

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

The SN54/74LS90, SN54/74LS92 and SN54/74LS93 are high-speed 4-bit ripple type counters partitioned into two sections. Each counter has a divide-by-two section and either a divide-by-five (LS90), divide-by-six (LS92) or divide-by-eight (LS93) section which are triggered by a HIGH-to-LOW transition on the clock inputs. Each section can be used separately or tied together (Q to \overline{CP}) to form BCD, bi-quinary, modulo-12, or modulo-16 counters. All of the counters have a 2-input gated Master Reset (Clear), and the LS90 also has a 2-input gated Master Set (Preset 9).

- Low Power Consumption . . . Typically 45 mW
- High Count Rates . . . Typically 42 MHz
- Choice of Counting Modes . . . BCD, Bi-Quinary, Divide-by-Twelve, Binary
- Input Clamp Diodes Limit High Speed Termination Effects

PIN NAMES		LOADIN	G (Note a)
		HIGH	LOW
CP ₀	Clock (Active LOW going edge) Input to ÷2 Section	0.5 U.L.	1.5 U.L.
CP ₁	Clock (Active LOW going edge) Input to ÷5 Section (LS90), ÷6 Section (LS92)	0.5 U.L.	2.0 U.L.
CP ₁	Clock (Active LOW going edge) Input to +8 Section (LS93)	0.5 U.L.	1.0 U.L.
MR_1, MR_2	Master Reset (Clear) Inputs	0.5 U.L.	0.25 U.L.
MS ₁ , MS ₂	Master Set (Preset-9, LS90) Inputs	0.5 U.L.	0.25 U.L.
Q ₀	Output from +2 Section (Notes b & c)	10 U.L.	5 (2.5) U.L.
Q_1, Q_2, Q_3	Outputs from ÷5 (LS90), ÷6 (LS92), ÷8 (LS93) Sections (Note b)	10 U.L.	5 (2.5) U.L.

NOTES:

a. 1 TTL Unit Load (U.L.) = 40 μA HIGH/1.6 mA LOW.

b. The Output LOW drive factor is 2.5 U.L. for Military, (54) and 5 U.L. for commercial (74) Temperature Ranges.

c. The Q₀ Outputs are guaranteed to drive the full fan-out plus the CP₁ input of the device.

d. To insure proper operation the rise (t_r) and fall time (t_f) of the clock must be less than 100 ns.

LS90 6 7 1 2 $14 - CP_0$ $1 - CP_1$ $MR Q_0 Q_1 Q_2 Q_3$ 1 2 2 3 12 9 8 11 $V_{CC} = PIN 5$ GND = PIN 10NC = PIN 5 4, 13

SN54/74LS90 SN54/74LS92 SN54/74LS93

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER

LOW POWER SCHOTTKY

LOGIC SYMBOL

LS92

LS93

FAST AND LS TTL DATA

FUNCTIONAL DESCRIPTION

The LS90, LS92, and LS93 are 4-bit ripple type Decade, Divide-By-Twelve, and Binary Counters respectively. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five (LS90), divide-by-six (LS92), or divide-by-eight (LS93) section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q₀ output of each device is designed and specified to drive the rated fan-out plus the \overline{CP}_1 input of the device.

A gated AND asynchronous Master Reset (MR₁ • MR₂) is provided on all counters which overrides and clocks and resets (clears) all the flip-flops. A gated AND asynchronous Master Set (MS₁ • MS₂) is provided on the LS90 which overrides the clocks and the MR inputs and sets the outputs to nine (HLLH).

Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.

LS90

- A. BCD Decade (8421) Counter The \overline{CP}_1 input must be externally connected to the Q_0 output. The \overline{CP}_0 input receives the incoming count and a BCD count sequence is produced.
- B. Symmetrical Bi-quinary Divide-By-Ten Counter The Q₃ output must be externally connected to the \overline{CP}_0 input. The input count is then applied to the \overline{CP}_1 input and a divide-by-ten square wave is obtained at output Q₀.

C. Divide-By-Two and Divide-By-Five Counter — No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function (\overline{CP}_0 as the input and Q_0 as the output). The \overline{CP}_1 input is used to obtain binary divide-by-five operation at the Q_3 output.

LS92

- A. Modulo 12, Divide-By-Twelve Counter The \overline{CP}_1 input must be externally connected to the Q₀ output. The \overline{CP}_0 input receives the incoming count and Q₃ produces a symmetrical divide-by-twelve square wave output.
- B. Divide-By-Two and Divide-By-Six Counter —No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function. The \overline{CP}_1 input is used to obtain divide-by-three operation at the Q_1 and Q_2 outputs and divide-by-six operation at the Q_3 output.

LS93

- A. 4-Bit Ripple Counter The output Q_0 must be externally connected to input \overline{CP}_1 . The input count pulses are applied to input \overline{CP}_0 . Simultaneous divisions of 2, 4, 8, and 16 are performed at the Q_0 , Q_1 , Q_2 , and Q_3 outputs as shown in the truth table.
- B. 3-Bit Ripple Counter— The input count pulses are applied to input \overline{CP}_1 . Simultaneous frequency divisions of 2, 4, and 8 are available at the Q_1 , Q_2 , and Q_3 outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

LS90 MODE SELECTION

RES	RESET/SET INPUTS					UTP	UTS				
MR ₁	MR ₂	MS ₁	MS ₂		Q ₀	Q3					
н	Н	L	Х		L	L	L	Г			
н	н	Х	L		L	L	L	L			
X	X	н	н		н	L	L	Н			
L	X	L	Х			Cou	unt				
X	L	Х	L			Οοι	Int				
L	X	Х	L		Count						
Х	L	L	Х			Соι	unt				

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

LS92 AND LS93 MODE SELECTION

	SET UTS		OUTF	PUTS					
MR ₁	MR ₂	Q ₀	Q ₀ Q ₁ Q ₂						
Н	Н	L	L	L	Г				
L	н		Со	unt					
Н	L	Count							
L	L		Со	unt					

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

LS90										
BCD COUNT SEQUENCE										

COUNT		OUT	PUT	
COUNT	Q ₀	Q ₁	Q2	Q3
0	L	L	L	L
1	Н	L	L	L
2	L	Н	L	L
3	Н	Н	L	L
4	L	L	Н	L
5	Н	L	Н	L
6	L	Н	Н	L
7	Н	Н	Н	L
8	L	L	L	Н
9	н	L	L	Н

<u>NO</u>TE: Output Q_0 is connected to Input CP_1 for BCD count.

LS92 TRUTH TABLE

COUNT	OUTPUT							
COUNT	Q ₀	Q ₁	Q2	Q3				
0	L	L	L	L				
1	н	L	L	L				
2	L	Н	L	L				
3	н	Н	L	L				
4	L	L	Н	L				
5	н	L	Н	L				
6	L	L	L	н				
7	н	L	L	н				
8	L	Н	L	н				
9	н	Н	L	Н				
10	L	L	Н	н				
11	н	L	Н	Н				

 $\underline{\text{NOTE:}}$ Output Q_0 is connected to Input $\text{CP}_1.$

LS93 TRUTH TABLE

COUNT		OUT	PUT	
COUNT	Q ₀	Q ₁	Q2	Q3
0	L	L	L	Г
1	н	L	L	L
2 3	L	Н	L	L
3	Н	Н	L	L
4	L	L	Н	
5	Н	L	Н	L
6	L	Н	Н	L
7	Н	Н	Н	L
8	L	L	L	н
9	Н	L	L	н
10	L	Н	L	Н
11	н	Н	L	Н
12	L	L	Н	н
13	Н	L	Н	н
14	L	Н	Н	н
15	н	Н	Н	н

 $\underline{\text{NOTE:}}$ Output Q_0 is connected to Input $\text{CP}_1.$

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
т _А	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54, 74			-0.4	mA
I _{OL}	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test Co	onditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
\/					0.7	v	Guaranteed Input	LOW Voltage for	
VIL	Input LOW Voltage	74			0.8	V	All Inputs		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA		
Mari		54	2.5	3.5		V	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = V _I		
∨он	Output HIGH Voltage	74	2.7	3.5		V	or VIL per Truth Ta	able	
Ver		54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} or V_{IH}$	
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
					20	μΑ	$V_{CC} = MAX, V_{IN}$	= 2.7 V	
ін	Input HIGH Current				0.1	mA	$V_{CC} = MAX, V_{IN}$	= 7.0 V	
Ι _{ΙL}	Input LOW Current MS, MR CP ₀ CP ₁ (LS90, LS92) CP ₁ (LS93)				-0.4 -2.4 -3.2 -1.6	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$		
IOS	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
ICC	Power Supply Current				15	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

			Limits								
			LS90			LS92			LS93		
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fMAX	CP0 Input Clock Frequency	32			32			32			MHz
fMAX	CP1 Input Clock Frequency	16			16			16			MHz
^t PLH ^t PHL	Propagation Delay, \overline{CP}_0 Input to Q_0 Output		10 12	16 18		10 12	16 18		10 12	16 18	ns
^t PLH ^t PHL	\overline{CP}_0 Input to Q ₃ Output		32 34	48 50		32 34	48 50		46 46	70 70	ns
^t PLH ^t PHL	\overline{CP}_1 Input to Q_1 Output		10 14	16 21		10 14	16 21		10 14	16 21	ns
^t PLH ^t PHL	\overline{CP}_1 Input to Q ₂ Output		21 23	32 35		10 14	16 21		21 23	32 35	ns
^t PLH ^t PHL	\overline{CP}_1 Input to Q ₃ Output		21 23	32 35		21 23	32 35		34 34	51 51	ns
^t PLH	MS Input to Q_0 and Q_3 Outputs		20	30							ns
^t PHL	MS Input to Q_1 and Q_2 Outputs		26	40							ns
^t PHL	MR Input to Any Output		26	40		26	40		26	40	ns

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V, C_L = 15 pF)

AC SETUP REQUIREMENTS (T_A = 25°C, V_{CC} = 5.0 V)

		Limits						
		LS90		LS92		LS93		
Symbol	Parameter	Min	Мах	Min	Max	Min	Мах	Unit
tw	CP ₀ Pulse Width	15		15		15		ns
t _W	CP ₁ Pulse Width	30		30		30		ns
tW	MS Pulse Width	15						ns
t _W	MR Pulse Width	15		15		15		ns
t _{rec}	Recovery Time MR to CP	25		25		25		ns

RECOVERY TIME (trec) is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH-to-LOW in order to recognize and transfer HIGH data to the Q outputs

AC WAVEFORMS

Figure 1

*The number of Clock Pulses required between the tPHL and tPLH measurements can be determined from the appropriate Truth Tables.

FAST AND LS TTL DATA