NQ-gE deIpaWWI ([N} = ###
pabueyoun = - (suq zg ‘o1) wawsade(dsip paubis |IN} = +++ elep 1g-9T aleIpawWl =  ##
payipow = X juswaoe|dsip paubis Ug-g =  + elep Ig-g aeIpawwl = #
T T +++ T8 40 Juswadeldsiq [N
T T + TL Juswiadeldsiqa 1g-8
J T MOJLIBAQ JON UOo dwnr ONC
uawaoe|dsiq |In
T T +++ 48 40 ! 1asia iin4
uawaoe|dsiq 1g-
I I ) 1 |[asig 19-8
; o Jareals/enbg
o ssa7 JoN uo dwnr OC/3TINC
I I +1+ 48 40 juawaoe|dsiq [In4
uawaoe|dsiq 1g-
I I + as 1 |[asig 19-8
; o renb3g
10 19183i9/sse7 0N uo dwnr IADC/INC
T T +++G8 40 Juswade|dsiq |Ind
T T + G luswade|dsiq 19-8
J S 0187 JON/fenb3 JoN uo dwnr ZNC/ANC
uawaoe|dsiq |In
T T +++ /8 40 ! 1asia iin4
uawaoe|dsiq 1g-
I I vy 1 |[asig 19-8
1 oo. L anoqy/enb3
10 mog JoN uo dwnr  YC/EGNC
T T +++ €8 40 juswaoe|dsiq N4
1 1 + €L swaoe|dsiq 19-8
Aue) joN/enb3
] .- - ... oo - 10 anoqy/mojag JoN uo dwng JDNC/AVE/aNC
3poN 3poiN HH aydsed HH aydsed
paroaod | oy /6oy 160y 404d 4V 4Z 4S 41 41 4d 4O
3d002dO NOILONYLSNI
1INNOD 1INNOD
S3LON MD07T0 AAON MD0T0 AAON SOV
a3103104dd av3d

(panunuo)) Arewiuns Junod %209 189S uondNISU| NdD 98X9LS "0Z'9 dlgel

6-25

FLEGTHEHIGS

SGS-THOMSON




ST6x86

pauiepun = n (SNg Z€ ‘9T ‘) Byep NO-2€ SrelpawWl (IN} = ###
pabueyoun = - (sug zg '9T) swaoe(dsip paubls (I} = +++ 'lep HG-9T Slelpawiwl =  ##
papipow = X juawaoe(dsp paubis 1g-8 = + elep )g-g Selpawiwl = #
T T 1915169y Xapu| YIM
T T [wy/1 Baa pow] @g 1318169y Xapu| oN
S e e e - e - o SSa2Ippy 2A103Y3 pro7 V3
Iy q v z S e e e - e oo [wy1 Bas pow] gD Sq@ 0} J8julod peoT Sal
8 [wya Baa pow] 20 40 Alowa/1a1s1bay woiH
d'ry'6 e R U T SIYb1Y SS90y proT UV
z z S R 46 sbeld yum Hy peoT 4HV
T T +++ 88 0 Juswadeldsiq |In4
T T + 8/ Juswasedsiq 1g-8
] - - .. oo ubis uo dwnpr sp
T T +++V8 40 Juawade(dsiq |In4
T T + VL JuaWwae|dsiq Ho-8
J S e - o - o oo uang Aured/Mired uo dwnp 3dce/de
T T +++ 08 40 Juawadeldsiq |In4
T 1 + 0L Juawase|dsiq 1g-8
] e - - o oo MOJLIBAO uo dwnr OC
T T +++ 68 40 Juawade(dsiq |In4
T T + 6L Juswiadeldsia 1g-8
1 S ubis jJoN uo dwnr SNC
T T +++ 98 40 Juawadeldsiq |In4
T T + 4/ awade(dsiq 1g-8
| - e e e oo oo PPO Alred/Aied 10N uo dwnr Odr/dNC
nwwwwﬁ_ 5 m_,wwk,_ :I\wmmmo w_:\wummo 404d 4V 47 4S 41 41 4d 40
3A02d0O NOILONHLSNI
SAON | 5010 300m | 510010 300M SOV
a3103104dd Iv3d

(PenuUNUOD) AreWWINS JUNOD 201D 189S UONINISU| NdD 98X9LS "0Z°9 dlgeL

-26

©




ST6x86

pauyspun = n (Sid g€ ‘9T ‘g) erep NQ-g€ deIpaWWI ([N} = ###
pabueyoun = - (sug zg '9T1) uswade|dsip paubls |IN} = +++ elep Hg-9T Slelpawwl =  ##
papipow = X Juawade(dsp paubis 1g-8 = + 'lep )g-g Sepawiwl = #
] [wy1 TTO pow] 00 40 Aowa/1a1s16a0y wol4
I'f'y‘6 e S 18)s168 5jse peoT H11
[y e v z e e e - o oo [wy Bas pow] 2g 40 SS 0] J91ujod peo] SST
8 [wyi Bas pow] €0 40 Aowa/1e1sibay wol4
d‘l'y‘6 e - - - X - - - - - Hwiry uswbas peo7 1S
1 T T S + T3 189S0 3d001/Zd0O01
1 T T S + 03 18540 INAOOT/ZNDOO
J T T S + 23 doo7 oN/dooT 18540 40O
y q € € St s s s s - [mott] v buins peo7 sAo
eT eT [w/1 0TT pow] TO 40 Aowa/1a1s160y wol4
o 2'q S e e e e e PI0M sniels aulyoep peoT MSINT
[+ [+ [W/! 0TO pPow] 00 40 Aowa/1a1sibay wolq
I'l'y‘6 e S J91s16ay 1 @7 peoT 1Al
I'y 2'q 8 8 St s s s s - [wy 10 POW] TO H0 4838168 1@l peOT 1417
Fry q v 2z e e e e e e e [wys Bas pow] 6@ 40 S9 0] 18julod pro] SO
I'y 2'q 8 8 s s s s - - [wy1 070 pow] TO 40 1935169y 1O proT 1A
[y q v z - - - - - - - [wys Baa pow] 9 40 S 01 18julod peo] S
'y q 14 4 s s s s e e e (w1 Bas pow] O S3 o} s8I0 peo] S
y q v ¥ e, 60 awelH Xor]s Jualin) anea] AV

