SN100KT5538 OCTAL ECL-TO-TTL TRANSLATOR WITH OPEN-COLLECTOR OUTPUTS SDZS011 – APRIL 1990

- 100K Compatible
- Open-Collector Outputs Drive Bus Lines or Buffer Memory Address Registers
- ECL and TTL Control Inputs
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC}, V_{EE}, and GND Configurations Minimize High-Speed Switching Noise
- Package Options Include "Small Outline" Packages and Standard Plastic 300-mil DIPs

description

This octal ECL-to-TTL translator is designed to provide efficient translation between a 100K signal environment and a TTL signal environment. This device is designed specifically to improve the performance and density of ECL-to-TTL CPU/bus oriented functions such as memory address drivers, clock drivers, and bus-oriented receivers and transmitters while eliminating the need for three-state overlap protection.

Two output enables, $\overline{OE1}$ and $\overline{OE2}$, are provided. These enable inputs are ANDed together with $\overline{OE1}$ being ECL-compatible and $\overline{OE2}$ being TTL-compatible. This offers the choice of controlling the outputs of the device from either a TTL or ECL signal environment.

The SN100KT5538 is characterized for operation from 0°C to 85°C.

R NT PACKAGE

logic symbol[†]

 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

FUNCTION TABLE							
OUTPUT ENABLE		DATA INPUT	OUTPUT (TTL)				
OE1	OE2	A	Y				
н	Х	Х	Н				
Х	Н	Х	Н				
L	L	L	Н				
L	L	н	L				

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN100KT5538 **OCTAL ECL-TO-TTL TRANSLATOR** WITH OPEN-COLLECTOR OUTPUTS SDZS011 - APRIL 1990

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range (TTL) (see Note 1)	
Input voltage range (ECL)	V _{EE} to 0 V
Input current range (TTL)	–30 mA to 5 mA
Current into any output in the low state	96 mA
Voltage applied to any output in the high state	$\dots \dots \dots -0.5$ V to V _{CC}
Operating temperature range	0°C to 85°Č
Storage temperature range	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The TTL input voltage ratings may be exceeded provided the input current ratings are observed.

recommended operating conditions

			MIN	NOM	MAX	UNIT
VCC	TTL supply voltage		4.5	5	5.5	V
VEE	ECL supply voltage		-4.2	-4.5	-4.8	V
		TTL	2		5 5.5	V
VIH	High-level input voltage	ECL (see Note 2)	-1150		-840	mV
	VIL Low-level input voltage	TTL			0.8	V
VIL		ECL (see Note 2)	-1810		-1490	mV
Vон	TTL high-level output voltage	-			5.5	V
IOL	TTL low-level output current				48	mA
IК	TTL input clamp current				-18	mA
Τ _Α	Operating free-air temperature		0		85	°C

NOTE 2: The algebraic convention, in which the least positive (most negative) value is designated minimum, is used in this data sheet for logic levels only.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS		MIN TYP [†]	MAX	UNIT
VIK	OE2 only	V _{CC} = 4.5 V,	$V_{EE} = -4.2 V,$	l _l = –18 mA		-1.2	V
VOL		V _{CC} = 4.5 V,	$V_{\text{EE}} = -4.5 \text{ V} \pm 0.3 \text{ V},$	I _{OL} = 48 mA	0.38	0.55	V
Ц	OE2 only	V _{CC} = 5.5 V,	$V_{EE} = -4.8 V,$	V _I = 7 V		0.1	mA
	OE2 only	V _{CC} = 5.5 V,	$V_{EE} = -4.8 V,$	V _I = 2.7 V		20	
ΙН	A inputs and OE1	V _{CC} = 5.5 V,	$V_{EE} = -4.8 V,$	$V_{I} = -840 \text{ mV}$		350	μA
	OE2 only	V _{CC} = 5.5 V,	$V_{EE} = -4.8 V,$	Vj = 0.5 V		-0.5	mA
۱ _{IL}	A inputs and OE1	V _{CC} = 5.5 V,	$V_{EE} = -4.8 V,$	Vj = -1810 mV	0.5		μΑ
IОН		V _{CC} = 4.5 V,	$V_{EE} = -4.2 V,$	V _{OH} = 5.5 V		250	μA
ICCH		V _{CC} = 5.5 V,	$V_{EE} = -4.8 V$		66	95	mA
ICCL		V _{CC} = 5.5 V,	$V_{EE} = -4.8 V$		79.5	114	mA
IEE		V _{CC} = 5.5 V,	V _{EE} = -4.2 V		-23	-33	mA
Ci		V _{CC} = 5.5 V,	V _{EE} = -4.5 V		5		pF
Co		V _{CC} = 5.5 V,	$V_{EE} = -4.5 V$		5		pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

	FROM	то	CL = 50 pF, R1 = 500 Ω,			
PARAMETER	(INPUT)	(OUTPUT)	MIN	2 = 500 Ω TYP [†]	MAX	UNIT
tPLH			6.4	9.1	11.7	
tere terestere teres	Any A	Y	2.7	4.9	7.2	ns
^t PLH			7	10.1	13.3	
^t PHL	OE1 (ECL)	Y	3.6	6.2	8.8	ns
^t PLH			6.5	9.1	11.6	
^t PHL	OE2 (TTL)	Y	2.8	5.3	7.9	ns

[†] All typical values are at V_{CC} = 5 V, V_{EE} = -4.5 V, T_A = 25° C.

SN100KT5538 **OCTAL ECL-TO-TTL TRANSLATOR** WITH OPEN-COLLECTOR OUTPUTS

SDZS011 - APRIL 1990

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. CL includes probe and jig capacitance.
 - B. For TTL inputs, input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r \leq 2.5 ns, $t_f \le 2.5 \text{ ns.}$
 - C. For ECL inputs, input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r \leq 0.7 ns, $t_f \le 0.7$ ns.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated