
 APPLICATION NOTE
STACK OVERFLOW DETECTION

USING THE ST9 TIMER/WATCHDOG
Pierre Guillemin

AN421 / 1292

INTRODUCTION

In real time applications, the implemention of software protection is not always easy, but allows reaching
a high security level for the software against malfunction. This is particulary true for in-board applications
in disturbed environments, such as automotive, power meter or industrial applications.
To help avoid non-controlled functionality and damage to real time system due to possible perturbations
on the ST9 microcontoller core and I/O ports, a special peripheral able to act as a watchdog is available
on all ST9 family members: the Timer Watchdog.
A periodic restarting of the Timer Watchdog by program, associated with the automatic detection of possible
stack overflow, add to the protection of real time application software.
This application note shows how to detect stack overflow by using the Timer Watchdog in watchdog mode.

STACK OVERFLOW DETECTION PRINCIPLE
Summary of Timer Watchdog Features
The ST9 core include a 16-bit down counter with an 8-bit prescaler offering the possibility of a watchdog
mode. This timer, driven by a clock equal to INTCLK divided by 4, is able to provide time periods within
the range of 333ns to 5.59s (using a 12 MHz internal clock).
In watchdog mode, the Timer Watchdog generates a fixed time base according to the Timer Watchdog
registers and prescaler, and to INTCLK. This time base can be modified on the fly by changing the prescaler
value. The new value will be taken into account only after an End Of Count event. In watchdog mode, the
End Of Count occurence generates a system reset.
In order to prevent the reset, the byte sequence AAh, 55h should be written into the Timer Watchdog register
Low. Once the writing of 55h has been performed, the timer reloads the prescaler register and the counting
restarts from this value (the prescaler register value may be modified between two End Of Count events).

Note 1. For a better understanding of this application note; please refer to the ST9 Technical Manual chapter on the 16-bit
programmable Timer/Watchdog.
Note 2. INTCLK: Internal Clock. This clock issued from the oscillator circuitry, divided or not by 2, is the ST9 Internal Clock
driving the peripherals. The maximum frequency allowed for INTCLK is 12MHz.

1/6

Stack Overflow Detection
In many software applications, for example when running on ST9 ROMLESS versions or without external
memory space, the size of the stack is limited.
On ST9 devices, the system stack may be located in the Register File or in data memory space. The ST9
stack pointer moves from the top to the bottom of the stack area.
A solution to detect stack overflow is to reserve the first two bytes after the bottom of the stack and to store
in these locations the Timer Watchdog restart value, ie AAh, 55h.
In the case of stack overflow, the data will be overwritten and thus destroyed and a system reset will be
generated on the next Timer Watchdog End Of Count.

system registers group E

group D

Stack area

AAh
55h

R0

r14

r15

System

Application
register area

group 0

Register File

System stack
pointer on
current stack
location

END_SSTACK:
Last byte of
system stack

Figure 1. Example of Stack overflow detection in Register File



STACK OVERFLOW PROTECTION

2/6

;***
; STACK Declaration and end of stack initialisation
; in RAM space or Register File
;***

; Initialisation in Register FIle

SSTACK := (BKE * 16) - 1 ; Sys.stack add.group
LG-SSTACK := 32 ; Sys.stack length
END_SSTACK := (BKE * 16) - LG_SSTACK ; Last sys.stack byte

ld SSPLR,#SSTACK + 1 ; Load sys.stack pointer
ldw RR#END_STACK - 2,#0AA55h ; Init end of stack.

; Initialisation in RAM space

SSTACK := 2000h ; top of sys.stack
END-STACK := 1000h ; Init end of stack
essp = rr0

sdm
ldw SSPR,#SSTACK ; Select data space
ld essp,#END_SSTACK ; Init End of sys.stack
ldw -2(essp),#0AA55h

Figure 2. System stack initialisation

SOFTWARE DESCRIPTION

Stack Initialization
The following example initializes the system stack in groups D and C of the Register File.
In the stack management of the ST9, the stack pointer is automatically pre-decremented before the data
is stored on the stack. So the expression:

SSTACK = (BKE * 16) - 1

defines the first location of the system stack in group D and C within the Register File, while the instruction:
ld SSPLR,#SSTACK + 1

initializes the system stack pointer in the system register. The instruction:
ldw RR#END_SSTACK,#0AA55h

initializes the first two bytes following the bottom of the system stack with the value used to restart the
Timer Watchdog.