cmwmw_ d m_uwwk,_ H_:\%%mumo w_:\%%mumo 404d 4V 47 4S 41 41 40 40

3d02dO NOILONH1SNI
SAON | y5010300m | 510010 300M sovT
a3103104dd Iv3d

(panunuo)) Arewiuns Junod %209 189S uondNISU| NdD 98X9LS "0Z'9 dlgel

6-27

FLEGTHEHIGS

SGS-THOMSON




ST6x86

pouyepun = (suq z€ ‘9T ‘8) elep Ug-gE aleIpaWWI [N} = ###
pabueyoun = - (sug zg '9T) swaoe(dsip paubis (I} = +++ 'lep HG-9T Slelpawwl =  ##
payjipow = X Juswade|dsip paubls 1g-8 = elep 1g-g selpawwl = #
9 9 [Ba1 009 TT] ¥Z 0 191169y 01 L41-9dL
ot ot [Ba1 595 7] 92 40 L41-941 01 Jasiboy
s S [Ba1 000 TT] ¥Z 0 sa1s16ay 01 G-eML
ot ot [6a1 @99 TT] 92 d0 G-gd1 0} Jalsifiay
vi 4 [6o1 298 TT] T2 40 1esibay 01 £4a-94a
o ot [Bo1 800 7] €2 40 L4a-94a 0 JeisiBay
T T [Bo1 299 TT] T2 40 131169y 01 £€4Q-04A
o ot [Ba1 595 TT] €2 40 £40-04Q 01 Jeisibay
9 9 [6a1 893 TT] 02 0 1918169y 01 £4D/2HD/04D
§/5/0¢ §/5/0¢ [Ba1 892 TT] 22 H0 €40/2HD/0H0D 01 JaisiBay
oo sbay
1s8.1/6nqa@/ionuo)  woi/o) 8AoN  AOW
T T [wys g6315 pow] o8 Aowa/1arsibay 0 Jaisibay uswbas
en 1 [ gbaus pour 38 J1a)sibay swbas 01 Alows/ie1sibay
T T +++ [mT00] V (wJoy 1oys) Aiowsy 01 Jore|nwnIdYy
T T +++[M000] v (wJoy 1oys) Jore|nwinddy 03 AIoWa
g T ads (wJioy Hoys) Jaasibay 03 areipawwl|
1 T [w/i 000 pow] Eﬂow#w Aowa/11sibay 01 arelpawiwl|
K T [wys Bas pow] [MT0T] 8 J1a1siBay 01 Alowsn/eisiBay
T 1 [wys Bas pow] [MOOT] 8 Alowsa\ 01 Ja1siBay
' k w1 621 TT] (MpOT] 8 sais1bay 0 saisibay
.____; d T T Bleg aAop AOW
poeroid | oo o o 404d 4V 47 4S 4L 41 40 40
3d02dO NOILONYLSNI
SILON | 315015 300 | 50070 300N SOV
da3.103104dd v3d

(PenuURUOD) AreWWNS JUNOD 90| 1S UORINASUI NdD 98X9LS "0Z°9 BlqeL

TGS

o)

ELE

$GS-THOMSON
A [ERIR

<73

-28

©



ST6x86

pauiepun = n (SNg z€ ‘9T ‘) Byep HO-2€ SleIpawWl (IN} = ###
pabueyoun = - (sug zg '9T1) uswaoe(dsip paubls (I} = +++ 'lep HG-9T Slelpawiwl =  ##
payipow = X juawaoe|dsip paubis Ig-8 =  + elep 1g-g alelpawwl = #
T T ### IMoTTl 0 Jole|NWINoY 0] arelpawiw|
1 1 [Wy 100 pou] csmoo_##w Aowa/1a1sibay 01 arelpawiw|
1 1 [wy Bas pow] MT0T] 0 19151609y 01 Alowa
1 1 [wy Bas pow] MooT] 0 Alowa 01 Ja1sibay
k k [y 621 71] [mpOT] O 1919109% 0} o11D0Y
y q 0 X n x x - - -0 HO uesj00g HO
G¢T -8 T - - - - -0 X - - 44 40 8poodo pifeau] (B0 OlO
y q 1 1 S T (w1 0TO pow] [MTTO] o Juswajdwo) uesjoog 10N
T 1 St s s e e 06 uofe1ado ON dON
y q 1 1 X X X X X - - - X [wyTTO pow] [MTTO] o 18b9)u) arebaN OIAN

0T 0T pioma|gnog

14 14 PIOM
14 14 [wyr 00T pow] [MTTO] o akg ualdiniy
Alowa /11168y yum Jore|nwingoy
y q X n nx X - - - X Aidninpy paubisun 1NN
T T [wyi Bas pow] [MTTOlG 40 Aowa/ie1s160y woly 1a1sibay
y q S s s e - uoISuaIX3 0187 Yim 8A0N XZAOW
T T [wyr 621 pow] [MTTTIG 40 Alowa/ie1sibay woly 1aisibay
y q R uojsuaix3g ubls yum anop XSAOW
y q 14 14 s s s e [moT0] V¥ bus anopn SAOW

nmﬂwmﬁ_ d m_.wwk,_ H_:\%%mumo H_:\%%mumo 404d 4V 47 4S 41 41 4a 40
3d02d0O NOILONYLSNI
SILON | o015 300m | %000 3d0M SOV
a31o0310dd v3d

(panunuo)) Arewiuns Junod %209 189S uondNISU| NdD 98X9LS "0Z'9 dlgel

6-29

FLEGTHEHIGS

SGS-THOMSON




ST6x86

pauyapun = n (SNg Z€ ‘9T ‘) Byep NO-2€ SrelpawWl (IN} = ###
pabueyoun = - (sug zg '9T) swaoe(dsip paubls (I} = +++ 'lep HG-9T Slelpawiwl =  ##
payipow = X juawaoe(dsp paubis 1g-8 = + elep )g-g Selpawiwl = #

9e SS

59 S9

¥9 S4

9z s3

3e sd

3z SO
XIjald 9pLUBAQ uswbas
99 Xijald 9zIS pueladQ
19 Xlyaid 97IS SSaIppy
o4 Xjald D01 dIempleH Uassy
w S S3LAQ XI43dd
u‘'y q 6 6 X X X X X X X X X as S9OV14 ol 398)S dod 4d0d
y q 9 9 S s s s s e 19 s193s168y [esaud9 |l dod VdOd
€ T [Too €Bais 0T] d0 (SO ‘s4) 1a1sibay wawhas
€ 1 [TTT 2ZBals 000] (sa ‘ss ‘s3) Jeisibay wawbasg
T T [6a1 1] g (wioy Hoys) Jesibay
1 T [w/1 000 pow] 48 Kiowap/1a1s1Bay
'y q St m s s s e s X081S 40 anfep dod d40d
w'y q 82T 14" - [wITT] 9 bus ndino s1no
8TV vT [mTTT] 3 Mod a|qeren
8¢V vT #[mtTO] 3 uod paxid4
w S 1od o1 ndino 1NO

nmwpwww_:n_ ﬂwook,_ H_I\%Mmmo H_I\%Mmmo 404dd 4V 4Z 4S 41 4l 4d 40
3002d0 NOILONYLSNI
SAON | 5010 300m | 510010 300M SOV
d3.10310dd vy

(panupuo)) Arewiwing JUN0OD 320]D 189S UoRINASUl NdD 98X9LS 02’9 dlqeL

-30

©




ST6x86

pauiepun = n (SNg z€ ‘9T ‘) B¥ep HO-2€ SleIpawWl (IN} = ###
pabueyoun = - (sug zg '9T) uswaoe(dsip paubls (I} = +++ 'lep HG-9T Slelpawwl =  ##
payipow = X juawaoe(dsip paubis 1g-8 = + elep 1g- Selpswwl = #
ug+8z
w'y q \UG+2¢T ug+eT S [MTTT]9 € 6uws 1ndino S1NO d3Y
y q u+6 u+6 R I [moTolv €4 buls anopw SAOW d3d
y q u+0T u+0T S [MOTTIV €4 buis peo7 SAO1 43
ug+8z

w'y q \ug+2T UG+ZT S [moTTl9 € 6urns induj SNI 434
6 6 X - - - - - - - n | #[wytTo pow] [Mooo] O arelpsww| Ag Alowsn/1eisibay
6 6 X - - - - - - -mn [w/i TTO POW] [MTO0] @ 10 Aq AowsniisiBay
14 14 X - - - - - - - X [wy 10 Pow] [Moool @ T Ag Klows/1esibay
y q Wby Aued ybnouyy arejod ¥OH
8 8 X - - - - - - - n | #[wpotopow] [Mmooo] O ayeipaww| Aq Aowan/19siBay
8 8 X - = - - - - -n [wyr 070 pow] [MTO0] @ 10 Ag Alowsn/ieisibay
€ € X = = = - - - - X [wy 070 pow] [moo0] @ T Ag Klows/1esibay
y q yo1 Aued ybnouy are1oy 10d
y q z z R 06 18151694 SOV Ysnd 4HSNd
y q 9 9 R I 09 siajsibay [e1Ud9 I Yshd YHSNd
T T ### [0S0T] 9 Srelpaww
T T [000 £631s 0T] 40 (SO 's4) Jasibay Jswbes
T T [0TT 2bais 000] (SA 'ss 'sO 's3) sasibey Juswbes
. I [6aio] g (wioy 1oys) JalsiBay
I 1 [wyott pow] 44 Kiowan/1a1s1Bay
y q - e e - e - X0BIS 01UO BNfeA ysnd HSNd

cmwmw_ d m_uwwk,_ H_:\%%mumo w_:\%%mumo 404d 4V 47 4S 41 41 40 40

3000d0 NOILONYLSNI
e o
d3.10310dd vy

(panunuo)) Arewiuns Junod %209 189S uondNISU| NdD 98X9LS "0Z'9 dlgel

6-31

FLEGTHEHIGS

SGS-THOMSON




ST6x86

pauyapun = n (SNg Z€ ‘9T ‘) Byep NO-2€ SrelpawWl (IN} = ###
pabueyoun = - (sug zg '9T) swaoe(dsip paubis (I} = +++ 'lep HG-9T Slelpawwl =  ##
payipow = X juswaoe(dsip paubis g-8 =  + elep lig-g aelpawwl =  #
1 1 X - - - - - - -n # [wy1 000 pow] [Moo0lD arelpaww] Ag AlowsN/ialsifoy
Z r X - - - - - - -n [wy1 000 pow] [MTo0lA 10 Ag Aowsn/isisibay
1 1 X - - - - - - - X [w/1 000 pow] [mooold T Ag AowaarsiBay
y q ya7 arejoy 10y
ford dsS 01 aeipaww| Buippy uawbasia)
€¢ Juswbasiau|
|19A87 abajIAlLd ualaylq :BPON Paldaloid
L 14 # VO dS 0} ajelpaww| Buippy Juswbasiaiul
A 1% a0 Juswbasialu|
14 14 ## 20 dS 03 aeipaww| Buippy Juswhas Ui
€ € €0 SWETTEISRTTHT
INTy‘6 q - - - - - e - - aunnoigns wody uinidy 134
(Xv3rXv/v puid)
y q uz+0t uz+0tT X X X X X - - - X MTTTIV 24 bulys ueds SYOS AN
(yorew puig)
y q uz+0T uz+0oT X X X X X - - - X [mTTOlV 24 bulns aredwod SAND IND3IY
uz+0T uz+0T (Xv3a/xv/1v-uou puid)
y q X X X X X - - - X [MTTTlV € buls ueas Syos 3434
uz+0T uz+0t (yorew-uou pui)
y q X X X X X - - - X [MTTOlV €
bulys aredwod SANO 343
y q u+0T u+0T S R [mToTlv €4 buins 810}s SOLS d3d
nwgwwﬁ_ d m_uwwk,_ :I\wmmmo w_:\wummo 404d 4V 4z 4S 41 41 40 40
3002d0 NOILONHLSNI
e o
a3103104dd vy
(]
(pPaNUNUOD) ATWIWINS 1UNOD %00]D) 19S UORINASU| NdD 98X9LS ‘0Z9dlqel &




ST6x86

pauiepun = n (SNg z€ ‘9T ‘) B¥ep NO-2€ SrelpawWl (IN} = ###
pabueyoun = - (sug zg '9T) swaoe(dsip paubls (I} = +++ elep HG-9T Slelpawwl =  ##
payipow = X juawade(dsp paubis 1g-8 = + elep 1g- Selpswwl = #
1 1 X X n xx - - -n # [WuTTT pow] [Moo0lD ayeipaww| Aq Aowan/1ssiBay
4 4 XX n xXx- - -n [wyTTT pow] [MTO0]A 10 Ag Alowsn/ieisibay
T T X X n x X - - - X [watTT pow] [Mooold T Aq Aowsn/i1s1B8y
y q onawyIY 1YbIY YIYS Yv'S
1 1 X X n x x - - - n[ #[wyoot pow] [Mooolo aleipaww| Ag Alowsn/1eisibay
4 4 X X n XX - - -n [wyr 00T pow] [mTOO] 10 Ag Alowsn/ieisibay
1 1 X X n xx - - - X [wyr 00T pow] [mooola T Ag Klows/1esibay
y q nBWIYILIY Yo7 YIYS VS
1 T X X X X X - - - - 36 SOV Ul HY 8101S 4HVS
S s 9 9 S [w/i 000 pow] Az 40 Jojduasaq pue §Si 9101s84 S1SH
S S ov ov X X X X X X X X X vV 40 PO WINS Wolj sawnsay INSH
s S 9 9 R I [w/r 000 pow] g2 40 Joiduosaq pue 41@a7 84018y 1ATSYH
s s 9 9 o T [wys gbaus pou] 6. 40 pue isjsibay  juswbas &Smmmuﬁmuo.,wmm
1 1 X - - - - - - -n # [wy1 100 pow] [Mo00lD ayeipaww| Aq Aows/iaisiBay
Z z X - - - - - - -mn [wy Too pow] [mTo0la 10 Aq Aowsisibay
T T X - - - - - - - X [wyr Too pow] [mooola T Ag Aiowsn/isisibay
y q W61y 818104 HOYH
cmwmw_ d m_,wwk,_ H_:\%%mumo w_:\%%mumo 404d 4V 47 4S 41 41 40 40
3000d0 NOILONYLSNI
SAON | y5010300m | 510010 300M sovT
d3.10310dd vy

(panunuo)) Arewiuns Junod %209 189S uondNISU| NdD 98X9LS "0Z'9 dlgel

6-33

THENIGS

EIES

SGS-THOMSON




ST6x86

pauyspun = n (Suq z€ ‘9T ‘8) elep HQ-gE deIpaWWI ||} = ##
pabueyoun = - (suq g€ ‘9T) wawaoe|dsip paubis [N} = +++ elep 1g-9T alelpawwl =  ##
payipow = X juswaoe|dsip paubis ug-g =  + elep Ig-g aeIpawwl = #
Aowa/1a1s16ay 0
T T [wy 000 pow] 06 40 WHSISIDOY 01
fenb3 Jo
" S VEIZE D)
JoN/sse7 uo @ifg 189S FONLIAS/1LIS
1 T [w/1 000 pow] ¥6 40 Kiowan/191s189y 01
y St s s s s ousz/fenb3 uo a)fg 18s 713S/313S
1 T [w/1 000 pow] 96 40 AiowaN/1e1sIBay 01
aA0qy 10N/[enb3
y - - e e e e e - 10 mojag uo aiAg 19s ¥YN13S/3913S
Aowa/1a1sibay 0
T T [w/1 000 pow] g6 40 WHSISIDOY 01
Aired/renb3 1o anoqy
" L JoN/mojeg
uo alfg FERY J13S/aVNL3S/9d13S
y q 4 r4 X X X X X - - - X [MTTT] v buiys ueas svos
T T ### [MOTTIT (wJoj Woys) Jore|NWNd2Y 0} Srelpawiw|
T P ### (Wl TT0 pow] [msoo]8 Alowspis1siBay 01 drelpawwW|
1 T [wya Bas pow] [MTOTIT 1915169y 01 Alowan
T T [wy1 Baa pow] [MOOTIT Aowa 01 Ja1sibay
1 T [wya Ba1 TT] [MpOTIT J1a1s1bay 01 JarsiBay
y q X X X X X - - - X Mo.iog yum 1oengns Jsbajul 99s
3poiN 3poiN WH aydsed HH aydsed
poaroid | esy /6oy /6oy 404d 4V 47 4S 41 41 4d 40
3d00dO NOILONYLSNI
1INNOD 1INNOD
S3LON MD0T10 AAON MD0TO0 AAON SOV
a3103104dd av3d

(panupuo)) Arewiwing JUN0OD 320]D 189S UoRINASUl NdD 98X9LS 02’9 dlqeL

-34

©



ST6x86

pauiepun = n (SNg z€ ‘9T ‘) Byep HO-2€ SrelpawWl (IN} = ###
pabueyoun = - (suq zg ‘o1) wawade(dsip paubis |IN} = +++ elep 1g-9T aeIpawWIl =  ##
payipow = X wawaoe|dsip psubis 1g-g = elep 1g-g slelpswwl = #
T T [w/1 000 pow] 16 40 Kowaw/iaisibay o)
y - - - - - - - - - MOJJIBAQ JON UO 3]Ag 18S ONL3S
1 T [w/1 000 pow] 46 -0 Kiowan/1e1s1bay 01
Jarealoenbg
y - - - - .- e - 10 5587 JON U0 8JAg 189S 913S/3TINLIS
Aowsa/ia1s169Y 0
T T [w/ 000 pow] @ 40 WHSISIDOY O
fenb3 1o
S 1918319/S587
u 1ON uo aifg 18S J913S/INL3IS
Aowa /1215169y 0
T T [w/1 000 pow] 56 40 WHSISIDOY O
y 0187
JoN/fenb3 joN uo 8)Ag 18S ZNL3S/ANLIAS
T T [w/1 000 pow] 26 40 KowsyisisiBay 01
anoqy/renb3
y - - - - - - - - - 10 Mojag JON UO0 8JAg 18S V13S/3GNLIS
Aowa /1215169y 0
T T [w/1 000 pow] €6 40 WHSISIDOY O.L
Aired 10N/renb3 1o anoqy
y /mojeg
JON U0 9)Ag 189S DONL1IS/AVLIIAS/ANLIS
Aowa/1a1sibay o
T T [w/1 000 pow] 36 d0 WHeISIDoE 01
19183819
y L. 1oN/jenb3
10 sse7 uo 8)hg 189S ONLIS/F1L3AS
3poN 3poiN UH 3yoed UH 3yoed
paroaod | oy /6oy 160y 404dd 4V 47 4S 41 4l 40 40
3d002dO NOILONYLSNI
1INNOD 1INNOD
S3LON MD07T0 AAON MD0T0 AAON SOV
a3103104dd av3d

(panunuo)) Arewiuns Junod %209 189S uondNISU| NdD 98X9LS "0Z'9 dlgel

6-35

FLEGTHEHIGS

SGS-THOMSON




ST6x86

pauyapun = n (SNg Z€ ‘9T ‘) B¥ep NO-2€ SrelpawiWl (IN} = ###
pabueyoun = - (sug zg '9T) swaoe(dsip paubis (I} = +++ 'lep HG-9T Slelpawwl =  ##
payipow = X juswaoe|dsip paubis g-8 =  + elep lig-g aelpawwl =  #
S S [wy1 Ba1 pow] G 40 10 Ag Alowa/isisibay
¥ v # [wy Bas pow] #v 40 arelpaww] Agq Alowan/ia1sibay
y q X X n X x - - -n a|gnoq Y87 YIys aHS
1 1 X X n x x - - - n|#[wioot pow] [mooo] O arelpaww| Ag Aowsn/idisifioy
4 4 X X n xx - - -n [wys 00T pow] [MT00] a 10 Aq Aowaiisibay
T T X X n x x - - - X [wy1 00T pow] [mooo] @ T Ag Aows/1o1sibay
y q (221607 Yo7 UIYS HS
[w/1 000 pow] TO 40 Alowsn/1sisiBay oL 2%
y o'q 4 4 - - - - - sa1s16oy 1ao si0s 1aos | @
T T (w1 000 pow] 86 H0 Kiowa/191si6ay 0L mm
Y S e e e e - ubis uo a1Ag 18S S13S _.mm
T T [w/ 000 pow] v6 40 frouiane1si03 01 mw
y oo usng .
Awed/Med uo 8lfg 189S 3Id13S/L13S _,W
1 1 [w/1 000 pow] 06 40 Aowsn/1sisiBay oL
y S s s s s e MOJIBAQ U0 81/Ag 189S O13S
1 1 [w/1 000 pow] 66 40 Aiowsn/1sisibay 0L
y S -t m s s e s ubls JoN uo 8)Ag 18S SN1AS
1 T [w/1 000 pow] @6 40 Kiowan 1918169y 01
ppo Aied/Aed
y SRR JON U0 9)Agd 189S Od13S/dN13S
nwgwwﬁ_ d m_uwwk,_ :I\wmmmo w_:\wummo 404d 4V 4z 4S 41 41 40 40
3a00dO NOILONYLSNI
e o
d3.10310dd vy
(o]
(pPaNUNUOD) ATWIINS 1UNOD 300]D) 19S UORINASU| NdD 98X9LS ‘0Z9dlqel &




ST6x86

pauyspun = n (Sid g€ ‘9T ‘g) erep NQ-g€ deIpaWWI ([N} = ###
pabueyoun = - (sug zg '9T1) uswade|dsip paubls |IN} = +++ elep Hg-9T Slelpawwl =  ##
payipow = X Juawade(dsp paubis 1g-8 = + 'lep )g-g Sepawiwl = #
14 [wy1 TOO pow] 00 40 KowsyisisiBay 01
y e e 1835162y Xse] 210)S H1S
u q 4 4 R I [mToT] V 6ulns 810)s SOLS
w L L S - - - - T - - a4 beyy 1dnusjuy 189S |LS
L L S a4 bej4 uonoang 19s ALS
T T T - - - - - - - - 64 bej4 Aued 189S 01S
y 2'q 9 9 R I [wy 00T pow] TO 40 PIOAA SnjelS Bulyoe) 8101S MSINS
s S SS SS T 32 40 Ajug WNS asemyos ININS
1 [w/1 000 pow] 00 40 Kiowsany1e1sibay 01
y e s s s e - 1815160y 17 8101S 1ATS
14 14 [w/1 TOO pow] TO 40 Kowaw/iaisibay o)
y 2'q S 4938169y 1@l 8101S 1AIS
S S [wyi Bas pow] av 40 10 Ag Alowsn/isisibay
¥ v # [wy Bas pow] OV 40 arelpaww| Aq Alowa/ia1sibay
y q X X N X X - - -n 8/qnoq 1ybiy Yiys AYHS
T T X X n X X - - - n | #[witot pow] [Mooo] O alelpaww| Aq Alowan/iaisibay
Z Z X X n xx - - -n [wyr TOT pow] [mT00] @ 10 Aq Aowsniis1Bay
T T X X n xx - - - X [wyr TOT pow] [mooo] @ T Aq Aowsn/i1s1B8y
y q 221607 1ybIY YiIyS HHS
cmwmw_ d m_uwwk,_ H_:\%%mumo w_:\%%mumo 404d 4V 47 4S 41 41 40 40
3d02dO NOILONH1SNI
SAON | y5010300m | 510010 300M sovT
d3.10310dd vy