STACK OVERFLOW PROTECTION

3/6

Timer Watchdog Programmation
As an example, the Timer Watchdog is initialized in order to provide a time base of 10ms (with a ST9 driven
by a clock frequency of 24MHz internally divided by two). To enable the Watchdog mode, the requirement
is to initialize Timer prescaler and counter, to initialize the Timer Watchdog Control Register with its reset
value, and then to enable the watchdog mode by clearing the WDGEN bit in the Wait Control Register in
page 0. Resetting this bit causes the counter to start in Watchdog mode regardless of the start/stop,
Single/Continuous and input mode bits.

;***
; WATCHDOG INITIALISATION
;***

proc INIT_WGT[PPR] {

spp #0
ld WDTPR,#0 ; TWD prescaler register
ld WDTLR,#-30h ; ; TWD Timer counter low
ld WDTHR,#075h ; ; TWD Timer counter high
}

call INIT_WGT ; call TWD initialisation
spp #0 ; ; select page 0 register
ld WCR,#00111111b; ; Enable the Watchdog
ei ; ; Enable Interrupt

Figure 3. Timer/Watchdog Initialisation

Note 3. A bit (DIV2 located in the MODE Register MODER, R235 in the system group) controls the divide by two circuit
which operates on the OSCIN clock driving the ST9. The maximum Internal Clock (INTCLK) allowable for the ST9 is 12MHz.
This internal clock drives all the ST9 peripherals, while this same clock, optionally slowed down by the ST9 Core clock
programmable prescaler and by wait cycle insertion, drives the ST9 Core.
After a reset cycle, the clock frequency applied to the ST9 is divided by two and no Core clock prescaling is done.



STACK OVERFLOW PROTECTION

4/6

; In Register File

spp #0 ; TWD register page
ld WDTLR,R#END_SSTACK-2 ; Load AAh
ld WDTLR,R#END_SSTACK-1 ; Load 55h

; In RAM space

spp #0 ; TWD register page
sdm ; Select RAM space
ld essp,#END_SSTACK ; End stack pointer
ld WDTLR,-2(essp) ; Load AAh
ld WDTLR,-1(essp) ; Load 55h

Figure 4. Restarting the Timer/Watchdog

Timer Watchdog Restart
This example shows how to restart the Timer Watchdog when the stack is located in Register File or in
RAM space. In the register file, the two instructions:

ld WDTLR,#END_SSTACK-2
ld WDTLR,#END_SSTACK-1

load the restart value of Timer Watchdog.
When the system stack is located in RAM space, a register essp (end of system stack pointer) must be
used to load the sequence AAh, 55h in the Timer Watchdog counter register low.

SUMMARY

Protection of software against externally generated perturbations can be made by additional test routines.
This protection can easily be increased by using the ST9 Timer Watchdog bringing software reliability and
security. With the Timer Watchdog the ST9 programmer may control the software execution. Additionally,
when restarting the Timer Watchdog from values (AAh, 55h) located at the bottom of the system stack two
new securities are added:

- test of the integrity of the Register File or the RAM space

- provision of a system reset in the case of stack overflow.



STACK OVERFLOW PROTECTION

5/6

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no
responsability for the consequences of use of such information nor for any infringement of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights
of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice.
This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or
systems without the express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I2C Components by SGS-THOMSON Microelectronics conveys a license under the Philips I 2C Patent. Rights to use these com-
ponents in an I2C system is granted provided that the system conforms to the I 2C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands

 Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

THE SOFTWARE INCLUDED IN THIS NOTE IS FOR GUIDANCE ONLY. SGS-THOMSON SHALL NOT
BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM USE OF THE SOFTWARE.



STACK OVERFLOW PROTECTION

6/6