(panunuo)) Arewiuns Junod %209 189S uondNISU| NdD 98X9LS "0Z'9 dlgel

6-37

FLEGTHEHIGS

SGS-THOMSON




ST6x86

pauyspun = n (suq zg ‘9T ‘g) e1ep HQ-gE SleIpawWWI [N} = ##H
pabueyoun = - (suq zg ‘o1) wawsade(dsip paubis |IN} = +++ elep 1g-9T aeIpawWIl =  ##
payipow = X juswaoe|dsip paubis Ig-8 =  + elep 1g-g aelpawwl = #
60 40| 8yoreD arepifeaul pue xoeg-aiiMm AANIGM
) ) ST ST - s -
S S e d6 Asng 10N Nd4 1MunN 1em LIVM
L [wy TOT pow] 00 40 Aiowan/1e1s1B8Y 01
d'ryb e - - - X - - - $S800Y 8lliM ALBA MEIA
L [wyr 00T pow] 00 40 Aiowan/1e1s1BY 01
d‘l'y‘6 e - - - X - - - - - SS90y peay AN YA
T T ### [MOOT] v lore|nwinNdoy pue ereq alelpawiw|
Hitt
Aowa/1e1sibay pue eleq alelpawiw
T T [wa 000 pow] MiTol 4 W/91sIBaY pue ereq arelpswiw|
19181609y pue Alowsa/ia1siba
k k [y Ba1 powl] (MOTO] 8 iSied P RIS
y q oOx n x X - - -0 sigisal 1S3l
S S 14 14 s - s s s - [w/1 000 pow] o2 40 J0jduasaq pue HS1 8/BS SIAS
S S T T e [wy1 000 pow] vz 40 Joiduosaq pue 417 8nes 1QTAS
s s 49 49 e [wya gbais pow] 82 40 o
-dlosaqg pue usjsibay wawbas anes DANS
T T ### IMOTT] € (wJoy} 1oYsS) Jore|nwinody 03 arelpaww|
HitH
Aowa/1a1sibay 01 arelpaww
K T [wy TOT pow] [msoo] 8 WHSISIDOY 03 SFEIpSUIUI
1918169y 01 Alowa
K K [wys o1 pow] [MTOT] 2 18ibod o W
Alows 01 Ja1s1ba
T T [wy/a Bai pow] [MOOT] 2 W 01 19isIbod
1918162y 01 Ja1sibo
T T [wy Bo1TT] [MPOT] 2 19109d 0} 13is1bod
y q X X X X X - - - X 10849nS J9b631U] NS
3poiN 3poiN WH aydsed HH aydsed
powaloid | oy /6oy /6oy 404dd 4V 47 4S 41 41 40 40
3d00dO NOILONYLSNI
1INNOD 1INNOD
S3LON MD0T10 AAON MD0TO0 AAON SOV
a3103104dd av3d

(panupuo)) Arewiwing JUN0OD 320]D 189S UoRINASUl NdD 98X9LS 02’9 dlqeL

-38

©



ST6x86

*abed 1xau uo panunuo)d

P

"9POIN P319310.1d 10} NdD 8yl azifenul 0} Ajewnd si asodind s)l ‘OpojN [eay U] "SpOIA [eay Ul paindaxa ag Aew uonodNAsuUl Siyl "9

Wil SS wnwixew ay) puoAaq spuaixa A|ny

10 Ajrened 1ey) spew S| 9ousiajal puelado ue I SPO [eay Ul In220 |Im (Juasald Jou 1o uone|oIA Jwl| Juswbas Xoels) Jney ZT uondadax3 ‘(H4444) Hwi| Juswhbas SO Jo
‘SH ‘S3 ‘sA ‘SO wnwixew ayl puoAaq spualxa A|ny 1o Ajjeinted reyl spew s| adualaal puesado ue Jl SPOIA [eay Ul In220 |IIm (uonoslold [eiauab) Jney €T uondsox3 'q

‘(ep02-do pipeAur) 9 uondaoxa Ul INSal [[IM SPOIA [e8y Ul UoNNdaxa paldwany "uononasul SpojN Pa1d810id B SISIyl e

:Ajuo apo ssalppy [eay 01 Aldde 9 ybnouyl e saloN
Arewwns 189S U0 NJIISU| 10} SBION UORINJISU|

pauyspun = n (Suq z€ ‘9T ‘8) elep HQ-gE deIpAWWI ||} = ##
pabueyoun = - (suq g€ ‘9T) wawsaoe|dsip paubis [N} = +++ elep 1g-9T alelpawWl =  ##
payipow = X juswaoe|dsip paubis Ug-g =  + elep Ig-g aeIpawwl = #
T T #### [MOTO] € (wJoj 1I0YsS) J01R|NWNIIY 0} dreIpawiw|
Hi#
Aowa/1a1sibay 01 arelpaww
K K [wy oTT pow] [msoo] 8 WHSISIDSY OF Syelpatiil
1918169y 01 Alowa
K K [wys Ba1 pow] [mT00] € 15109y ) W
Aowa 01 Ja1siba
K K [wy1 Ba1 pow] [Mooo] € W O} 191819
1918162y 01 Ja1sibo
T T [wy1 621 TT] [Mpo0] € 19109 01 19151bod
y q 00X n X X - - -0 YO 9AIsnjax3 uesjoog HOX
y 14 14 e ,d aJAg angjsuell 1v1X
Z Z [6a1 06 Jo1eINWIN22Y Ylm Jaisibay
z Z [wy1 Bas pow] [MTTOI8 1918169 yum Alowa /1a1s16ay
43 ¥q s abueyox3 OHOX
4 4 [wyr Bas pow] [Mo00]O -0 1918169y ‘Alowa
Z Z [T6a1 gba1 TT] [MO00]O d40 ziaisibay ‘11018169
X X X X X - - - X ppYy pue abueyox3 AQVX
3poN 9pon HH aydsed HH aydsed
paroaod | oy /6oy 160y 404d 4V 4Z 4S 41 41 4d 4O
3Ad02d0O NOILONYLSNI
1INNOD 1INNOD
S3LON MO010 IAON MO01D0 IAON SOV
a3103104dd av3d

(panunuo)) Arewiuns Junod %209 189S uondNISU| NdD 98X9LS "0Z'9 dlgel

6-39

5

i

OELEGTHOMIG

SGS-THOMSON

37




ST6x86

*abed 1xau uo panunuod

's9ss999e a|ge) Joiduosap Buunp pauasse si #1007 ‘B

‘xija4d MO0 ayl Jo dsuasqge Jo aduasald ayl Jo ssajpsebal ‘pauasse Ajeonewoine st #0071 )
‘puelado ayi Jo anjea ayi uo Buipuadap ‘IN220 Aew uondadxs uy "d

:9POI\ SSaIPPY [BNUIA Pa1dal0id pue SpoIN SSalppy [eay o1 Aldde b ybnoiyl a saloN

Arewwns 189S uononN.suU| J0j S8I0N uononsul’

6-40

BTATHIGS

N

T

SGS-THOMSON

J—
S/ A




ST6x86

‘AloWwaW [euIsIXd 0} SaUl| BYoed PalIpPoW, [[e )M 0} palinbal SYJ0|0 Jo Jaquinu ay) snjd UMOYS JUNOD 20[0 8} SI JUNOD 20|d [e10) BYL )

:apow xoeq-aium Ul Bunelado ayoed syl Yyum suononisul uoneplieaul ayoed o} saldde 1 810N

‘[1ajpuey |INS ue ul J1 10 18S SI
DOVINS] pue 0 = 1dD pue ‘0 < 9zIS £4yV pue pajgeus SI [INS SSajun sindoo 9 uondaoxa apoado pifeAul Uy ‘ajgeayded-uou ale adeds NS 0] Sassadoe Alowsaw ||V 'S

:suononasul ININS aioads uoswoy]-S9OS 01 saldde s aloN

*IN220 ||IMm Jney €T uondadxa ue Jo JusWBas apoad B Jo 1wl PauLap ayl ul 3 isnw 131 4o 134 ‘INI “TTVvD ‘dIAC € 0 uoneunsap ayl “J

‘ssaippe Buiuels s,pueiado syl Ag parejoIn SI Wi 4o'IS 8yl JI IN2I0 ||IM YNk} 2T uondaoxs
Uy "pPaInNdaxa Sl uonoNAISUl DS3 8yl 81048 IN2J0 [|IMm }ne} €T uondaoxa ue ‘s)ybu ssadde uawbas Jo Jwi Juswbhas e salejoln puelado Alowsaw s, 10ssa201dod ayy 4| b

‘palea|d si Be|y 019z ay) ‘Jayiel ‘uondadxa UoI108]101d B asned jou saop puesado 10109[8s ay) 01 Aldde se sajni abajiaud jo uonejoin Auy “d

Ig 3d 3y} 19531 0} BuLISap JI OYD Ol AOW dsN “uonanusul siyy Aq 19sai aq Jouued (04D) MSIN U3 Jo )Iq Id 3YL O

"0 = 1dD # Ajuo parepdn aie iisibas Bely ays Jo spiay INA pue 1dOI 3YL “1dOI uey Jayealb si 1d0 41 parepdn jou si saisiBal Beyy sy Jo 1g 18yl "u
“1dOI ueyl Jarealb si 1dD JI SIn220 ney €T uondaixa uy'w

‘(]ans| pabajiaud 1sow ays sI 0) 0 ueyl Jarealb sI 1dD JI SIN220 Jne} €T uondaixa uy |

‘parejolA si ajnJ abajiaud sjgedldde ue yi ‘€T uondadaxa ue asned |Im Juswbas apoad Jayloue 0} Bulisgal suononisul | 34| pue 13y ‘INI “TIVI ‘dINC ™

‘swial
-sAs Jossasoidninw ur AUl 101dIoSap urelurew 0] #XD0T Uasse Ajfesnewolne [[IM uononasul siy) Ag spew 1d1 1o 1d ay) ul sassadde Joyduosap juswbes |y |

"$IN220 2T uondaoxe ue ‘pajdslap SiJuasald Jou Juswhas 3oels e pue papeo) si Jsisifal SS ey §| “(uasald Jou SO ‘SH ‘'ST ‘s ‘SD) TT uondsodxs o Jussald,
areoipul 1snw Joyduosep sauswbas syl )ney €T uondsdxa ue pioAe o3 sajnt abs|iALd ayl yum saibe 1snw 1dd pue “1dd “1dD 8y ‘suonesado peo| Juswbas 104 I

"SIN220 ZT Uondaoxe ue ‘paje[olA SI Wil Xoels B
§] "uone|oiA sjybll SS8228 Ue J0 UOHRIOIA HWI| JuBWBas & Jayus 0} anp pasn ag Jouued S9 10 'S4 ‘ST ‘sq ‘SO Ul puelado Alowaw ayy ji IN220 [jim Jney €T uondaox3 'y

:AlUO BPOIN SSBIPPY [eNUIA Paldalold 01 Ajdde 1 ybnoayl y saloN

6-41

BTATHIGS

N

T

SGS-THOMSON

J—
S/ A




ST6x86

642 437 S6S-THOMSON

s WIEROELECTROMICS




ST6x86

6.5 FPU Clock Counts

The CPU is functionally divided into the FPU, and
the integer unit. The FPU processes floating point
instructions only and does so in parallel with the
integer unit.

For example, when the integer unit detects a float-
ing point instruction without memory operands,
after two clock cycles the instruction passes to the
FPU for execution. The integer unit continues to
execute instructions while the FPU executes the
floating point instruction. If another FPU instruc-

Table 6.21 FPU Clock Count Table Abbreviations

tion is encountered, the second FPU instruction is
placed in the FPU queue. Up to four FPU instruc-
tions can be queued. In the event of an FPU
exception, while other FPU instructions are
gueued, the state of the CPU is saved to ensure
recovery.

6.5.1 FPU Clock Count Table

The clock counts for the FPU instructions are
listed in Table 6.21. The abbreviations used in this
table are listed in FPU Clock Count Table Abbre-
viations

ABBREVIATION MEANING
n Stack register number
TOS Top of stack register pointed to by SSS in the status register.
ST(1) FPU register nextto TOS
ST(n) A specific FPU register, relative to TOS
M.WiI 16-bit integer operand from memory
M.SI 32-bit integer operand from memory
M.LI 64-bit integer operand from memory
M.SR 32-hit real operand from memory
M.DR 64-bit real operand from memory
M.XR 80-hit real operand from memory
M.BCD 18-digit BCD integer operand from memory
CcC FPU condition code
Env Regs Status, Mode Control and Tag Registers, Instruction Pointer and Operand Pointer
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Ordering Information

Example: % 6X86 P120+ H S
SGS Thomson| | Device | Speed Equalizer | | Package Type | | S= Supply Voltage |
Prefix Name H = CPGA Package (3.52 V Commercial
P120+=100MHz(internal) B = BGA Package Grade Temperature)

P133+=110MHz(internal) P = PPGA Package
P150+=120Mhz(internal)
P166+=133MHz(internal)
P200+=150MHz(internal)

Please contact your nearest SGS-THOMSON sales office to confirm availability of specific valid
combinations and to check on newly released combinations.
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The ST6x86 CPU part numbers are listed below.
ST6x86 Part Numbers

FREQUENCY
NOM (MHz)
PART NUMBER vee (V)
BUS INTERNAL
ST6X86P120+HS 352 50 100
ST6X86P133+HS 352 55 110
ST6X86P150+HS 3.52 60 120
ST6X86P166+HS 3.52 66 133

A2 437 $GS:THOMSON

s WIEROELECTROMICS



ST6x86

IS73

SGS-THOMSON

FICRUELECSTREEMICS

A-3




Numerics
296-Pin SPGA Package .........cccccceeviiiieeennnn. 5-1
6x86 Configuration Registers ...........ccccceee... 2-23
A
ADOrt EXCEPLON .....ccovviiiiiiiiiiiieeeiieee e, 2-57
Absolute Maximum Ratings .........cccccveeernnnne. 4-2
AC CharacteristiCs .........cccvevrvvrereriiieee e 4-5
AdAreSS BUS ...oovvvveeeeiiiiiiiiiiieeecee e 3-8
AdAress Parity ......cccocceeviiiiiies ovviiieee e 39
Address SPace ......ccccceviiiiiiiiiiiie e 2-40
Application Register Set .........cccccovvvveieiniinnnnn. 2-4
Architecture OVErvVIieW ........cccccccevveeeeeesiniiinnnns 1-1
B
Back-Off TIMING .....oeveeeiiiiiiiiiiiiiiieeeeeeeeee 3-48
Base Field ..o 6-10
Branch Control .........ccccoovviiiiiins cvviiieeeeeee, 1-11
Branch Prediction .........ccccccvviiiviiiiiiienene 1-11
Burst Cycle Address Sequence .................... 3-33
Burst Write CycCles ........ocoveiiiiiieieiiiieeeeee 3-36
Bus Arbitration ..........ccocoeeeeiiiiies eeenns 3-15 3-45
Bus Cycle Control .........ccccceevviiiieeinniieeeeee, 3-12
Bus Cycle Definitions ..........ccccovveeeeiiiiieenenne 3-10
Bus Interface .........ccccooviviiiniiiieee e, 3-1
Bus Interface UNit ............coooocciiiiivieiee s 1-15
Bus State Definition .........ccccoocvvveeiiiiineennnn 3-25
cC
Cache Coherency .......ccccccceeeiiniiiiiiiieeeeenn. 3-17
Cache Control .........cccccvviieeiieiie e, 3-13
Cache Control Timing ......ccccoevvvvveeeriiieeeeene 3-42
Cache Inquiry Cycles .......cccoceviieeiiiiiiiiiee, 3-49
Cache Units .....cccceeeiviiiiiieeec e 1-12
Clock CoNntrol ......ccoccceviiiiiiieeeee e 3-6
Configuration Control Registers ................... 2-23
Confirmation Registers .........cccovvvvvvieiniinenen, 2-11
Control Register .......cccuveeeeiiiiiiiiiiiieeee, 2-13
Control RegiSters .......ccovvvveeeeiiiiiiieeniiieeeee 2-11
CPU Instruction Set Summary Table Abbreviations
...................................................... 6-12
CPU Instruction Set Summary Table Flags Table
6-13
CPUID INStrUCtion ........ccovvvveeeiiiiieeesiiieeeeene 6-11
Current Priviledge Level (CPL) ........cccoveeenne 2-71
D
dField .o 6-4
Data BUS .....oveeiiiiiiiieeceee 3-9
Data BypassSing ......ccccvvvveeeeniiiiiiee e 1-10

INDEX

ﬁ SGS-THOMSON

Data Dependency Solutions ..........cccccceeveenn... 1-4
Data Forwarding ......ccccocceeeeiiiiieee e 1-7
Data Parity .......oooccceviiiiiiiieeeiiieeeee e 3-9
Data RegiSters ......cocccevvvieeeiiiiieee e 2-5
DC CharacteristiCS ........cooovveeeerrirrereeniiieeeeens 4-4
Debug RegiSters .......cccovvveeeviiiiieeennns 2-11, 2-37
Descriptor Priviledge Level (DPL) ................ 2-71
Descriptor Table Registers ................. 2-11, 2-15
DESCHPLOIS ...vvveeeeeiiiieiee e 2-16
E
eee Field ....ocovvveeeeeiiei 6-5
Electrical Connections .........ccccocvveeeiiiiieeeenns 4-1
Entering and Leaving V86 Mode .................. 2-75
Error Codes ....oovvveeeiiiiiiiiieeeeeeee e 2-62
EWBE# TiMiNG ...coeiiviieiiiieiiee e 3-44
Exceptions
ADOI oo 2-57
Fault ..o 2-57
TrAP e e 2-56
Exceptions in RealMode ..........ccevveevninneen. 2-61
Exclusive INStructions .........cccocvveeeiiineeeeennnns 1-4
F
Fault EXception ........cccceeeieiiiiiiiiiiiiiiieeee, 2-57
Fields
BaSe ... 6-10
O o 6-4
BB it 6-5
INEX oo 6-9
Mod and /M ......eveveeeeiiecreeee e 6-6
SIEOZ oo 6-8
SIEO3 ettt 6-8
LS SO 6-9
W ettt enaaa 6-4
Flag Register .......cccuvvieiiiiiiiiiiiieeeceeeeee 2-4
FIags v 6-13
Flags RegiSter .........cccooieiiiiiiiiiiiiieeeeeeenen 2-9
Floating Point UnNit ..........cccceveviiiiieneiniieeeen, 1-15
Floating Point Unit Operations ..................... 2-75
FPU Control and Status Registers ............... 2-75
FPU Error Interface .....cccccceeevvvieiiiiiienenneen, 3-18
FPU Parallel Execution ..........cccoccveveinninnnenn. 1-15
FPU Tag Word Register ...........ccccvvveeeeneennn. 2-75
Functional BIOCKS ........ccevveeiiiiiiiiiiiiiiiieeeeeenn 1-1
Functional Timing .......ccccoocveeeiiiiiieeniiieeeee 3-24
G
Gate DeSCHPLOrs .....c.evvveviiiieeee i 2-19
GaALES vt 2-73
-1

s WIEROELECTROMICS



INDEX

General Instruction Fields ...........cccccceiviieeenn. 6-2 L
General Purpose Register ........cccccvviieeeennnnn 2-5  Local Descriptor Table Register ................... 2-15
General Purpose Registers .........cccooccvvvineneen. 2-4  LOCK Prefix ..o 2-3
Global Descriptor Table Register ................. 2-15
M
H Memory Address Space ........cccveeeeviiieenenns 2-40
HALT Initiated Suspend Mode ...................... 3-61 Memory Addressing
Hold and HLDA ... 3-45 Protected Mode ........cccccevviviviieiiiiieenn, 2-43
Real Mode ......cooccvveviiiiiiiieciee 2-43
I V86 MOdE .....eevvvviiiiiiiie 2-74
I/O AJdress Space .........ooccccvvvee vevviiiiiiineen, 2-41  Memory Addressing Methods ...................... 2-41
1/O Privilege Levels .........ccccovvives cvveveniiiiennn, 2-72  Memory Management Unit ............cccceeeennnee 1-14
index Field ..o 6-9 mod and MM BYLe ......cccceeviiiiiiieie e 6-6
INdEeX REQISIEr ....eveeiiiiieiiiiiiiiis i 2-6  Modes
Initialization and Transition to Protected Mode .... System Management ...........cccceeeernnen 2-63
2-73
Inquiry Cycles Using AHOLD ..........ccccceeenee 3-52 N
Inquiry Cycles Using BOFF ...........ccocveeeene 3-51 NC and Reserved PiNS ......cccccovviiieeeniiiieenenns 4-2
Inquiry Cycles Using HOLD/HLDA ............... 3-50 NMIINtErrupt ..o 2-55
Instrucion Line Cache ...........cccccevviiieeennnn 1-13  Non-Pipelined Bus Cycles .......cccccccevviveeernne 3-28
Instruction Clock Count Non-Pipelined Single Transfer Cycles ......... 3-28
Assumptions made in determining ....... 6-12 Non-Piplined Burst Read Cycles .................. 3-31
Instruction Pointer Register ............cc....... 2-4, 2-9
Instruction Set Formats .........cccce veevveeeeininnenn. 6-1 O
Instruction Set OVeIVIEW .........cccccvevvivrereennnnne. 2-3  Offset Address Calculation ............ccccoeeveeee. 2-42
Instruction Set SuMmary ........ccccccevvcieeeeennnen. 6-1  Offset Mechanism ..........ccccovviiiniiiiiennnnn, 2-42
Instruction Set Tables ..........ccccccciiiinnis 6-12  Operand forwarding .......cccccceeeeereiiiniiiiiiiieeeen. 1-7
Instuction Prefix Summary ..........cccceceeeennne. 6-43  Opicode BYLe .....coovcviiiiiiiiiiiieiee e 6-4
INteger UNit ......ooooiieieiiieee e 1-2  Optional Prefix Byte ........cccccoovviiieeeiiniiiienennns 6-2
Interrups Out-of-Order Processing ......cccccccevvveuvvvveneeenn. 1-3
SMM i e 2-56
Interrupt Acknowledge Cycles ..........ccceeeeenne 3-40 P
Interrupt and Exception Priorities ................. 2-59 Pins
Interrupt Control ..........coocveeeeviiiieeeeiiieeeee 3-12 NC and Reserved ........cccccccoviveiienniinnenn. 4-2
Interrupt Descriptor Table .........ccccccoviiieeenne 2-59 Unused INPUt ......oeeeeeiiiiieee e, 4-2
Interrupt Descriptor Table Register .............. 2-15 Pipeline Selection ..........ccccccoiiiiiiiiiiiiiennnnenn, 1-4
Interrupt Handling Pipeline Stages
V86 MOUE ... 2-74 EXECULE ...oviiiiiiie 1-3
Interrupt Vector Assignments ...........cccceeeenee 2-57 Instruction Fetch .......cccccoovviiiiiiiiiiennns 1-3
INTEITUPLS oo 2-55 Write-Back ........cccccovviiieiiiiiiiiiieiiiieeen 1-3
INTR oo e 2-56  Pipelined Back-to-Back Read/Write Cycles . 3-39
NMI e 2-55  Pipelined Bus Cycles ........ccccoviiieeeiiiiieennnns 3-37
VECIOIS .ovveviiiiieeeiie ittt 2-57  Pipleine Stages
INTR INEITUPL e 2-56 Address Calculation ...........ccccceevieieennnn. 1-3
Invalidating the Cache Using FLUSH# ......... 3-42 Pointer Register ..o 2-6
Power and Ground Connections and Decoupling
J 4-1
JTAG Interface .....ccooevvvvvieeiiiiiieieeeee e, 3-23  Power Management Interface ............. 3-21, 3-60
Priviledge Levels
CUIMENT .o 2-71
-2



DESCHPLON .evveiiiiiieeeiiiieeee e 2-71
Requested ........cccvveviiiiieiiiee e, 2-71
Privilege Level Transfers .........cccccceeeeeeeennnn. 2-72
Processor Initialization ............cccccoovvieiennnnnen. 2-1
Programming Interface ..........ccoccciiiiiieeennnnnn, 2-1
Protected Mode Memory Addressing ........... 2-43
Protection .......cccccveeiiiieeiiiiiiciin i 2-71
V86 MOAE .....oevviiiiiiiiieiie e 2-74
Pull-Up/Pull-Down Resisters ..........ccooeveeennen. 4-1
R
RAW Dependency Example ...........ccccceeeennee 1-8
Real Mode Memory Addressing ...........c....... 2-43
Recommended Operating Conditions ............ 4-3
Register Renaming .........ccccovvvver cevveeeniiiieeenns 1-4
Register Sets ......ccouveiiiiiiiiiiiieeeeeee e 2-4
Registers
6x86 Configuration ...........c.ccoccvveveeennnnn 2-23
Configuration Control .............ccccceeeeeen. 2-23
Confirmation ......cccccceeveeeiiiiicciieeeeeee, 2-11
(©00] a1 (o ] I 2-11, 2-13
Data ......cooovviiiiiiii 2-5
Debug ...cooovviiee 2-11, 2-37
Descriptor Table ..........cccccvvveeeenn. 2-11 2-15
Flag oo 2-4
FIags ..o e 2-9
General PUrpoSe ......ccceeeeiiiiiiiinnnen 2-4,2-5
Global Descriptor Table .........ccccceeneee 2-15
a0 = 2-6
Instruction Pointer ............c. coovveneeen. 2-4,2-9
Interrupt Descriptor Table ..................... 2-15
Local Descriptor Table Register ........... 2-15
POINET ..oiiiiie e 2-6
SegmeNnt ... 2-4, 2-7
TasK oo 2-11, 2-20
TESE i 2-11, 2-39
Requested Priviledge Level (RPL) ............... 2-71
Requested Privilege Level (RPL) ................... 2-8
Reset CoNtrol .........eeveeiviiieieiiieeieee e, 3-6
Reset TIMiNG .....oocvvveeiiiiiiieeeeee e 3-24
Result Forwarding ........cccccccovvniiiiiiiieeeneeeen, 1-7
S
SFIEld e 6-5
Scatter/Gather Buffer Interface ............ 3-18, 3-55
Section 2.6.4 (Page 45) ..ccccccevvit ceeviiiieeeee 2-7
Segment RegISter ........ccccccvviieiiiiiiiiiiiieeeee, 2-7
Segment RegiSters .......occccveiiiir veiiieeeeiiieennn 2-4
Segment Selector ......cccovvveiiiiiiieee e 2-7
Selector Mechanism ..........ccccccoviieveniiinennn, 2-44

INDEX

ﬁ SGS-THOMSON

Shutdown and Halt .............ccccieiniiiniennne 2-69
Signal Description Table ........cccoocviiiiiinenn, 3-2
Signal DescCriptions .........cccceeeiiiiiiiiiiiieeeeenn. 3-6
Signals

INTR oo 2-56

NMI 2-55

SMM o 2-56
SMI Service Routine Execution ................... 2-68
SMI# Interrupt TiMiNG .....ooccvvveeiiiieeeeniieeen. 3-41
SMM INterrupt .......coovieeeee e 2-56
SMM Memory Space ...........ccccevvvveveeeeeeninnns 2-68
SMM Memory Space Header ...........c.cooue.e. 2-65
SMM Operation .........cccceeevviiieeeiiniieee e 2-64
Speculative EXeCUtion ..........cccccceeeviiniiinnnnee. 1-12
Sreg2 Field ......ooccveeeiiii e, 6-8
Sreg3 Field ... 6-8
SSFIeld .o, 6-9
Stopping the Input Clock .........cccoocviiienninnen. 3-62
SUSP# Initiated Suspend Mode .................. 3-60
System Management Mode ..............cceceneee 2-63
System Register Set ......ccccvviiieiiiiiiieenn, 2-11
T
Table Indicator (T1) .....ooccveveeiiiiee e 2-8
Task ReQISter .......ccvviieiiiiiiiiiiiiieeee, 2-11, 2-20
Test ReqiSters ..o vveeevvvvccciiiiiieeeeeee, 2-112-39
Thermal CharacteristiCs ..........ccccovvvvererninnnnn. 5-6
Traditional Paging Mechanism ..................... 1-15
Trap EXCeplion .......ccccovvevniiiiiieiniieee e 2-56
U
Unified Cache ........cccccvviiiiiiiiiees 1-12
Unused INPUt PiNS ..., 4-2
Y,
V86 Interrupt Handling ............cccovviieeennnnnnn, 2-74
V86 Memory Addressing ........ccccceevvvvveeeeennnns 2-74
V86 ProteCtion .........ccccoeeeeiniiereenniienee e 2-74
Variable-Size Paging Mechanism ................ 1-14
Vector INterrupt ... 2-57
Virtual 8086 MOde .........cvevveiiiiiieeeiiiieeeees 2-74
w
W FIEId oo 6-4
WAR Dependency Example ..........cccccceeeenee 1-5
WAW Dependency Example ...........ccccceeeenneee 1-6

WAW Dependency Example 1-6

s WIEROELECTROMICS



ST6x86

ﬁ SGS-THOMSON

s WIEROELECTROMICS



ST6x86

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications men-
tioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
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